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Abstract  14 

New technologies for the quantification of behavior have revolutionized animal studies in 15 
social, cognitive, and pharmacological neurosciences. However, comparable studies in 16 
understanding human behavior, especially in psychiatry, are lacking. In this study, we utilized 17 
data-driven machine learning to analyze natural, spontaneous open-field human behaviors from 18 
people with euthymic bipolar disorder (BD) and non-BD participants. Our computational 19 
paradigm identified representations of distinct sets of actions (motifs) that capture the physical 20 
activities of both groups of participants. We propose novel measures for quantifying dynamics, 21 
variability, and stereotypy in BD behaviors. These fine-grained behavioral features reflect 22 
patterns of cognitive functions of BD and better predict BD compared with traditional ethological 23 
and psychiatric measures and action recognition approaches. This research represents a 24 
significant computational advancement in human ethology, enabling the quantification of 25 
complex behaviors in real-world conditions and opening new avenues for characterizing 26 
neuropsychiatric conditions from behavior.  27 

Main  28 

Behavior, particularly in novel contexts, can be highly informative about neuropsychiatric 29 
conditions and illness states. For example, open field studies, which observe individuals in 30 
unstructured environments, can provide unique insights into how different conditions manifest in 31 
real-world settings. Bipolar disorder (BD), a chronic psychiatric illness that can have devastating 32 
functional consequences, is hallmarked by increased energy, which often manifests as more 33 
motor activity and engagement in goal-directed behaviors1. Quantifying such behavior is critical 34 
to identify symptoms, formulate diagnoses, and ultimately advance treatment approaches. 35 
Contemporary machine learning can automate this process to identify signature behavior 36 
patterns that potentially reflect underlying brain functions of conditions such as BD and other 37 
neuropsychiatric illnesses.  38 

Currently, to assess the underlying psychiatric disorders, clinicians heavily rely upon 39 
observer-rating scales such as the Hamilton Depression Rating Scale (HAM-D)2,3, Young Mania 40 
Rating Scale (YMRS)4 and other self-reported rating scales5. However, self-reported rating 41 
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scales have limitations in reliability. Rating scales can address broad classifications but may fail 42 
to accurately address fine motor skills and behaviors or effectively differentiate between 43 
conditions. For example, 'Increased Motor Activity-Energy' in YMRS may represent a group of 44 
symptoms that are present in conditions other than BD (such as ADHD). These scales 45 
aggregate multiple experiences over various timeframes and milieus — such as work, home, 46 

and leisure activities — which may not best represent real-time behavior. Additionally, these 47 

rating scales reduce complex, high-dimensional experiences into integer ranges from severe to 48 
mild, where the relative magnitude between ranges can vary inconsistently (e.g., the difference 49 
between 0 and 1 is not necessarily equivalent to the difference between from 1 and 2). 50 
Therefore, quantification of behavior on a continuous scale would be preferable for more 51 
accurate assessments. 52 

An additional concern is that psychiatric conditions often manifest symptoms cyclically 53 
and extend over timescales6, such that individuals with BD can exhibit distinctive patterns of 54 
behavior depending on their illness state7. While people with BD experiencing manic episodes 55 
have high motor activity, the activity of those in a euthymic state, defined by the absence of a 56 
manic, hypomanic, or depressed episode, may appear indistinguishable from that of a healthy 57 
person. Moreover, due to inter-individual differences in pathology, the idiosyncrasies of each 58 
individual’s life history, and the time-varying nature of mental health and psychiatric disorders, 59 
two patients even when experiencing the same BD episode may not present in precisely the 60 
same way. This difference means that population averages may not reflect the best possible 61 
assessment of a given individual8,9. Therefore, it remains a challenge to identify and quantify the 62 
subtle behavioral features among individuals with BD until they present with prominent manic or 63 
depressive symptoms, at which point the opportunity for preventative intervention has been 64 
missed.   65 

There have been some recent inroads in the quantification of undirected human 66 
behavior in medical settings. The human Behavioral Pattern Monitor (hBPM), a human version 67 
of the classic rodent open-field activity assessment, was develorped to better quantify human 68 
exploratory behavior10. hBPM uses spatial information (for example, Spatial-D) and temporal 69 
statistics to identify signature patterns of behavior of human patients10,11. However, the hBPM 70 
still relies on observers to label behavior using a priori established criteria. This time-consuming 71 
process is susceptible to subjective biases in behavioral labels and can be undermined by 72 
insufficient inter-rater reliability. Moreover, manual observer-based methods face challenges in 73 
scaling to the extensive sizes of modern datasets. To overcome these limitations and discover 74 
relevant behavior repertoire in an exploratory manner, data-driven behavioral identification is 75 
needed. 76 

 Behavior as a reflection of cognition often displays repeated patterns, i.e., behavioral 77 
motifs. Motifs are recurring, identifiable sequences of actions, reactions, or responses, exhibited 78 
as a characteristic feature of a population. Motifs are often considered meaningful units of 79 
behavior that may provide insights into underlying psychological or physiological processes12–14. 80 
Motifs also appear in rating scales, described as specific actions. For example, the HAM-D 81 
describes “agitation” based on a collection of actions (i.e., fidgetiness; playing with hands, hair, 82 
etc.; moving about, can’t sit still, hand wringing, nail-biting, hair-pulling, biting of lips). These 83 
subtle motifs usually do not belong to a generic label and are ignored during manual behavior 84 
annotation. This raises a question: can we automatically identify motifs from free-moving 85 
spontaneous human behavior in a rich real-world context?  86 
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Progress towards this direction has been made in animal models, where automated 87 
behavioral segmentation methods (e.g., MoSeq-based models15,16, VAME17, MotionMapper18–20, 88 
and B-SOiD21) have proven useful for identifying stereotyped behavioral motifs that can be 89 
related to neurological19 and pharmacological manipulations14 in animals. However, there is little 90 
research applying such methods to understanding human behavior, let alone in a psychiatric 91 
context. In recent years, computer vision-based supervised methods of animal- (e.g., 92 
DeepLabCut22, DeepPoseKit23, Deep Graph Pose24, DeepOF25, and SLEAP26) and human-pose 93 
estimation (e.g., MoveNet27 and OpenMMLab28) can produce accurate key points tracking and 94 
skeleton estimates of animal or human participants and can even automatically label actions. 95 
Built on deep-learning-based architectures, these models have significantly increased the 96 
efficiency of behavioral quantification with little to no direct human supervision. However, these 97 
methods are limited by their training sets of gait movements, which are often constrained to not 98 
only a small subset of camera angles, lens distortions, and action labels, but also a narrow 99 
scope of human behaviors. Thus, pose estimation models alone cannot identify distinct 100 
behavioral motifs, making them relatively impoverished descriptions of behavior for clinical 101 
settings.   102 

Our objective was to quantify spontaneous human behavior in real-world contexts 103 
among euthymic BD individuals and differentiate them from a healthy comparison (HC) 104 
population. We aimed to use an “unsupervised” machine learning model (meaning a model that 105 
is not explicitly told how to structure the relationships between data points) to objectively 106 
characterize patterns of behavior without relying on a predetermined catalog of behaviors. Here, 107 
we introduce a novel approach to address these challenges. Specifically, we identified 108 
recognized behavioral features of BD that aligned with previously known clinical observations 109 
and were uniquely expressed in our analysis. Our machine learning framework also consistently 110 
identified patterns and relationships that may not be immediately obvious to human observers. 111 
By exploring new behavioral features and providing psychiatric interpretations of these features, 112 
our approach shows the potential to lead discoveries in the field to better understand symptoms, 113 
formulate diagnoses of psychiatric disorders, and ultimately advance treatment approaches.  114 
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Results 115 

Study participants have been described previously in hBPM studies29. Briefly, 25 116 
participants (12 men) were diagnosed with bipolar disorder (BD). Twenty-four were diagnosed 117 
with BD Type I or Type II, and one participant was diagnosed with the cyclothymic subtype of 118 
BD. All diagnoses were determined by the Structured Clinical Interview for DSM-IV30. All BD 119 
participants were in a euthymic state as defined by scores of HAM-D < 10 and YMRS < 12 120 
(Supplementary Table 1). Healthy comparison (HC) volunteers (n = 25; 15 men) who had 121 
never met the DSM-IV criteria for neurological or psychiatric disorders participated in the study 122 

as the HC group. All participants gave written consent and were assessed by the YMRS (to 123 
assess symptoms of mania) and HAM-D (to assess symptoms of depression). Higher scores on 124 
the measures reflect more severe symptoms of mania or depression. Each participant was 125 
introduced to a previously unexplored room containing furniture and small objects along the 126 
periphery of the room (Supplementary Fig. 1) and remained there for 15 minutes. Videos were 127 
recorded from a commercial camera with a fisheye lens placed at the center of the ceiling (Fig. 128 
1a). For full details, please refer to Methods.  129 

A Latent-variable model identified context-dependent behavioral motifs of human 130 
participants. 131 

While the full repertoire of human behaviors is vast, we expect the distribution of 132 
behaviors a person expresses in a given context to be highly constrained and specific. We, 133 
therefore, sought to best characterize the distribution of behaviors relevant to the context of our 134 

 

Figure 1. Data and Methods. a. Videos of free-moving human behavior from participants with bipolar disorder (BD) during 
euthymic episodes and healthy comparison (HC) participants for 15 minutes in an unexplored room with objects. We 
utilized DeepLabCut to label 20 markers placed on key-points of human participants (e.g., elbows). Pose markers were fed 
into a latent-variable model and the latent representations were used to segment the videos into motifs. We identified 
hallmark behavioral features that characterized BD in different time scales and these features were used to classify if a 
participant is from the BD or HC groups. Classification was benchmarked against assessment scales YMRS and HAMD 
and other action segmentation approaches. b. Three example frames from the videos of human behavior with key-points 
marking the skeleton. Inset: Egocentric view of the human skeleton with key-points are shown with action label from 
manual behavior annotations. c. Example of center-of-feet key-point x-position trajectory in the room. d. Trajectory of the 
center-of-feet key-point x-position over time.  
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experiment, rather than a predetermined catalog of behaviors that may not be as well matched. 135 
To characterize patterns of context-dependent, naturalistic human behaviors, we required an 136 
unbiased way of annotating our video data. We, therefore, developed a data-driven approach 137 
for discovering behavioral features of freely-moving humans with two key functional modules: 138 
(1) pose estimation (using DeepLabCut) for accurately labeling anatomical key points of the 139 
human participants in every frame22 (Fig. 1b-d), and (2) a latent-variable model (VAME) for 140 
embedding these key points into a low-dimensional representation17 (Fig. 2a, b). Clustering on 141 
the latent representation provided a set of behavioral motifs corresponding to distinct actions or 142 
sequences of actions (Fig. 2c, d). We compared our approach to manually annotated labels 143 
determined by clinically trained human experts; as well as pre-trained computer vision (CV)  144 
action detection models28,31, which automatically generated a set of labels (Supplementary Fig. 145 
2a, b). As an additional control, we applied k-means clustering to the key points themselves 146 
(rather than the latent coordinates) to obtain an alternative set of clusters.  147 

We found the distribution of manually labeled behaviors was imbalanced — among 50 148 
videos, the vast majority of time frames are labeled as “stand” or “walk” (median(IQR) BD: 149 
65.2%(34.7%), 17.9%(23.1%); HC: 77.3%(55.3%) 7.9%(12.2%), Fig. 2e). For the CV models, 150 
while they have access to up to 400 available action labels32, most labels were irrelevant to the 151 
clinical setting, such as “canoeing or kayaking,” “changing wheel”, and “playing musical 152 
instrument”. We therefore found that the majority of the identified actions among CV models 153 
were only distributed among a few labels. For example, MMAction28 identified “stand,” “sit” and 154 
“lie/sleep” (median (IQR) BD: 55.56% (40.00%), 17.11% (20.89%), 7.11% (7.11%); HC: 42.44% 155 
(25.11%), 17.33% (13.55%), 11.33% (13.99%)). Most concerning was that the top three actions 156 
detected by S3D31 were erroneously identified as “biking through snow,” “folding napkins,” and 157 
“folding clothes” (median(IQR): BD: 28.81% (22.27%), 17.17% (23.64%), 13.37% (42.74%); HC: 158 
42.74% (37.16%), 24.55% (30.71%), 10.64% (15.06%)).  159 

In contrast, the motifs obtained from the latent-variable model captured a broad array of 160 
interpretable behaviors in the clinical context. Clips from the same motif showed visually similar 161 
combinations of actions and activities. Interestingly, our motifs spanned multiple time scales, 162 
varying from a few seconds to a couple of minutes, indicating diverse scales of complexity in 163 
behavioral dynamics and underlying cognitive processes33. To accurately quantify these 164 
nuances observed in human behavior, each motif clip was described using natural language, 165 
instead of discrete labels employing single verbs (Methods). While some motifs represented 166 
intuitively simple activities (e.g., standstill), the majority of motifs captured higher-order 167 
behavioral sequences that reveal previously undefined actions, even behavioral intentions. For 168 
example, motif 1 included a collection of clips related to the stretch of one body part, such as 169 
upper body bend, arm swing, and wrist/ankle rotation. Motif 4 revealed fidget, meaning small 170 
movements in hands and feet, such as nose picking. In addition, motif 9 showed an active 171 
exploratory behavior, in which participants approached objects and then inspected them, but did 172 
not necessarily directly interact with objects as in motif 8. Notably, motif 9 is an intentional 173 
exploration, i.e. the subject typically had a targeted object or a destination in mind after 174 
scanning around the environment, as opposed to the aimless wander in motif 6 and the depart 175 
after exploration in motif 2. Table 1 includes the actions in all motifs.  176 

 177 

 178 
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 179 

The timing and duration of motif occurrences were similar to those of manually 180 
annotated labels. For example, as we divided the video into three 5-minute epochs, both 181 
approaches showed many behavior occurrences in epoch 1, and few occurrences in epoch 3 182 
(Fig. 2c). Although there is not a one-to-one correspondence between manually annotated 183 
labels and learned motifs, 87.10% of the onset and offset of motifs align with those of manually 184 
annotated labels (Methods). Motifs displayed a more fine-grained and broader distribution of 185 
behavior compared with manually annotated labels. For periods where there is only one human 186 
annotated label like “stand,” the latent-variable model has revealed more fine-grained motifs 187 
such as tucking shirts using hands while standing. This demonstrates that the latent-variable 188 
model not only captured the actions that are explicitly perceivable by the eye but also identified 189 
finer categories of actions that are data-dependent. 190 

 191 

Table 1 
Motif descriptions in natural language  

 

Motif Description Examples 

motif 0 torso rotation turn walking direction,  
lean left and right,  

bend forward 

motif 1 
 

stretch (one body part) upper body bend, 
wrist/ankle rotation,  

arm swing 

motif 2  depart (from the previous action)  step away from the window,  
walk away from the desk,  

turn away from the bulletin board 

motif 3 arm and hand movement touch clothes,  
pull open drawers,  

reach objects 

motif 4 static or fidget pick nose, 
 remove the candy wrapper,  

detangle and braid hair 

motif 5 standstill standstill by the bulletin board, 
standstill in the middle of the room, 

standstill by window  

motif 6 wander and scan (aimlessly) wander towards the bookcase, 
scan across the room, 

look at the cradle swing  

motif 7                  turn from/to  turnaround from the window, 
step back and turn, 

turn head left and right 

motif 8 examine/interact with objects look at the desk, 
reach objects on the bookcase, 

wear clothes placed on the bookcase 

motif 9 approach (with aim) and/or inspect  approach the bookcase and inspect it, 
go to the door and peek, 

read from the bulletin board  
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Motif dwell times suggest perseveration and impairment of attention in BD. 192 

Our motifs produced relevant representations of the human pose for understanding the 193 
behavioral characteristics of the euthymic state of BD. People with BD are considered in a 194 
euthymic state when they do not meet the criteria for a manic, hypomanic, or depressed 195 
episode although they may still exhibit some symptoms. We were interested in whether we 196 
could identify distinct behavioral features of euthymic BD patients that distinguished them from 197 
HCs, even in the absence of a depressive or manic episode. 198 

 To this end, we measured the average motif usage dwell time, which is the time spent in 199 
each motif, for BD and HC during the entire recording period (Fig. 2e). Previous work on the 200 
hBPM has shown that manic BD patients displayed high motor activity in the first epoch, but 201 
quickly attenuated in the second and third epochs11. Consistent with this setting, we also 202 
calculated the mean dwell time of each motif in the three 5-minute epochs. 203 

We detected differences between BD and HC in overall dwell time for motif 1 (stretch of 204 
one body part), motif 4 (static or fidget), and motif 9 (approach objects then inspect them) (two-205 

 

Figure 2. Latent-variable Model and Dwell time. a. Pose markers were fed into the VAME variational autoencoder 
and the latent representations were used to segment motifs. The input were the past 𝑥𝑡−, current 𝑥𝑡, and next 𝑥𝑡+ 
pose markers time series which were encoded as corresponding hidden states. The model would learn to reconstruct 
the input, and the learned latent representation was a 15-min vector that were segmented into motifs. b. Example of 
latent vectors for video in Fig. 1b. c. Top: Each video was manually annotated by experts into 10 behavior categories 
(e.g., sit, stand). Ethogram of manual annotation. Bottom: Ethograms of motif segmentation from latent segmentation. 
d. examples of motif 1, motif 4 and motif 9 in the dataset. e. Motif usage dwell time from human annotation (left) and 
latent variable model (right) in BD (orange) and HC (blue). f. Motif dwell time for motif 1, motif 4 and motif 9 in three 
epochs in BD (light to dark shades of orange), and HC (light to dark shades of blue). Red bars on the x-axis indicates 
significance. 
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sample t-test p-value: 0.010, 0.027, 0.015). Furthermore, dwell time in motif 9 was positively 206 
correlated with HAM-D (Pearson Correlation r: 0.44, p-value: 0.03), and dwell time in motif 2 207 
(depart) was positively correlated with YMRS (Pearson Correlation: r: 0.53, p-value: 0.01) in the 208 
BD group.  209 

For clusters obtained by k-means clustering of the key point trajectories, cluster 4 and 210 
cluster 6 displayed differences between the populations (two-sample t-test, p-value: 0.033, 211 
0.007) but these were not correlated with assessment scales. Cluster 2 demonstrated no 212 
difference in dwell time but was correlated with higher YMRS scores in the BD group (Pearson 213 
Correlation: r: 0.44, p-value: 0.03). In contrast, for manually annotated and CV-identified 214 
actions, dwell times associated with their labels either did not distinguish between the 215 
populations or were different between populations but did not correlate with assessment scales 216 
(Supplementary Table 2).  217 

The dwell time of motifs varied between epochs. We found the dwell time of motif 1 was 218 
higher in the BD population in the first and second epochs (two-sample t-test, p-value: 0.04, 219 
0.026), higher in motif 4 in the third epoch (two-sample t-test, p-value: 0.047), lower in BD in 220 
motif 9 in the second and third epochs (Fig. 2f, two-sample t-test, p-value: 0.026, 0.044). We 221 
found motif 9 became more correlated with HAM-D (Pearson correlation r in epoch 1 to epoch 3: 222 
-0.02, 0.38, 0.61, p-value: 0.93, 0.06, 0.00) but not with YMRS. Motif 2 was correlated with 223 
YMRS in the second epoch (Pearson Correlation: r: 0.52, p-value: 0.01).  224 

For k-means clustering of the key points, cluster 2 showed a correlation with YMRS in 225 
the first two epochs (Pearson Correlation: r: 0.42, 0.45, p-value: 0.04, 0.02). Cluster 4 showed a 226 
difference in dwell time in epoch 2 (two-sample t-test, p-value: 0.015), and cluster 6 showed a 227 
difference in all epochs (two-sample t-test, p-value: 0.015,0.012, 0.016), but no correlation with 228 
either HAM-D or YMRS. For the manually annotated categories, no difference was found in 229 
dwell time, but “stand” time was negatively correlated with HAM-D in the first epoch (Pearson 230 
Correlation: r: -0.47, p-value: 0.02), and “sit” time was correlated with HAM-D in the last epoch 231 
in the BD population (Pearson Correlation: r: 0.42, p-value: 0.04).  232 

To compare the describing power on the distribution of behaviors, we introduced a 233 
measure of motif entropy. Specifically, the entropy of the dwell time distributions is the highest 234 
for our method (Supplementary Fig. 2c). Lower entropy dwell time distributions suggest a 235 
model mismatch, as they indicate that most of the probability mass is allocated to a small 236 
number of motifs. An ideal fit, according to the principle of maximum entropy, should have a 237 
uniform dwell time distribution.  238 

Overall, we found BD had increased time stretching, fidgeting, and less time in 239 
interaction with objects, indicating potential perseveration and impairment of attention34,35. In 240 
summary, motifs identified by our data-driven machine learning approach showed stronger and 241 
more consistent correlations with clinical assessments than either general-purpose annotation 242 
methods or more traditional manual annotations. 243 

Motif transitions displayed less activation and more stereotypy in BD. 244 

The behavioral dynamics, as measured by the transition frequency between motifs, and 245 
the variety of the behavioral repertoire, changed as the participants spent more time in the 246 
environment. Specifically, visual inspection of ethograms highlighted periods during which 247 
participants frequently transitioned between motifs, indicating a richer and more diverse 248 
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behavioral repertoire, in contrast to periods where participants remained consistently within a 249 
single motif, or a small subset of motifs. To quantify these fluctuations in behavioral transitions 250 
and their variety, we can view motifs as states within a Markov Chain and quantify the temporal 251 
relationships between them.  252 

 We computed the weighted adjacency matrices 𝐴, and transition probability matrices 𝑃 253 

separately for each participant to capture the dynamics between motifs (Fig. 3a, b). Adjacency 254 
matrices 𝐴 tally how often every motif 𝑆𝑖 transitions to every other motif 𝑆𝑗, where 𝑗 ≠ 𝑖. The sum 255 

of all entries in the adjacency matrix, ∑ 𝐴𝑖𝑗𝑖,𝑗 , provides the transition frequency, and the overall 256 

number of transitions during the period of interest. Transition matrices 𝑃 assess the rate of 257 

transitions between motifs by calculating the probability of every motif 𝑆𝑖 transitioning into every 258 

other motif 𝑆𝑗. We computed 𝐴𝑇 and 𝑃𝑇 for the entire duration of the recording 𝑇, as well as 259 

𝐴𝜏 and 𝑃𝜏 at each epoch 𝜏. These measurements enable us to quantify how frequently 260 

individuals shift between different motifs and the likelihood of such transitions occurring. As a 261 
control, we computed 𝐴 and 𝑃 for setting the latent variable model to identify either 𝑛 = 10 or 262 

30 motifs to explore the impact of the number of motifs on transition dynamics. 263 

While both BD and HC groups experience an overall decrease in transition frequency, 264 
the decline is more pronounced in BD over time (Fig. 3c, linear regression fitting over three 265 
epochs: BD: slope: -0.06, p-value: 9.80 x 10-4, SE: 0.02; HC: slope: -0.01, p-value: 0.57, SE: 266 
0.02). This indicates that the behavioral repertoire within the BD group becomes narrower and 267 
more stereotyped over time. Note that there is a distinction between a narrower range in 268 
behavioral repertoire and true inactivity (i.e., no change in key point positions): a decrease in 269 
transition frequency does not necessarily indicate inactivity; instead, it signifies an increase in 270 
stereotypy of behavioral patterns. For example, the increase in stereotypy reflected as 𝑃𝜏 271 

became sparser (more zeros) in BD, in comparison to idiosyncrasy which was reflected as a 272 

consistent number of zeros in 𝑃𝜏 of HC.  273 

To quantify stereotypy, we introduced the effective-number-of-accessible-states (ENAS) 274 
of the transition matrix. ENAS is a measure of the number of accessible motifs (states) for each 275 
period (overall time, or epoch) by weighting the count of motifs by their relative accessibility 276 
(probability). Intuitively, given a motif that the participant occupied within the period, if every 277 
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other motif 𝑖 is visited equally from this motif, ENAS of this motif is equal to 𝑛; if no other motif is 278 
visited, ENAS is equal to 1; if the motif was not occupied during the period, then the ENAS is 0.  279 

We counted the number of unvisited motifs in the transition matrices to quantify sparsity, 280 
i.e. whether or not the behavior was dominated by only a few stereotypical transitions between 281 
motifs. We found the number of unvisited motifs became higher in BD than in HC (Fig. 3d). In 282 
addition, ENAS became smaller for BD over time in all motifs and often was smaller compared 283 
with HC, especially in epoch 3. This indicated that BD participants tended to not only display a 284 
smaller behavior repertoire, but also had fewer accessible motifs over time in this repertoire 285 
(Fig. 3e).  286 

We experiment with denser motif segmentations (𝑛 = 30) and observed BD to also  287 

have a decrease in motif transitions (Supplementary Fig. 3), suggesting that an increase in 288 
stereotypy over time are hallmark of BD, independent of the set of actions, or the complexity of 289 
actions chosen in the given environment. Moreover, our analysis of transition provides a 290 
quantification on the level of dynamic characteristics of activation, an important dimension of BD 291 
that is associated with many terms including arousal, excitation, novelty seeking, agitation36. 292 
Together, we provide quantifications on behavioral dynamics and these results suggest that the 293 

 

Figure 3. Motif Transition. a. Transition matrices in three epochs for an HC participant and a BD participant, where 
each pixel represents the transition probability from every motif into every other motif. b. Graphs representing the 
transition matrices in a. where nodes represent motifs and directed edges are colored by the ‘from’ motif color. The 
thicker the edges the higher transition probability. The larger the nodes the higher dwell time of the motif. c. Transition 
frequency of three epochs in HC (blue) and BD (orange). d. Number of unvisited motifs of the HC (blue) and BD 
(orange) population over time. e. Effective-number-of-accessible-states (ENAS) of three epochs of HC (blue) and BD 
(orange) of ten motifs. Epoch 1 – epoch 3 marked by dark to light shades in each population. Significance marked by 
red bars. 
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behavior of the BD population tends to become more stereotyped, and less in activation during 294 
the course of recording, even in euthymic episodes.  295 

Latent representations displayed behavioral variability in BD. 296 

Transition analysis explored the temporal relationships between motifs, shedding light on 297 
their sequences but not on the diversity of actions occurring within specific motifs. For example, 298 
in motif 1, one participant may stretch by rolling their arms, while another may kick their legs. To 299 
examine within-motif variability, we measured motif-volume. Actions expressed similarly in 300 
physical space are represented by trajectories nearby in the latent space. Therefore, the 301 
variability observed in movements is reflected in the variability of the latent variables. Motif-302 
volume 𝑣𝑖(𝜏) is computed as the total variance of the latent representation of motif 𝑖 at time 𝜏 303 

(Fig. 4a, b, Methods). A larger motif-volume indicates greater variability of motif expression in 304 
the population, whereas a smaller motif-volume suggests a more uniform motif expression 305 
among the same groups of participants.  306 

We observed BD motif-volume was consistently lower than HC motif-volume in motifs 0 307 
and 2 (two sample t-test p-value of epoch 1-3, motif 0:0.009, 0.006, 0.011, motif 2: 0.709, 0.094, 308 
0.011), and consistently higher than HC in motifs 4 and 5 (two sample t-test p-value of epoch 1-309 
3, motif 4:0.004, 0.234, 0.061, motif 5: 0.080, 0.917, 0.356, Supplementary Fig. 4a, b). 310 
However, motif volume in BD was not significantly different from HC in the first epoch but was 311 
lower than HC in the second and third epochs in motifs 2, 3, 6, 7, 8, and 9 (two sample t-test p-312 
value of epoch 3, 0.011, 0.031, 0.002, 0.042, 0.025, 0.001). Notably, motif-volume is not 313 
necessarily correlated with dwell time (Supplementary Table 4), indicating that volume is not 314 
merely a consequence of more time spent in a given motif.  315 

 

Figure 4. Latent Shifting of Motif Representation. a. motif 9 and motif 4 of BD (lighter shades) and HC (darker shades) 
latent vector in three epochs represented in the top three PC. Latent vectors were shuffled in index and subsampled for 
visualization. b. Motif-volume over time for motif 9 and motif 4 in BD (lighter shades) and HC (darker shades) population. 
c. Interpopulation-distance between BD and HC (solid lines) in epoch 1, epoch 2, and epoch 3. As control, intrapopulation-
distance of HC (dashed lines) were shown. Significance were marked by asterisks.  
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To quantify within-motif variability between populations over time, we computed the 316 
interpopulation distance between BD and HC latent representations of each motif 𝒊 in each 317 

epoch. As a control, we computed the intrapopulation distance within BD and within HC in each 318 
epoch (Fig. 4c, Supplementary Fig. 4c). If latent representations are getting more dissimilar 319 
between BD and HC, then the interpopulation distance would increase and the volumes 320 
representing the motif for both populations would overlap less. We found the interpopulation 321 
distance consistently increased in motifs 1,6,9 from epoch 1 to epoch 3, decreased in motif 4, 322 
decreased and then increased in motifs 0,3,5,7, and increased then decreased in motifs 2, and 323 
8. In addition, the interpopulation distance is higher than the intrapopulation distance in motifs 1, 324 
and 9 in the last epoch, indicating the expressions of these motifs in terms of specific actions 325 
and movements for BD and HC become more distinct over time (2 sample t-test p-value epoch 326 
1-3: motif 1: 0.49, 0.39 5.54 x 10-7; motif 9: 0.76, 3.36 x 10-7, 1.31 x 10-5). Together, these 327 
findings not only highlight the progressive divergence between BD and HC but also suggest that 328 
BD may be associated with the development of more stereotypical and more distinct behavior, 329 
which provides a potential avenue for monitoring disease progression.  330 

 331 

Behavioral features from the latent space better discriminate BDs from HCs than 332 
traditional measurements. 333 

The behavioral features we derived from the segmented latent representations of actions 334 
are consistent with the phenotype of increased activity and energy, which is a hallmark feature 335 
of BD. These features arguably encompassed a less biased set of behavioral markers of BD 336 
compared to CV models, expert human annotation, and even established clinical assessment 337 
scales as they were discovered from spontaneous human behavior in real-world contexts, rather 338 
than pre-defined catalogs of behaviors. We thus hypothesized that the identified behavioral 339 
features would better distinguish euthymic BD participants from HCs, than alternative methods. 340 
To test this hypothesis, we first performed feature selection in our framework among 341 
assessment scales (HAM-D and YMRS) and our behavioral features. We found the most 342 
predictive features of BD are difference of behavioral features between epochs 3 and 1 343 
(Supplementary Table 3). Since our framework, human annotation, and CV-based models all 344 
provide a way of segmenting the behaviors, we can compute behavioral features except for the 345 
latent representations (such as motif dwell time, ENAS, zeros in transition matrix, and latent 346 
volume) from all models. The selected features were used in a logistic regression model for 347 
classification. The dataset was randomly split among participants into training and validation 348 
sets. The average accuracy, recall, and precision were calculated with 3-fold cross-validation. 349 
As controls, we benchmarked the classifier on (1) assessment scales that encompassed a 350 
range of psychometric measures, (2) behavioral features identified by human annotations, or (3) 351 
CV models.  352 

 353 

 354 

 355 

 356 
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  357 

Table 2 shows the cross-validated classification accuracy using selected input features. 358 
We found that the classification accuracy using our behavioral features outperformed human 359 
annotation, CV models, and clinical assessment scales (Tukey HSD p-value Ours vs other 360 
approaches in Table 2 order all < 0.001). Our results underscore the potential of data-driven 361 
identified behavioral motifs to effectively differentiate BD from HC.   362 

Table 2 
Classification accuracy of BD vs HC across approaches 

model pretrained accuracy (mean ± std) 

Assessment Scales - 0.53 (0.11) 

Spatial-D - 0.53 (0.13) 

K-means on DLC  - 0.70 (0.12) 
hBPM video ratings - 0.65 (0.12) 
S3D  Kinetics-400 0.70 (0.13) 
MMAction2  Kinetics-400 0.65 (0.13) 
Ours - 0.75* (0.11) 
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Discussion 363 

Current data-driven machine learning techniques offer significant improvements over 364 
traditional observational methods across a wide range of domains, as the latter methods are 365 
prone to bias. Our study demonstrates that an “unsupervised” machine learning model, which 366 
does not rely on hundreds of person-hours of data annotation, can assist in clinical 367 
characterization. By integrating computer vision, deep learning, and probabilistic reasoning to 368 
study activation in BD, we present a novel approach to better understand subtle behavior 369 
patterns in individuals under clinical context.  370 

Our model automatically identifies patterns in the data relevant to our participants and 371 
the specific conditions of our experiment, rather than adhering to traditional characterizations of 372 
mental disorders. We demonstrate several advantages of our approach. Firstly, human video 373 
annotation is time-consuming, as it not only requires extensive training and practice, but also 374 
assessment of the validity and reliability of the annotator. Our method surpasses human 375 
annotation by more accurately describing the dwell time distribution of behaviors, as measured 376 
by motif entropy.  377 

Through an “end-to-end” design, we are able to validate our model by evaluating it in a 378 
BD vs non-BD classification task that was downstream from the learning of the latent states. 379 
Our approach exhibits superior performance when benchmarking against traditional approaches 380 
for diagnostics. This result not only suggests the behavioral features (motif quantification, 381 
transition dynamics, and latent representations) could be robust metrics for evaluating patient 382 
behavior in euthymic BD, but also implies that a more precise representation of the 383 
psychopathology of the participants has been learned by the model, and can be used in various 384 
downstream tasks that could offer valuable insights for clinical assessment and treatment 385 
planning. In addition, although a sample of people with BD was used here to develop and 386 
validate our methods, our general approach is agnostic to patient diagnosis and environmental 387 
setting and is modular by design. 388 

Central to our methodology is analyzing various features downstream of the latent 389 
variable representations of motifs, including dwell time, motif transitions, and variability of latent 390 
representations. Our approach identifies clinically meaningful motifs that may reflect aspects of 391 
the condition that are not easily perceptible to human observers. For example, people with BD 392 
display shorter dwell times for motif approached some objects and inspected them, potentially 393 
reflecting impairment in attention span, set shifting, and task switching34. This observation 394 
aligned with previous studies where euthymic BD patients were observed to perform worse than 395 
controls on the digit subtest (Wechsler Adult Intelligence Scale) attention task37,38, and may 396 
reflect impulsive reward-seeking behavior, a characteristic feature of BD39. As another example, 397 
the observation of fidgeting movements, such as tapping feet or scratching hair, in euthymic BD 398 
patients may signify deficits in inhibitory control, consistent with perseverative behavior35 399 
observed in manic and hypomanic BD patients29. However, these subtle behaviors are not 400 
included in established behavior rating criteria and were missed by both general-purpose action 401 
detection software and human annotators viewing our videos.  402 

The motif identification process also enables us to establish parallels between human 403 
and animal behavior, enhancing our understanding of underlying mechanisms. For example, 404 
human fidgeting could be analogous to grooming behavior in rodents, reflecting similar 405 
responses to environmental stressors or internal states. Future studies on cross-species 406 
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comparisons will broaden our perspective on behavior patterns to a more comprehensive 407 
understanding of the underlying brain and mind states. 408 

Motif 2 (depart) encompassed movements from the periphery (where objects are placed) 409 
to the center of the room (no object placed), as opposed to a seemingly more natural trajectory 410 
along the periphery. This observation could be consistent with the overactive goal-directed 411 
behavior observed in manic and hypomanic states in BD11,40–42. These relationships suggest 412 
that behavioral features characteristic of depressive or manic states of BD patients may persist 413 
during the euthymic state, albeit subtly, such that data analysis methods that are less sensitive 414 
may overlook this persistence. We also found that BD participants displayed sparser transition 415 
matrices, indicating more stereotyped modes of behavior, and altered variability in motif 416 
expression, as evidenced by variance of latent representations. The emergence of this 417 
collection of features as discriminators of BD from HC participants suggests that they are 418 
impacted by behavioral parameters such as attention, exploratory activity, novelty-seeking, and 419 
overall modulation of motor activity for people with BD euthymia. 420 

While the focus of our study was on BD, our results highlight the potential of methods for 421 
automatic annotation of spontaneous behavior across species to assess individual responses to 422 
psychiatric treatments and uncover novel behavioral features across a range of neuropsychiatric 423 
disorders. Our approach can be straightforwardly applied across species, e.g., to animal models 424 
of psychiatric and cognitive conditions, critical to the understanding of biological mechanisms as 425 
well as drug discovery. Future endeavors aim to integrate our methodology with neural activity 426 
analyses to elucidate the neural mechanisms underlying behavioral abnormalities in humans 427 
and animals. 428 
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Methods 440 

Data and Procedure. 441 

All Patients (n = 25; 12 men) were between the ages of 18 to 55. Among the population, 442 
all but one patient was diagnosed with bipolar disorder (BD) Type I or Type II(defined by the 443 
Structured Clinical Interview for DSM-IV30). The remaining patient was diagnosed with the 444 
cyclothymic subtype of BD. All BD participants were in a current euthymic episode. Non-patient 445 
participants (n = 25; 15 men) of matching years of age who had never met the DSM-IV30 446 
standard for alcohol or substance abuse or dependence, tested positive on a urine toxicology 447 
screen, had a neurological ailment, or had a condition affecting their motor skills were recruited 448 
for the study as the healthy control group (HC). Participants from both BD and HC populations 449 
were evaluated with the Young Mania Rating Scale (YMRS)4 and Hamilton Depression Rating 450 
Scale (HAM-D)2, and all BD and HC participants had YMRS < 12 and HAM-D < 10. Most of the 451 
BD patients were treated with one or a combination of mood-stabilizing, antipsychotic, 452 
antidepressant, and sleep aid medication; other BD patients were not on medication during 453 
testing. See Supplementary Table 1 for full information. 454 

Participants consented to have their activities filmed during an unspecified segment of 455 
the research session. The video data was collected at the UCSD Medical Center in an unused 456 
office room that was designed to appear in transition. The room was 2.7 m × 4.3 m with a 457 
periphery lined with various pieces of furniture, such as a desk, both small and large filing 458 
cabinets, and two sets of bookshelves. No furniture that could directly lead to sedentary 459 
behavior was set in the room. Eleven small objects were placed evenly on items of furniture. 460 
These items were selected based on the condition that they are safe, vibrant, tactile, easily 461 
handled, and are likely to encourage exploration by humans43. 462 

Participants were directed to wait in the room with minimal instructions until the examiner 463 
returned. Participants were not allowed to leave the room or bring personal items into the room. 464 
The videos were recorded for 𝑇 = 15 minutes continuously from a commercial camera with a 465 

fisheye lens hiddenly placed at the center of the ceiling. The recordings had a resolution of 640 466 
x 480 pixels and a frame rate of 30 frames per second. Following the procedure in the previous 467 
studies on the dataset10,11, the recorded session of 15 minutes was evenly divided into three 5-468 
minute epochs for analysis in this study.  469 

Human experts reviewed the video recordings afterward to count instances of 11 470 
exploration action categories, including sitting with or without an object, standing with or without 471 
an object, walking with or without an object, lying with or without an object, wearing an object, 472 
exercising, and interacting with objects such as drawers and window blinds11. 473 

The spatial scaling exponent (Spatial-d) estimated the geometric structure of the path of 474 
the participants, first introduced in animal behavior studies44 and used as a metric in previous 475 
human behavior studies on this dataset. It estimates the linear slope of 𝑙𝑜𝑔(𝐿𝑘) with respect to 476 

𝑙𝑜𝑔(𝑘) where 𝐿𝑘 is the average length of the path and 𝑘 is the measuring resolution of the 477 

movements. 478 

Human Pose Tracking and Estimation.  479 

Existing methodologies for human motion tracking were not developed for a single top-480 
view camera with fish-eye distortion and thus performed poorly on this dataset. To characterize 481 
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the participant’s behavior, we used DeepLabCut22. Specifically, in DeepLabCut we first 482 
clustered the frames using k-means and selected frames from different clusters to obtain 20 - 50 483 
frames from each video. This process ensures that the selected frames cover different poses of 484 
the person. We labeled these frames with markers at 20 anatomical landmarks (left eye, right 485 
eye, left ear, right ear, mouth, the center of the neck, left shoulder, right shoulder, left elbow, 486 
right elbow, left hand, right hand, the center of hip, left hip, right hip, left knee, right knee, left 487 
foot, right foot, the center of feet). The labeled frames were used for training a ResNet-5045 488 
model to learn and predict marker position in the remaining frames. In order to have accurate 489 
marker estimation, the training involved 3 iterations, with 1,030,000 epochs each. After each 490 
iteration, 10 outlier frames (DeepLabCut confidence score below 0.1) with inaccurate marker 491 
estimates from every video were relabeled and added to the training set for the next iteration. 492 
Training iterations were terminated when the training and testing errors of the DeepLabCut 493 
marker estimation were 2.03 pixels and 3.71 pixels, respectively. The x-y position estimates of 494 
the 20 body parts for each frame were used for subsequent analyses.   495 

 496 

Key Point Marker Postprocessing. 497 

We aligned the skeleton markers of the human to egocentric coordinates. To accomplish 498 
this, we cropped the frame to the size of a bounding box (300 x 300 pixels) such that the whole 499 
person would fit in the bounding box. Then we aligned the skeleton using the key points of the 500 
center of the hip, and center of the feet markers as reference. As a result, the upper body 501 
markers were located at the top of the cropped frame, and the lower body markers at the 502 
bottom. Marker estimates with less than 90% confidence level determined by DeepLabCut were 503 
removed.  504 

 505 

Encoding the Pose into Latent Space. 506 

To identify distinct behavioral motifs from times series of pose coordinates, we adapted 507 
the pipeline in the Variational Animal Motion Embedding (VAME) model17, which has been used 508 
previously to identify open-field mouse behaviors using a bidirectional RNN variational 509 
autoencoder (VAE) and clustering. The VAME model was used to encode and reduce the 510 
dimensionality of the pose sequence of the human participants. Specifically, the latent 511 
dimensionality was set to 𝑑 = 10, a value less than the input dimension of 40 (20 markers with x 512 

and y coordinates). The resulting latent representation 𝑍 for each subject is thus a matrix of 513 

size 𝑑 × 𝑇.  514 

The original VAME model used a hidden Markov model for extracting 50 motifs of the 515 
animal, used hierarchical clustering of motifs to obtain a tree-structured graph, and then 516 
grouped motifs into communities by cutting the tree at a certain level/depth of the branches. 517 
However, because human behavior may be more complex, the hierarchical representation of 518 
human behavior varied across motifs and was not visually similar in each community. We 519 
instead performed k-means clustering on the latent representation to obtain the behavioral 520 
motifs. As a direct comparison with 10 labels from human annotation, we included the results of 521 
10 clusters in the main results of this study. We also reproduced our analysis using 𝑘 =522 

 30 clusters with results included in Supplementary Fig. 3.  523 
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Matching Annotation Labels with Motif Labels. 524 

 For each video, we obtained a list of human annotations and a list of motif labels. Since 525 
the labels from human annotations and motifs obtained from the latent-variable model do not 526 
necessarily match one-to-one, we measured how many times the onset and offset of each label 527 
matched between the two labels. Both lists were filled with integers representing the action 528 
labels at each frame. For example, the first 8 frames from one video may be represented as [a, 529 

a, a, b, b, b, c, c], with as, bs, cs standing for the labels of the action on that frame. 530 

We first divided the lists into chunks [a, a, a], [b, b, b], [c, c] so that each chunk 531 

represented an epoch with only one label, and a delimiter ‘0’ was added between chunks. The 532 
output of the example frames would be [[a, a, a], 0, [b, b, b], 0, [c, c]]. Since 533 

the objective was to find the onset/offset alignment, which was marked by the location of the 0s 534 

only, the labels could be simplified as [[1, 1, 1], 0, [1, 1], 0, [1, 1, 1]], with 1s 535 

representing the chunks of labeled frames while 0 representing the chunk boundaries.  536 

We computed the total number of chunks in human annotations, and the number of 537 
matching chunks between human annotation and motif labels in terms of onset/offset 538 
timestamp. Because human annotations of onset and offset of actions had inherent uncertainty, 539 
we defined a specified offset value allowing for a certain number of frames of mismatch.  540 

For example, between  541 

list1 = [0, 1, 1, 1, 1, 1, 1, 0, 1, 1] and 542 

list2 = [1, 0, 1, 1, 1, 0, 1, 1, 1, 0],  543 

with an offset of 2, there are two matching labels chunks: [1, 1, 1, 1, 1, 1] with [1, 1, 544 

1] and [1, 1] with [1, 1, 1]. We reported the ratio of matching labels to total human 545 

annotation labels. There are 33.19% of labels that were matched when the offset was 1 second, 546 
76.90% when the offset was 5 seconds, and 87.10% when the offset was 10 seconds. 547 

Computing effective-number-of-accessible-states (ENAS).  548 

Each 𝑖 ∈ 𝑛 row of the transition matrix 𝑃 is composed of the transition probability, 𝑃𝑖,𝑗  549 

from motif 𝑆𝑖 into every other motif 𝑆𝑗. The intuition behind the ENAS is to measure how many 550 

motifs could be accessible based on the current observed transition matrix. If ∑ 𝑃𝑖,𝑗 = 0𝑛
𝑗=1 , this 551 

indicates no other motif was visited from motif 𝑖, resulting in ENAS of motif 𝑖  to be 0 (self-552 

transitions were excluded from computations). Otherwise, we compute ENAS of the motif 𝑖 in 553 
the following manner. 554 

𝐸𝑆𝑖
=  ( ∑ 𝑝𝑖𝑗

2

𝑗∈[0, 𝑛]

)

−1

 555 

The 𝐸𝑆𝑖
 represents the number of accessible motifs from the current motif 𝑖, which is a 556 

number between 0 to 𝑛, where 𝑛 is the number of total motifs. If there is no motif accessible 557 

from the current motif, then 𝐸𝑆𝑖
  will be 0.  558 

 559 
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The overall ENAS 𝐸 is the average of 𝐸𝑆𝑖
overall motif 𝑆𝑖  for 𝑖 ∈ 𝑛 560 

𝐸 =
1

𝑛
∑ 𝐸𝑆𝑖

𝑖∈[0, 𝑛]

 561 

The pseudo-code for ENAS is the following: 562 

ENAS(P):  563 

for 𝑟𝑜𝑤𝑖 in 𝑃:  564 

if ∑ 𝑃𝑖,𝑗 = 0𝑛
𝑗=1 :  565 

 𝐸𝑆𝑖
= 0 566 

else:  567 

 𝐸𝑆𝑖
= ( ∑ 𝑝𝑖𝑗

2
𝑗∈[0, 𝑛] )

−1
  568 

 569 

Computing Volume and Distance of Latent Representations. 570 

To compute the latent-volume, we first mean-centered the latent vectors of all motifs 571 
during the entire time 𝑇. The latent-volume 𝑣𝑖(𝜏𝑚, 𝑝) of the latent representation 𝑍𝑖,𝜏𝑚,𝑝 of motif  𝑖 572 

at the time 𝜏𝑚 of population, 𝑝 was quantified by the trace of the covariance of the latent vector 573 

𝑍𝑖   574 

𝑣𝑖(𝜏, 𝑝) = 𝑇𝑟(𝐶𝑜𝑣(𝑍𝑖,𝜏𝑚,𝑝)). 575 

To compute the population-distance, let’s define the following: 576 

At each motif 𝑖 ∈ [1, 2, … , 𝑘] and during each epoch 𝜏𝑚, the latent representation of a BD 577 

subject to be 𝑋𝑖 , 𝜏𝑚 of ℝ𝑑, and the latent representation of an HC subject to be 𝑌𝑖,𝜏𝑚
 of ℝ𝑑, 578 

where 𝑑 is the latent dimension.  579 

Assume 𝑋𝑖,𝜏𝑚
 ~ 𝑁(𝑚1, Σ1) and 𝑌𝑖,𝜏𝑚

 ~ 𝑁(𝑚2, Σ2), meaning each point in 𝑋𝑖,𝜏𝑚
 and 𝑌𝑖,𝜏𝑚

 is 580 

an independent sample from its respective Gaussian distribution, with expected values and 581 
covariance.  582 

We computed the 2-Wasserstein distance between (𝑋𝑖,𝜏𝑚
, 𝑌𝑖,𝜏𝑚

) at each motif 𝑖 ∈583 

[1, 2, … , 𝑘] and during each epoch 𝜏𝑚. Specifically, 584 

𝑑𝑖,𝜏𝑚

2 = 𝑊2(𝑋𝑖,𝜏𝑚
, 𝑌𝑖,𝜏𝑚

)
2

=  ||𝑚1 − 𝑚2||
2

2
+ 𝑇𝑟(Σ1 + Σ2 − 2 (Σ1

1/2
Σ2Σ1

1/2
)

1/2
) 585 

where, 𝑚1, 𝑚2 and Σ1, Σ2 are sampled means and covariances. The 2-Wasserstein distance 586 
was computed with the Python function below.  587 

Interpopulation-distance was the mean of pairwise 2-Wasserstein distance between 588 
every subject in BD and every subject in HC. For comparison, we computed intrapopulation-589 
distance, as the mean pairwise 2-Wasserstein distance within the HC group and within the BD 590 
group.  591 
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def wasserstein_distance(m1, C1, m2, C2): 592 

    """ 593 

    Calculate the 2-Wasserstein distance between two Gaussian distributions. 594 

 595 

    Parameters: 596 

    m1, m2: Mean vectors of the two Gaussian distributions (numpy arrays). 597 

    C1, C2: Covariance matrices of the two Gaussian distributions (numpy arrays). 598 

 599 

    Returns: 600 

    W2: The 2-Wasserstein distance. 601 

    """ 602 

    # Euclidean distance between the means 603 

    mean_diff = np.linalg.norm(m1 - m2) 604 

 605 

    # Principal square roots of the covariance matrices 606 

    # Calculate the trace term 607 

    term = sqrtm(sqrtm(C2) @ C1 @ sqrtm(C2)) 608 

    trace_term = np.trace(C1 + C2 - 2 * term) 609 

 610 

    # Wasserstein distance squared 611 

    W2_squared = mean_diff ** 2 + trace_term 612 

 613 

    return np.sqrt(W2_squared).real 614 

Visualization of the Latent Representation.  615 

Since the latent representation is in a dimension of 𝑑 × 𝑇, we transformed the latent 616 

space using PCA, and the first three principal components (PCs) were plotted for visualization 617 
purposes. The motif centroids and centroid distances defined above were also computed 618 
separately in PC space and plotted in the top three PCs for proper visualization. All latent 619 
representations were visualized in the PC space (computed from the entire latent 620 
representation). 621 

Baseline Computer Vision Models.  622 

We selected two state-of-the-art computer vision action recognition models, 623 
MMAction228 and S3D-CNN31 since not many models would detect the person in the setting of 624 
the top view fisheye camera used in the study.  625 

We adapted OpenMMLab’s official repository for MMAction2 (https://github.com/open-626 
mmlab/mmaction2). MMAction2 consists of two modules: a human detection using faster RCNN 627 
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ResNet50 with COCO dataset, and an action detection using SlowFast ResNet50 network 628 
pretrained on Kinetics-400 first for action classification and then fine-tuned on AVA v2.2 dataset 629 
for person detection. All pretrained weights and configuration files were downloaded from the 630 
repository. We used the following configuration and checkpoints for MMAction2:  631 

--config 632 
configs/detection/ava/slowfast_kinetics_pretrained_r50_8x8x1_cosine_10e_ava22_rgb.py  633 

--checkpoint slowfast_kinetics_pretrained_r50_8x8x1_cosine_10e_ava22_rgb-b987b516.pth  634 

--det-checkpoint faster_rcnn_r50_fpn_mstrain_3x_coco_20210524_110822-e10bd31c.pth  635 

--det-score-thr 0  636 

--action-score-thr 0  637 

--label-map tools/data/ava/label_map.txt  638 

For S3D-CNN31, we used the unofficial PyTorch implementation 639 
(https://github.com/kylemin/S3D), which was pretrained on the Kinetics-400 dataset with 640 
pretrained weights downloaded from the same repository. S3D takes in the video dataset and 641 
outputs the labels from Kinetics-400 for each frame in the video.  642 

Selecting Features for Classification.  643 

Our data is comprised of numerical input features and categorial output labels (BD and 644 
HC). We applied backward feature selection using 645 
SequentialFeatureSelector(n_features_to_select=15, 646 

direction="backward",scoring='accuracy', cv=4) from sklearn.feature_selection. 647 

This is a greedy sequential feature algorithm that sequentially removes features from all 648 
features based on a 4-fold cross-validated score of the accuracy of the logistic regression 649 
classifier. The feature selector stops removing features when the desired number of selected 650 
features is reached. Before feature selection, there are 67 input features of each human video, 651 
including each motif’s dwell time at three epochs, ENAS of each motif at three epochs, ENAS of 652 
all motifs at three epochs, number of zeros in transition matrices, motif volume at three epochs, 653 
YMRS scale, and HAMD scale. After feature selection, 15 features were selected from each 654 
approach (Supplementary Table 3). 655 

Classifying BD from Behavior Features. 656 

Selected features were fed into a binary logistic regression classifier. We utilized a 657 
logistic regression classifier from scikit-learn (LogisticRegression) with a maximum number 658 

of iterations set to 1000. Each feature of the dataset was min-max scaled using MinMaxScaler 659 

from sklearn.preprocessing. For each iteration, we split the data randomly into 75% training 660 

and 25% testing sets using stratified sampling, then trained a logistic regression classifier for 661 
each iteration, and computed accuracy, precision, and recall scores (using the 662 
accuracy_score, precision_score, and recall_score functions from scikit-learn) on the 663 

test set for each iteration. We conducted cross-validation with 3 folds to estimate model 664 
performance using cross_validate from scikit-learn. We reported mean and standard 665 

deviation of accuracy, precision, and recall scores across all iterations. We performed Tukey’s 666 

range test between pairwise scores between our model and other models and reported the p-667 
values.   668 
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