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from over 3300 cancer samples with clinical information. Compared to mRNA, lincRNAs exhibit significantly
higher tissue specificities that are then diminished in cancer tissues. Moreover, lincRNA clustering results accu-
rately classify tumor subtypes. Using RNA-Seq data from thousands of paired tumor and adjacent normal samples
in The Cancer Genome Atlas (TCGA), we identify six lincRNAs as potential pan-cancer diagnostic biomarkers

I]fieanycvlgtl)\lr:s. (PCAN-1 to PCAN-6). These lincRNAs are robustly validated using cancer samples from four independent RNA-
IncRNA Seq data sets, and are verified by qPCR in both primary breast cancers and MCF-7 cell line. Interestingly, the ex-
pan-cancer pression levels of these six lincRNAs are also associated with prognosis in various cancers. We further experimen-
RNASeq tally explored the growth and migration dependence of breast and colon cancer cell lines on two of the identified
biomarkers IncRNAs. In summary, our study highlights the emerging role of lincRNAs as potentially powerful and biologically

functional pan-cancer biomarkers and represents a significant leap forward in understanding the biological and

clinical functions of lincRNAs in cancers.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Advancement of high-throughput technologies such as RNA-Seq has
recently allowed for the identification of tens of thousands of new
lincRNAs in different tissues (Cabili et al., 2011; Ching et al., 2014;
Garmire et al., 2011; Trapnell et al., 2010). The Encyclopedia of DNA
Elements (ENCODE) project found that about 62% of the entire genome
is transcribed to long (>200 base pairs) RNA sequences (Consortium,
2012). Given that 3% of the genome encodes protein-coding exons,
the large majority of these transcripts are non-coding RNAs (IncRNAs).
Among these IncRNAs, about one third come from intergenic regions
(lincRNAs) (Consortium, 2012). Unlike small non-coding RNAs which
may regulate target gene expression through simpler complementary
recognition (Menor et al., 2014), the mechanisms of lincRNAs are com-
plex and may depend on formation of RNA-protein complexes (Mchugh
et al, 2014). Attempts have been made to extrapolate the functions of
lincRNAs based on model lincRNAs, such as studies that predict
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lincRNAs binding to PRC2 or competing endogenous lincRNAs (micro-
RNA “sponges”) (Khalil et al., 2009; Liao et al., 2011; Liu et al., 2013;
Salmena et al., 2011; Yuan et al., 2014). However, lincRNAs remain
one of the most mysterious and least understood species of non-
coding RNAs (Ching et al., 2014).

Regardless of the regulatory mechanisms, lincRNAs are becoming a
relatively new class of cancer biomarker candidates. Several lincRNAs
and overlapping IncRNAs have been relatively well-studied and indicat-
ed as potential biomarkers associated with tumor initiation, progression
or prognosis, such as MALAT1(Ji et al., 2003; Tripathi et al., 2010; Ulitsky
and Bartel, 2013), HOTAIR(Gupta et al., 2010; Rinn et al., 2007; Ulitsky
and Bartel, 2013), XIST(Brockdorff et al., 1991; Penny et al., 1996;
Weakley et al., 2011), PCAT1(Ge et al.,, 2013; Prensner et al., 2011;
Ulitsky and Bartel, 2013) and CCAT2(Ling et al., 2013). However, most
of the studies detect lincRNAs as candidate biomarkers of a specific can-
cer type. The pan-cancer biomarker-based design of clinical trials, on
the other hand, can increase statistical power and greatly decreasing
the size, expense, and duration of clinical trials (Cancer Genome Atlas
Research et al., 2013). Towards this, we here propose a pan-cancer
based lincRNA diagnostics biomarker study, which is aligned with the
goal of The Cancer Genome Atlas (TCGA) analysis project that enables
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the discovery of novel adaptive, biomarker-based strategies to be prac-
ticed across boundaries of different tumor types(Cancer Genome Atlas
Research et al., 2013).

In this study, we have taken full advantage of the rich RNA-Seq
data from the TCGA consortium, as well as thousands of RNA-Seq and
microarray data from Gene Expression Omnibus (GEO) and our own
collection of breast cancer samples. By combining data-mining and
machine-learning methods with biological function validation experi-
ments, we have highlighted lincRNAs as a new paradigm for actionable
diagnostics in the pan-cancer setting. In addition, we have portrayed the
comprehensive landscape of lincRNAs and their relationship to other
omics data in pan-cancers. We found that the lincRNAs are more
tissue-specific compared to protein-coding mRNAs, and they also con-
vey complementary relevance to clinical information, including tumor
molecular subtypes. Moreover, we have detected and thoroughly vali-
dated 6 lincRNAs as potential pan-cancer diagnostic biomarkers in
over 3300 tissue samples. Lastly, we confirmed that the lincRNAs are bi-
ologically functional, by measuring the reduction of cell proliferation
and migration in breast cancer cell lines with siRNA knockdown on
two of the homologous lincRNAs.

2. Materials and Methods
2.1. RNA-Seq Datasets

2.1.1. TCGA Datasets

We used 12 cancer datasets from TCGA incorporating RNA-Seq data
files from 1240 tissue samples (Supplementary Table I). RNA-Seq
datasets were chosen from cancers in TCGA that have at least 25 pairs
of primary tumor and paired adjacent normal tissue samples. These
datasets include breast invasive carcinoma (BRCA), colon adenocarcino-
ma (COAD), head and neck squamous cell carcinoma (HSNC), kidney
chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney
renal papillary cell carcinoma (KIRP), lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LUSC), prostate adenocarcinoma
(PRAD), stomach adenocarcinoma (STAD) and thyroid carcinoma
(THCA). RNA-Seq BAM files were downloaded from UCSC Cancer Geno-
mics Hub (https://cghub.ucsc.edu/) using the GeneTorrent program
(Wilks et al., 2014). The TCGA alignment protocol used the Mapsplice
alignment program (Wang et al., 2010) to align raw reads to the
human genome, where loci with the same alignment score has equal
probability to assign a read. Technical replicates were combined by
merging the results from the BAM files. RefSeq genes and lincRNAs
were quantified using featureCounts (Liao et al., 2013, 2014) from the
Subread package (version 1.4.5-p1). RefSeq annotation was obtained
from Illumina hg19 iGenomes and lincRNAs were obtained from
Broad Institute Human Body Map project, so that we can directly com-
pare the tissue specificity results between TCGA samples and those in
Cabili et al.(Cabili et al., 2011). All alignments were conducted on the
New Hampshire INBRE (IDeA Network of Biomedical Research Excel-
lence) grid computing system. Batch effect was corrected, and DESeq2
(Loveetal, 2013, 2014) (version 1.6.1) was used for calculating normal-
ized count data and fragments per kilo bases of exons for per million
mapped reads (FPKM) data. A combination of independent RNA-Seq
and microarray datasets were used for verification, and the summary
of the datasets is listed in Supplementary Table 1.

2.1.2. GEO Datasets

Alarge-scale search of GEO RNA-Seq database was performed to find
additional datasets for verification. Datasets with tumor and normal
samples with good read quality (read mapping rate and low duplication
rates) were selected. These included GSE25599 (liver cancer),
GSE58135 (breast cancer) and GSE50760 (colon cancer). In addition,
normal breast tissue samples were taken from GSE52194, GSE45326
and GSE30611 for comparison with our cancer samples. GEO datasets
were aligned to the UCSC hg19 genome using Tophat2 with default

parameters for either single-end or paired-end protocols. LincRNA
count quantification and FPKM data were generated as above. Microar-
ray datasets from GEO with tumor and normal samples were selected
based on platforms that had probes mapping to the six lincRNAs of
interest.

2.1.3. Our Own Dataset

Our primary breast cancer samples were extracted with RNeasy
Mini Kit (Qiagen), followed by quality control with RNA 6000 chips
(Agilent Bioanalyzer). RNA species with RIN values >7 were sent to
the Genomics Core of Yale Stem Cell Centre. Ribo-depleted RNA-Seq
was conducted with 100 bp read length. The read count quantification
and FPKM data were generated as above. The RNA-Seq reads of our sam-
ples will be deposited to GEO upon publishing of this manuscript.

2.2. Tissue Specificity

To analyze tissue specificity, Jensen-Shannon divergence score (JS
score) was calculated from tumor and normal samples of each tissue,
and the two distributions of JS scores were compared following the
method of Cabili et al. (Cabili et al., 2011). Briefly, FPKM values were
first calculated from the normalized count data from each sample.
Then the mean FPKM for each tissue type was calculated and log trans-
formed. The vector e that represents the distribution of expression is
given by:

log, (FPKM+1)
S log, (FPKM; + 1)

The JS; score is the ]S score for each tissue type t, calculated by the
following:

ISt (e et) = 1—\/H(e+et)_w

Where H is the Shannon entropy and e is the hypothetical distribution
when a lincRNA is expressed in only one tissue type:

t (1 i n i [lifi=t
e = (e el >7wheree = { 0if it
The ]S score for a lincRNA is then defined as the maximum JS; score
across all tissue types.

2.3. Differential Expression

Each of the 12 TCGA cancer datasets was tested for differential
expression (DE) using DESeq2 (Love et al., 2013, 2014). Statistically
significant genes were selected with a FDR adjusted p-value threshold
of 0.05 after Benjamini & Hochberg multiple hypothesis correction. As
a result, six lincRNAs were discovered to be consistently upregulated
or down-regulated in all twelve TCGA cancer datasets. These six
lincRNAs were used subsequently for survival and pathway analysis.

24. Survival Analysis

These six lincRNAs with pan-cancer diagnostic potential were exam-
ined for their association with patient survival among four types of
TCGA cancer types. Note that these lincRNAs were initially selected as
diagnostic biomarkers, but not prognostic biomarkers. The survival
data from the four types TCGA cancers were obtained in two ap-
proaches. LUAD, LUSC and OV have relapse free survival information di-
rectly available from the TCGA data repository. The fourth cancer type
BRCA has overall survival data available, per the courtesy of Volinia
and Croce (2013)). Patients who did not have an event (death or
tumor relapse, depending on the data set) during the study were
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considered as censored. The expression values of the six lincRNAs were
used as predictors to fit a Cox-Proportional Hazards (Cox-PH) regres-
sion model, where the overall survival or disease free survival was the
response variable. For each patient, a prognosis index (PI) score was
generated from the Cox-PH model. The median PI score among all pa-
tients of the same cancer type was used as the threshold to dichotomize
the patients into high vs. low risk groups, similar to others (Huang et al.,
2014). The log-rank p-value was then calculated to assess the statistical-
ly significant difference between the Kaplan-Meier curves of the high
vs. low risk groups.

2.5. Tumor Subtype Classification and Concordance Between Data Types
Using Nmf

Non-negative matrix factorization (NMF) method was used to clas-
sify tumor subtypes with lincRNA expression values. The optimal num-
ber of clusters was selected using the maximum cophenetic correlation.
The lincRNA clustering results were then compared to those of other
data types, using the method similar to Han et al. (2014)). The other
data types from the TCGA include mRNA-Seq, mature microRNA-Seq,
methylation and reverse phase protein array (RPPA) for each cancer
type (Liao et al., 2013), all obtained from the Broad institute Genomic
Data Analysis Center (GDAC). The concordances from the chi-square
tests between lincRNA and other data types were used to assess the cor-
relations between clustering.

Additionally, lincRNA clustering was compared with another stan-
dard method, the PAM50 clustering (Cancer Genome Atlas, 2012),
using the TCGA breast cancer samples. The correlation between these
two clustering approaches was calculated using the concordance as
mentioned above. Similarly, cluster correlation was computed for sub-
types based on ER +/— information from the GSE58135 breast cancer
dataset.

2.6. Lincrna Sequence Coding Potential and Homology Characterization

To predict the coding potential of the sequences, iSeeRNA (Sun et al.,
2013) and Coding-Potential Assessment Tool (CPAT) (Wang et al.,
2013) were used. The two programs are trained on long non-coding
RNAs to assess the coding potential of transcripts. For iSeeRNA, the co-
ordinates of lincRNA transcripts and exons were used as inputs in the
form of GFF files. For CPAT, lincRNA sequences were used as inputs in
the form of fasta files. To test for homology between transcripts, NCBI's
command line BLAST + suite (Camacho et al., 2009) was used. Pairwise
BLAST was performed on all isoforms of the six differentially expressed
lincRNAs. We calculated the percentages of homology by the number of
matching base pairs divided by the total number of base pairs in the
query sequence. Due to the high homology between three of the discov-
ered lincRNAs (PCAN-2, PCAN-3 and PCAN-5), downloaded RNA-Seq
reads may have slight ambiguity in counting these lincRNA expression,
since they were generated by TCGA using the Mapsplice alignment pro-
gram (Wang et al., 2010).

2.7. Quantitative RT-PCR (qRT-PCR) Analysis

Total RNA from MDA-MB-231 and MCF-7 cell lines was isolated
using RNeasy Mini Kit (Qiagen). Pooled total RNA from five healthy
normal breast cancer patients was ordered from Biochain (Total RNA -
Human Adult Normal Tissue 5 Donor Pool: Breast, catalog#
R1234086-P). To match these healthy controls, total RNA was isolated
from five in-house breast cancer patient samples.

High Capacity cDNA Reverse Transcription kit (Life Technologies,
Thermo Scientific) was used for random-primed first-strand comple-
mentary DNA synthesis. Real time quantitative PCR (qPCR) was per-
formed with SYBR Green (Life Technologies) with primers against
selected linc RNAs (primer sequences are listed in Supplementary
Table VI). Amplification and real time measurement of PCR products

was performed with 7900HT Fast Real-Time PCR System (Life Technol-
ogies). The comparative Ct method (Livak and Schmittgen, 2001) was
used to quantify the expression levels of lincRNAs. Beta-glucuronidase
(GUS) gene expression served as the internal control. GUS was selected
as the internal control, as its expression level has been found to be com-
parable in range to the expression of linc RNAs and is stable in a wide
variety of cancers (Habel et al., 2006; Rubie et al., 2005).

2.8. RNA Interference

The siRNA oligos were synthesized by GE Dharmacon. The target se-
quences are as follows: control siRNA: 5'-UGGUUUACAUGUCGACUAA-
3’, 5’-UGGUUUACAUGUUGUGUGA-3’, 5’-UGGUUUACAUGUUUUC
UGA-3’, 5'-UGGUUUACAUGUUUUCCUA-3’; lincRNA siRNA #1: 5'-
UUCCUUUAGACCCAUUCUCUU-3’; lincRNA siRNA #2: 5'-GAACCCACCA
CUGCUUCUC-3'". This lincRNA siRNA targets PCAN-2 and PCAN-3
lincRNAs. Cells were transfected in a 6-well plate format with siRNA
oligos at 40 nM (for cell proliferation assays) or 60 nM (for migration as-
says) concentration, using DharmaFECT 1 Transfection Reagent
(Dharmacon). The knockdown efficiency was determined by qRT-PCR
24 h post transfection.

2.9. Cell Growth and Migration Assays

Cell proliferation analysis was done using CellTiter-Glo Luminescent
Cell Viability Assay Kit (Promega). Briefly, MDA-MB-231 cells were
transfected in biological triplicates with siRNA constructs (control
siRNA and linc RNA siRNA). After 24 h, 400 cells of each condition
were seeded in triplicates into 96-well plates and allowed to grow for
another 48 h. Cells number estimation at different time points was
based on the quantification of the present ATP using SpectraMax Gemini
XPS microplate reader (Molecular Devices). Cell migration was analysed
using well established wound-healing assay (Liang et al., 2007).
Scratches in cell monolayer were made 30 h post siRNA transfection
(3 scratches in each of the 3 biological replicates). Cell migration was
analysed by time-lapse microscopy using IX81 Olympus microscope,
with 10x objective (for MDA-MB-231 cells) and 4 x objective with ad-
ditional 1.6 x magnification (for MCF-7 cells). Images were taken every
5 min over time period of 24 h. Migration rates and cell tracking were
analysed using the Metamorph software.

3. Results
3.1. Overview of the Workflow

To detect genes differentially expressed between healthy and tumor
tissues, we employed a two-factor (cancer/normal, and source of sam-
ples) experimental design in which patients with tumor samples and
matched normal sample were selected. This approach allowed sufficient
statistical power by reducing the variation of data (Ching et al,, 2014). In
total, we downloaded 1240 paired cancer and adjacent normal RNA-Seq
samples in 12 different cancer types.

The 12 different cancer types include breast invasive carcinoma
(BRCA), colon adenocarcinoma (COAD), head and neck squamous cell
carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear
cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP),
liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LUSC), prostate adenocarcinoma
(PRAD), stomach adenocarcinoma (STAD) and thyroid carcinoma
(THCA). Details on the number of samples in each cancer type, sequenc-
ing strategies, total mappable reads, and detected lincRNAs are listed in
Supplementary Table I. For lincRNA genomic coordinates, we used the
UCSC genome browser's “lincRNA transcript track”, which is based on
both the Broad Institute Human Body Map including the annotations
of transcripts of uncertain coding potential (TUCP) (Cabili et al., 2011).
We quantified lincRNA expression with normalized FPKM values.
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Computationally, we have performed various analyses to study the bio-
logical and clinical relevance of lincRNAs to pan-cancer, including differ-
ential expression (DE), tissue specificity and molecular subtype
analyses, as well as construction and verification of the diagnostic and
survival models (Supplementary Fig. 1). Experimentally, we have veri-
fied the gene expression differences of a panel of 6 lincRNAs, which
have pan-cancer diagnostic biomarker potential. Most importantly, we
demonstrated the phenotypic changes of two of the over-expressed
lincRNAs by siRNA knockdown experiments in two breast cancer cell
lines MCF-7 and MDA-MB-231.

3.2. The High Tissue Specificities of Lincrnas are Diminished in Cancers

To investigate the expression patterns of the lincRNA transcripts
among different tissue types, we conducted principal component anal-
ysis (PCA) for lincRNA expression on adjacent normal and cancer sam-
ples separately from 12 TCGA datasets (Fig. 1). As expected, the
normal samples are clearly clustered by tissue type based on lincRNA
expression (Fig. 1a). However, the cancer samples become less separa-
ble by tissue type (Fig. 1b). The less precise distinction of cancer samples
in the PCA plot reflects a degree of de-differentiation of tumor cells. The
possibility of confounding due to heterogeneity of tumors of the same
type can be excluded, since the latter would lead to more spreading,
rather than less spreading observed on the PCA plot. We therefore rea-
son it as the loss of tissue specificity in cancers. Supporting this observa-
tion, the first three principal components of PCA account for less
variance in cancer samples compared to those in the adjacent normal
tissues, suggesting deregulation of lincRNAs in cancers (Fig. 1). We rep-
licated the same analysis for protein-coding genes between tumor and
adjacent normal tissues, and found the same trend of losing tissue spec-
ificity in the tumor samples (Supplementary Fig. 2).

To further analyze the tissue specificity of lincRNAs, we calculated
the tissue specificity scores (JS scores) as defined in Cabili et al.!,
where a higher JS score indicates more tissue specificity. We compared
the distributions of these JS scores in tumor and adjacent normal tissue,
for both lincRNAs and RefSeq protein coding genes (Fig. 2). Consistent
with the PCA plots, lincRNAs in cancer tissues are significantly less tissue
specific than those in adjacent normal tissues (t-test, p < 2.2e-16)
(Fig. 2a, c and d). Moreover, in comparison with RefSeq protein coding
genes (Fig. 2b, e and f), lincRNAs have a much higher average ]S score
(t-test, p < 2.2e-16). Subsequently, we defined a subset of lincRNAs
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that are highly tissue specific with ]S score greater than 0.75 and are
expressed in at least 5% (32 out of 640) of the total normal samples
(Supplementary Table II). To confirm that the tissue-specific lincRNAs
defined by TCGA pan-cancer analysis are accurate, we then compared
the tissue type assigned to lincRNAs by Cabili et al.! to the tissue types
assigned to the same lincRNAs based on the TCGA data. We observed
statistically significant correlations ()>-test, all p < 0.0001) between
the two studies in all tissue categories (Supplementary Fig. 3). In addi-
tion, we plot the tissue specific JS score for each tissue type (JS; score)
and plotted their distributions (Supplementary Fig. 4). As expected, sig-
nificant amounts of lincRNA have zero JS scores, as many lincRNAs are
not expressed in certain tissues.

3.3. LincRNA Clustering Accurately Predicts Molecular Subtypes of Tumors

Given the tissue specificity of lincRNAs, we hypothesized that
lincRNAs can accurately separate tumors by molecular subtype. To iden-
tify a representative cancer type, we first used consensus non-negative
matrix factorization (CNMF) to cluster the patient samples from each of
the 12 types of cancer. We then calculated the correlations between the
clustering result based on lincRNAs and those based on four other high-
throughput data types: mRNA expression, micro-RNA expression, DNA
methylation and reverse phase protein array (RPPA) obtained from
the Broad Institute Genomic Data Analysis Center (GDAC) (BROAD,
2014). The majority of lincRNA and GDAC clustering results are statisti-
cally significantly correlated (Fig. 3a). As expected, lincRNA and mRNA
expression are the most highly correlated among all four high-
throughput data types. Among the 12 cancer datasets, the BRCA dataset
has the best agreements between lincRNAs and the other data types.
We therefore focused on the correlation between lincRNA and molecu-
lar subtypes in breast invasive carcinoma.

We first applied CNMF to the TCGA BRCA dataset and used
cophenetic correlation (Liao et al., 2013) to determine the optimal clus-
ter number to be 5, the same number of clusters as in PAMS50 based clas-
sification. We then compared the result of CNMF clustering to PAM50
based subtypes, which include basal-like, HER2-enriched, luminal A, lu-
minal B and normal-like subtypes (Cancer Genome Atlas, 2012)
(Fig. 3c). The concordance score based on the y2-test is highly signifi-
cant (p < 2.2e-16), and the overall accuracy to clinical types is 71.6%,
as measured by rand measure, a metric for the percentage of agreement
on a pair of samples belonging to the same group. Interestingly, the first
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each tissue was plotted in the adjacent normal or cancer samples.

CNMEF cluster has the strongest correlation with the basal-like subtype
among all molecular subtypes, with an accuracy of 95% based on rand
measure. Additionally, we examined the GSE58135 breast cancer
dataset that has primary tumor samples in ER +/HER2- and triple neg-
ative subtypes (Fig. 3b). The unsupervised CNMF clustering on these
cancer samples yields highly accurate separation between ER +/HER2-
and triple negative samples ()>-test p < 2.2e-16, and rand measure
84.5%). These results show that lincRNAs are well correlated with the
molecular subtypes of tumors.

3.4. Transcriptome Analysis Reveals a Pan-Cancer Panel of Six LincRNAs

To seek a panel of lincRNAs as pan-cancer diagnostic biomarkers, we
performed differential expression analysis on the above 12 TCGA
datasets and detected thousands of differentially expressed lincRNAs
in each TCGA dataset (Supplementary Fig. 5). Among them, six lincRNAs
are consistently and significantly altered in all 12 cancers, with five of
them being up-regulated and one down-regulated (Fig. 4a, Supplemen-
tary Fig. 6 and Supplementary Table III). In contrast, when we applied
the same selection criteria to protein coding genes, we identified 47
mRNAs. The much larger number of mRNAs is presumably due to the
less tissue specificity of mRNAs and more annotated mRNAs compared
to lincRNAs at the time of investigation.

Several other lincRNAs, such as PCAT1, MALAT1, HOTAIR, have pre-
viously been reported to associate with a variety of cancers (Ge et al.,

2013; Jietal, 2003; Prensner et al., 2011). We re-analyzed their expres-
sion in our pan-cancer data set (Supplementary Fig. 7). These three
lincRNAs are not pan-cancer lincRNAs, but the TCGA results confirmed
the previous findings based on several cancer types. PCAT1 was discov-
ered in prostate cancer (Prensner et al., 2011), and is indeed extremely
significant in the TCGA PRAD data. MALAT1 is known to be primarily as-
sociated with liver cancer, lung cancer and kidney cancer (Ji et al.,2003),
and it is recapitulated in the TCGA data. HOTAIR is also known to be
highly upregulated in many different TCGA cancer types.

To confirm that the six lincRNAs are indeed associated with pan-
cancers, we processed additional 833 samples from a wide range of
resources including three public RNA-Seq datasets and eleven micro-
array datasets (Supplementary Table I). All three public RNA-Seq
datasets (GSE58135 breast cancer, GSE50760 colon cancer, and
GSE25599 liver cancer) show consistent directions of fold change
for all six lincRNAs (Fig. 4b). Although the microarray platforms are
not designed to detect lincRNAs, some probes are nevertheless over-
lapped with non-coding RNAs as shown by others (Du et al., 2013),
and thus they can be another source of empirical verification.
Among the various microarray platforms examined, 24 of the 29 mi-
croarray probe sets have the same overall directions of fold changes
as those in the RNA-Seq datasets (Supplementary Fig. 8). Moreover,
the expression levels of the six lincRNAs in 28 breast cancer cell
lines from the GSE58135 dataset and 5 breast cancer cell lines from
the Cancer Cell Line Encyclopedia (CCLE) are all comparable with
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Fig. 3. Correlation of lincRNAs with other data types and cancer subtypes. (a) The concordance between clustering results of lincRNAs and other high throughput data types in TCGA based
on y-square statistical test. (b) CNMF was used to determine the clustering of lincRNAs in the GSE58135 Breast Cancer dataset. The concordance of the clustering with the tumor subtypes
in the dataset is significant (chi-square, p < 2.2e-16). (c) CNMF was used to determine the clustering of lincRNA in the TCGA BRCA dataset. The concordance of the CNMF clustering with the

tumor subtypes in the dataset is significant (chi-square, p < 2.2e-16).

those from the TCGA BRCA samples (Supplementary Fig. 9), further
supporting the robustness of these lincRNAs as potential pan-
cancer biomarkers.

To verify this lincRNA panel experimentally, we performed addi-
tional RNA-Seq and qPCR experiments on our own breast cancer
samples. First, we sequenced fresh frozen primary tumor samples
from 10 individual patients using the ribosomal depletion RNA-Seq
method. We then compared them to normal breast tissue RNA-Seq
data from GEO (GSE52194, GSE45326 and GSE30611). All six
lincRNAs have the same trends of changes as in the other GEO
RNA-Seq datasets (Fig. 4c) and five of them are significantly differen-
tially expressed. We followed up with the qPCR validation and de-
signed seven PCR primer pairs for selected transcripts in the
lincRNA panel (supplementary Table V). The qPCR results in pooled
breast tumor samples (n = 5), pooled normal breast samples (n = 5)
and MCF-7 cell lines are shown in Fig. 4d. In all cases, the expression
levels show statistically significant differential expression in the
same directions as the RNA-Seq data, both between primary tumor

and normal sample pools and between normal and MCF-7 cancer
cell lines.

3.5. Sequence Features among the Six-Lincrna Biomarkers

To confirm the non-coding nature of the lincRNA transcripts, we
used the iSeeRNA (Sun et al., 2013) and Coding-Potential Assessment
Tool (CPAT) (Wang et al.,, 2013). Both programs are specifically trained
on long non-coding RNAs to assess the non-coding potential of RNA
transcripts. Out of the 52 isoforms from the lincRNA panel, iSeeRNA pre-
dicted 49 to be non-coding. For the three transcripts that are ambiguous,
we used a second tool, CPAT, to obtain further evidence for the coding or
non-coding nature of these transcripts. CPAT classifies all three of them
as non-coding RNAs. In contrast, both CPAT and iSeeRNA correctly clas-
sified all isoforms of house-keeping genes GUS and GAPDH as protein
coding. Overall, both programs provide strong evidence for the non-
coding nature of the six lincRNAs (Supplementary Table V).
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Fig. 4. Differentially expressed pan-cancer lincRNAs. (a) Six lincRNAs are consistently differentially expressed in 12 TCGA datasets. Each of the six lincRNAs shown is either significantly
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of pooled 5 normal tissues, pooled 5 tumors and the MCF-7 cell line (d).

To examine the relationship between the six lincRNAs, we
first checked the correlations of their expression values in all TCGA sam-
ples. Three of the lincRNAs, PCAN-2, PCAN-3 and PCAN-5, are highly
correlated with spearman correlation coefficients of approximately
0.92 between them (Supplementary Fig. 10). The high correlations
among expression prompted us to check if sequence similarities exist.
Thus, we tested the pairwise homology among all transcripts of the
six lincRNAs, using NCBI's BLAST+ suite (Camacho et al., 2009) (Supple-
mentary Fig. 11). Indeed, the three lincRNAs mentioned above are high-
ly homologous, and some of the annotated transcripts are 99% identical.
Two of the lincRNAs, PCAN-2 and PCAN-3, are in the tandem locations
on chromosome 14 and the third lincRNA PCAN-5 is located on chromo-
some 22, suggesting potential gene duplication events from a common
origin.

3.6. The LincRNA Biomarker Panel Robustly and Accurately Predicts Pan
Cancers

To quantitatively assess the value of the six lincRNAs as pan-
cancer diagnostic biomarkers, we built a classification model upon
them (Fig. 5a). First, we split the TCGA pan-cancer data into 80%
training and 20% holdout testing sets. Given that some lincRNAs are
highly correlated (Supplementary Fig. 10) and thus potentially re-
dundant as biomarker predictors, we used correlation feature selec-
tion (CFS) method to select the most relevant and least redundant

subset of lincRNAs among them. As a result, five of the lincRNAs
were chosen: PCAN-1, PCAN-2, PCAN-3, PCAN-4, and PCAN-6.

We then compared the classification results on the training dataset
using four widely used machine-learning algorithms: Random Forest
(RF), Linear Support Vector Machines (LSVM), Gaussian Support Vector
Machines (GSVM) and Logistic Regression with L2 regularization (L2-
LR). As shown by the receiver operator characteristics (ROC) curves
on the TCGA training data set, RF has the best AUC of 0.947 (95% confi-
dence interval, or Cl: 0.9343-0.9603) on the training data among the
four methods (Supplementary Fig. 12). We thus selected the RF model
to test the classification performance on additional 496 samples from
the hold out test set. As expected, the trained RF model has very similar
prediction result on the TCGA hold-out testing set, with an AUC =
0.947, sensitivity = 0.817 and specificity = 0.970 (Fig. 5d).

To further verify the robustness of the five-lincRNA panel, we tested
the TCGA data based RF model on four independent RNA-Seq datasets:
GSE58135 breast cancer, GSE50760 colon cancer, GSE25599 liver cancer
and our breast cancer dataset (Fig. 5b, c and d). Impressively, this model
predicts the other four independent data sets very well, with AUCs of
0.972 (95% CI: 0.95-0.9946), 0.841(95% CI: 0.6875-0.9946), 0.970
(95% CI: 0.9108-1) and 0.950 (95% CI: 0.867-1) for GSE58135,
GSE50760, GSE25599 and our dataset, respectively (Fig. 5¢ and d).
Other model evaluation metrics including Sensitivity, Specificity, Preci-
sion, Matthew's Correlation Coefficient, F-score and Accuracy in the val-
idation datasets further demonstrate the excellent performance of the
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model (Supplementary Table VI). We therefore conclude that the panel
of six lincRNAs are potential biomarkers for pan-cancer diagnosis.

3.7. The LincRNA Panel is Associated with Prognosis in Cancer Patients

Although the six lincRNAs were detected as potential diagnosis
markers for pan-cancer, we were curious if they might be associated
with the prognosis of cancer patients as well. Thus we performed sur-
vival analysis on 1201 samples from four TCGA datasets: namely
BRCA, LUAD, LUSC datasets, and additionally the TCGA ovarian cancer
(0V) dataset which was not used in the lincRNA signature discovery
phase due to lack of normal samples (Supplementary Fig. 13). Since
only overall survival information is available in TCGA in BRCA and OV
datasets, we fit the overall survival with Cox-PH regression models
and categorized the patient risks by prognosis index (PI) (Huang et al.,
2014). The resulting Kaplan-Meier survival curves show that the
lincRNA panel is able to separate patients into higher and lower risk
groups by median PI, with log-rank tests p-values of 0.012 and 0.010
for BRCA and grade 3 OV, respectively (Supplementary Fig. 13a and b).
On the other hand, the more preferable relapse free survival (RFS) in
LUAD and LUSC datasets are available, thus we fit RFS with Cox-PH
models, and obtained significant p-values of 0.0416 and 0.013 for differ-
ential survivals of LUAD and LUSC samples, respectively (Supplementa-
ry Fig. 13c and d). In summary, although the lincRNA panel was not
purposely discovered as prognosis markers but rather diagnostic

markers, their expression values are associated with the prognosis
outcomes in various types of cancers.

3.8. Biological Relevance of LincRNAs Explored By Cell Culture Experiments

To explore the relationship between the lincRNAs panel and tumor-
igenic phenotypes, we conducted experiments using two breast cancer
and colon cancer cell lines as examples. Given the extremely high
homology between PCAN-2 and PCAN-3, we specifically designed
siRNAs that target both of them so as to observe phenotypes. In non-
aggressive MCF-7 and highly metastatic MDA-MB-231 cell lines, we ef-
ficiently knocked down two lincRNAs PCAN-2 and PCAN-3 (Fig. 6a).
Transient knockdown allowed us to analyse cell proliferation and cell
migration rate. Interestingly, the growth rate of fast proliferating
MDA-MB-231 cells significantly decreased upon transfection with
lincRNAs siRNA (Fig. 6b). To assess cell migration rates we employed
the well-established wound-healing assay and followed the cell move-
ment with time-lapse microscoopy over the time of 24 h. As expected,
the migration rate was significantly inhibited upon lincRNAs knock-
down (Fig. 6¢, d). The effect of lincRNA down-regulation on cell migra-
tion was more pronounced in a highly aggressive MDA-MB-231 cell line
(0.349 versus 0.059 mm over 24 h for control and IncRNA siRNA, respec-
tively) but it was also observed in much slower migrating MCF-7 cells
(0.127 versus 0.096 mm over 24 h for control and IncRNA siRNA, respec-
tively). We repeated the cell migration experiment on MDA-MB-231
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with another less effective siRNA, and observed similar significantly
slower (P < 0.0001) migrating rate (Supplementary Fig. 14).

Furthermore, we repeated these experiments in another HCT116
colon cancer cell line with the more efficient siRNA (Supplementary
Fig. 15). Using the same experimental procedures, we observed signifi-
cant differences in both cell proliferation (p < 0.0001) and migration
(p = 0.036), between the IncRNA knockdown and the siRNA scrambled
control. These results suggest that down-regulation of cancer cell abun-
dant PCAN-2 and PCAN-3 lincRNAs weakens the typical cancer pheno-
typic features, such as proliferation and migration.

4. Discussion

Since 2012, a community effort has launched towards TCGA pan-
cancer analysis across many different tumor types (Han et al., 2014;
Weinstein et al., 2013), where the main focus has been the mutational
landscape (Kandoth et al., 2013). Pan-Cancer Initiative aims to enable
the discovery of novel intervention strategies that can be tested clinical-
ly, including developing novel adaptive biomarker-based clinical trials
that cross boundaries between tumor types (Cancer Genome Atlas

Research et al., 2013). One can expect that in the future, a pan-cancer
screening biomarker panel from blood or other body fluids could be-
come a useful, routine, and economical screening tool (Cancer
Genome Atlas Research et al.,, 2013) applied before the patients have
typical cancer symptoms that indicate late-stage character of the dis-
ease. Once an individual is identified as high-risk in the test, he or she
can be followed up with more confirmative tests, such as imaging scan-
ning. In the field of cancer biomarkers, although many lincRNAs and
other IncRNAs have recently been implicated in cancer initiation and
progression (Han et al., 2014; Vitiello et al., 2014; Iyer et al., 2015),
the clinical potential of lincRNAs remains under-explored across differ-
ent tumor types. In this study, our goals were to (1) depict the landscape
of lincRNAs in pan-cancers, (2) demonstrate their relevance to clinical
outcomes, such as tumor subtype, diagnosis and patient survival;
and (3) explore the utilities of lincRNAs as pan-cancer diagnostic
biomarkers.

Towards these goals, we have performed a new dimension of pan-
cancer analysis using the lincRNA transcriptome. In total, we analyzed
3354 patient RNA-Seq samples from 12 types of cancers in TCGA (13 in-
cluding OV in survival analysis) as well as an additional 15 independent
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datasets (three RNA-Seq datasets from GEO, one in-house RNA-Seq
breast cancer dataset and 11 microarray datasets from GEO). By system-
atically analyzing 12 types of RNA-Seq datasets in TCGA, we show that
lincRNAs are more tissue specific than protein-coding genes. The loss
of tissue specificity due to cancer is greater for lincRNAs compared to
protein-coding genes. This suggests that lincRNAs can potentially be
more sensitive biomarkers than protein coding genes. In addition, unsu-
pervised clustering results of lincRNAs demonstrate significant correla-
tions with molecular subtypes. CNMF clustering based on lincRNAs
almost perfectly divided the Triple Negative and ER + /Her2- breast can-
cers into distinct groups in GSE58135 data set. Furthermore, CNMF clus-
tering of TCGA BRCA samples detected 5 distinct clusters that highly
correspond to the five widely used molecular subtypes based on the
PAMS50 signatures.

Although others have suggested that lincRNAs have potential as bio-
markers (Prensner et al.,, 2011; Sun et al., 2013), we pinpoint a promis-
ing six-lincRNA pan-cancer diagnostics panel quantitatively, rigorously
and robustly. Despite all the potential issues including population het-
erogeneity and sample size limitation in high throughput datasets
(Berrar et al., 2006), the six-lincRNA biomarker model performs well
overall with AUCs ranging from 0.972 to 0.841. Moreover, we verify
the alteration of these lincRNAs with eleven additional microarray
gene expression data sets. Our most unexpected finding is that the six
lincRNA diagnostic signature is also associated with the survival prog-
nosis of cancer patients, based on the TCGA datasets (BRCA, OV, LUAD
and LUSC). Furthermore, we have demonstrated that the lincRNAs
have biological functions, by knocking-down experiments on two of
them, PCAN-2 and PCAN-3. Our preliminary results indicate that down-
regulation of only two out of six panel lincRNAs is sufficient to partially
revert some of the typical physiological hallmarks of cancer cells includ-
ing fast proliferation and more importantly, migration.

Developing a pan-cancer biomarker model based on the lincRNA sig-
natures could be very significant clinically, providing complementary
values to protein-coding gene based biomarker panels. We plan to con-
tinue our translational investigations in this direction. Yet our next chal-
lenge is to understand how each of the identified lincRNA biomarkers
function in tumorigenesis and progression. Although lincRNAs do not
encode proteins, it's clear that they play important roles in cellular biol-
ogy. Currently, multiple hypotheses exist on how lincRNAs regulate cel-
lular functions (Ching et al., 2014), which include functioning as scaffold
structure (Kowalczyk et al.,, 2012; Ling et al., 2013), sponge of small reg-
ulatory RNAs (Liu et al., 2013; Salmena et al., 2011) or direct interaction
with proteins to modulate localization and activity(Ma et al,, 2012). To
better understand the phenotypic effects of the six lincRNAs, we will
proceed with experiments that address the physiological functions of
these lincRNAs as well as molecular mechanisms by which they pro-
mote tumorigenesis and/or malignancy. We are aware that the reper-
toire of lincRNAs is evolving and thus we may miss some newly
identified lincRNAs, such as reported recently (Iyer et al., 2015). Howev-
er, given the fact that the six lincRNAs in this report have reached very
high and robust accuracy in pan-cancer data, the addition of other
new lincRNAs is expected to add very small effect on diagnosis at most.

In summary, our initial pan-cancer analysis has demonstrated that
lincRNAs accurately classify cancer subtypes through supervised as
well as unsupervised methods. The panel of six lincRNAs is a highly ac-
curate diagnostic biomarker signature with additional prognostic value.
These results highlight lincRNAs as a new paradigm for actionable pan-
cancer diagnosis and prognosis.
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