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Abstract 19 

Spectral flow cytometry provides greater insights into cellular heterogeneity by simultaneous 20 

measurement of up to 50 markers. However, analyzing such high-dimensional (HD) data is 21 

complex through traditional manual gating strategy. To address this gap, we developed CAFE as 22 

an open-source Python-based web application with a graphical user interface. Built with Streamlit, 23 

CAFE incorporates libraries such as Scanpy for single-cell analysis, Pandas and PyArrow for 24 

efficient data handling, and Matplotlib, Seaborn, Plotly for creating customizable figures. Its robust 25 

toolset includes density-based down-sampling, dimensionality reduction, batch correction, 26 

Leiden-based clustering, cluster merging and annotation. Using CAFE, we demonstrated analysis 27 

of a human PBMC dataset of 350,000 cells identifying 16 distinct cell clusters. CAFE can generate 28 

publication-ready figures in real time via interactive slider controls and dropdown menus, 29 

eliminating the need for coding expertise and making HD data analysis accessible to all. CAFE is 30 

licensed under MIT and is freely available at https://github.com/mhbsiam/cafe. 31 
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Introduction: 36 

Flow cytometry is a widely used technique in immunology to identify and quantify immune cells 37 

based on specific surface markers1. The development of spectral flow cytometry (SFCM) has 38 

further expanded immunophenotyping capabilities allowing the simultaneous analysis of a greater 39 

number of parameters through the complete emission spectra of fluorophores1. Compared to 40 

conventional flow cytometry, SFCM uses spectral unmixing algorithms to deconvolute the 41 

overlapping signals and achieves enhanced resolution and sensitivity to distinguish between 42 

different cell populations2. SFCM can incorporate broader range of antibodies with up to 50 colors 43 

in a single panel improving upon the conventional FCM where the number of parameters is limited 44 

by the instrument constraints3. Incorporating more parameters substantially increases the 45 

complexity in gating strategy which largely relies on established convention and prior 46 

knowledge4,5. Additional gating steps and combinations of markers used to subset cells 47 

complicate the interpretation of such high-dimensional data. Several clustering methods are 48 

available to identify cell populations such as FlowSOM6, xShift7, SPADE8 and Phenograph9. 49 

SPADE and FlowSOM utilize hierarchical clustering with the latter employing self-organizing maps 50 

(SOMs) to cluster cells, whereas xShift detects clusters based on shifts in local cell density6–8. 51 

Phenograph, by contrast, constructs a K-nearest neighbor graph and applies the Louvain 52 

algorithm to identify cell clusters, but Louvain can produce poorly connected or disconnected 53 

communities9,10.  54 

Recently, the Leiden clustering algorithm has emerged as a faster and more accurate alternative 55 

to improve community detection in networks10. Single-cell RNA sequencing (scRNA-seq) tools: 56 

Seurat11 (R) and Scanpy12 (Python) have integrated Leiden algorithms for community detection. 57 

However, running Leiden within Seurat resulted in drawbacks including higher memory usage, 58 

longer calculation time and random crashes in docker containers13. Scanpy resolves these issues, 59 

and unlike Seurat, Scanpy improves visualization quality by using consistent KNN and SNN 60 

graphs for both clustering and uniform manifold approximation and projection (UMAP) 13,14. In 61 

February 2020, Phenograph version 1.5.3 was released, which incorporated an option to use 62 

Leiden for clustering; however, the default parameter is set to Louvain through the latest release 63 

(v.1.5.7). In our previous work, we showed that the use of Leiden algorithm in community detection 64 

for SFCM data provides superior result to Phenograph (Louvain), FlowSOM, and xShift15. 65 

Currently, there is a scarcity of open-source tools to utilize Leiden algorithm for SCFM data 66 

analysis16. 67 
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Here we present CAFE, Cell Analyzer for Flow Experiment, a user-friendly web application 68 

developed in Python that works across Windows, MacOS, and Linux. The app is lightweight and 69 

can perform high-dimensional SFCM data analysis using a standard computing machine (i.e., 70 

Apple M1 chip with 16gb RAM), and it provides the flexibility to be deployed on HPC clusters for 71 

enhanced scalability. Once installed, the tool runs entirely offline and does not require an active 72 

internet connection to load files. This also enables users to maintain compliance with data 73 

security, especially with protected health information (PHI) when analyzing patient samples. 74 

CAFE can be used to process data, reduce dimension, batch correction, run Leiden clustering, 75 

perform statistics and generate a wide range of figures. Figures can be adjusted and viewed within 76 

the tool in real time. Additionally, the tool offers Kernel Density Estimation (KDE)-based data 77 

downsampling, advanced clustering with predefined markers, cluster quality evaluation, merging 78 

subclusters into metaclusters, and cell type annotation. Designed as an open-source interactive 79 

data analysis platform, CAFE enables biologists with no-coding experience to analyze SFCM data 80 

and create publication quality visualization with customizable parameters. CAFE is freely 81 

available to download at: https://github.com/mhbsiam/cafe 82 

 83 

Methods: 84 

Implementation 85 

The CAFE webtool was developed using Python programming language due to its compatibility 86 

with Scanpy library12. Figure 1 illustrates the components and workflows of CAFE. Streamlit 87 

(streamlit.io) library was used to develop the web interface that provides dynamic updates based 88 

on user inputs in the graphical user interface (GUI) without writing or editing code directly. 89 

Streamlit was chosen due to its simplicity in development and compatibility with other Python 90 

libraries across operating systems. Streamlit v1.39.0 is compatible with any modern HTML5 web 91 

browser. For data loading and processing, we relied on Pandas v2.2.3 with PyArrow v18.0.0 which 92 

achieves faster data loading and processing compared to Pandas alone. We used NumPy v1.26.4 93 

for data type and range selection, RGB array creation for color handling, and grid setup for 94 

subplots. Seaborn v0.13.2, Matplotlib v3.9.2, and Plotly v4.24.1 libraries were used for data 95 

visualization and users are provided with options to adjust parameters: plot size, color profile, and 96 

output formats in PNG, JPG, SVG, or PDF. CAFE integrates AnnData12, a widely used framework 97 

in single-cell RNA sequencing analysis that allows for efficient storage and manipulation of both 98 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.626714doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.03.626714
http://creativecommons.org/licenses/by-nc-nd/4.0/


sparse and dense matrices along with metadata. CAFE outputs an AnnData object which can be 99 

used outside of CAFE if users wish to deposit their data with analysis or perform custom analyses 100 

using other tools. 101 

The Scanpy library was used to perform key analyses including dimension reduction, batch 102 

correction, and Leiden clustering. The user has the option to reduce dimension (sc.tl.pca) of the 103 

data through Principal Component Analysis (PCA) or skip it. PCA is a linear dimensionality 104 

reduction technique that retains the global structure of the data by capturing the variances across 105 

all dimensions. Because the app performs PCA through Scanpy library, by default, the number of 106 

components retained is limited to the lesser of the two values: the number of cells or the number 107 

of markers. Also, the Singular Value Decomposition (SVD) solver was set to “auto” that chooses 108 

the most appropriate solver based on the size of the dataset; however, users have options to set 109 

a percentage of variances they want to retain, and the type of solver used. The reduced dataset 110 

is stored and can be further processed for batch correction (sc.pp.combat) using ComBat 111 

(Combined Batch)17. This is particularly useful if a user has collected samples in different batches 112 

as the algorithm standardizes the data by making it comparable and removing unwanted 113 

variability. 114 

To group cells into distinct clusters based on marker expression profiles, Leiden clustering is run 115 

(sc.tl.leiden) and users can select either ‘iGraph’ or ‘leidenalg’ algorithm flavor10,18. To define 116 

clustering resolution, a user can choose from 0.01 to 2.0 where the lowest value provides the 117 

lowest number of clusters. The user can fine tune Leiden calculation by altering the number of 118 

neighbors and minimum distance values in Uniform Manifold Approximation and Projection 119 

(UMAP) calculation within the app. CAFE generates AnnData object (H5AD) file, CSV outputs, 120 

and visual outputs including UMAP plots, dot-heatmaps, expression pots, and barplots as high-121 

resolution images and provides download buttons to save them to a desired folder. The app allows 122 

various visualization settings, with changes made and displayed immediately within the app. The 123 

generated AnnData object can be further used to perform a range of statistical analyses. 124 

The app includes advanced functionalities for clustering and cluster evaluation. Because setting 125 

up appropriate values for Leiden resolution and UMAP parameters is central to obtaining quality 126 

clustering results, a user can leverage CAFE’s Cluster Evaluation tab to generate multiple 127 

AnnData files with various combinations of these parameters and compare UMAP plots as well 128 

as Silhouette score, Calinski-Harabasz score, Davies-Bouldin score, and Elbow method to assess 129 

clustering results. Besides, CAFE provides clustering with pre-selected markers, merging 130 
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subclusters into metaclusters, and annotation of clusters directly within the app. The advanced 131 

Downsampling tab offers to downsample (e.g. 20,000 events per sample) data using a PCA-KDE 132 

based method. This approach combines PCA and KDE (Kernel Density Estimation) based 133 

algorithm from scipy.stats using Gaussian kernel function and silverman bandwidth19. KDE is 134 

applied to the PCA-transformed data to estimate the density of data points. Based on these 135 

density estimates, the code probabilistically downsamples data, thus reducing sampling bias and 136 

preserving original data distribution. This method offers an informed approach compared to simple 137 

random downsampling, and it can be used to filter out noise while retaining meaningful biological 138 

information in a smaller dataset.  139 

 140 

Statistical analysis 141 

In the visualization tab under statistical analyses section, users can perform different statistical 142 

tests and generate plots. The Shapiro-Wilk test from “scipy.stats” is used to determine if marker 143 

expression within each group or cluster follows a normal distribution. Based on these results, the 144 

app recommends either parametric (T-test) or non-parametric (Mann-Whitney U test) tests using 145 

“scipy.stats”. For comparing multiple clusters, the app allows users to perform ANOVA 146 

(scipy.stats.f_oneway) or Kruskal-Wallis (scipy.stats.kruskal) tests. To reduce statistical artifacts, 147 

multiple testing correction is applied using the Benjamini-Hochberg False Discovery Rate (FDR) 148 

through “statsmodels.stats.multitest”. Additionally, effect size measures are computed to 149 

complement statistical p-values, with users able to choose between parametric tests (Cohen’s d) 150 

or non-parametric tests (Cliff’s Delta). Cohen’s d is calculated using basic functions from Numpy, 151 

while Cliff’s Delta is computed with the “cliffs_delta” package. To assess associations between 152 

clusters and groups, we used Chi-square testing from “scipy.stats.chi2_contingency” and 153 

contingency tables with “pandas.crosstab”. Residual calculations were displayed in Streamlit as 154 

tables to help users understand which clusters are more prevalent within certain groups.  155 

 156 

Performance and reproducibility 157 

We have set a global setting for Scanpy (sc.settings.n_jobs = -1) to use all available CPU cores. 158 

For advanced clustering, multi-threading was achieved using Python’s joblib library. Two other 159 

libraries were used, watchdog v5.0.2 and iGraph v0.10.818. Watchdog helps in monitoring file 160 
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change events and improves performance of Streamlit by providing real-time feedback. iGraph is 161 

designed to handle complex networks and graph operations and is used by Scanpy as part of the 162 

Leiden clustering to perform graph operations. We recommend ‘iGraph’ over ‘leidenalg’ as iGraph 163 

is implemented in C and achieves advantages in performance compared to high-level interpreted 164 

languages such as Python. To export Plotly figures, we have used Kaleido engine v0.2.1. We 165 

have tested the app with various datasets using an Apple M3 Pro System with 18GB of random-166 

access memory (RAM). CAFE is primarily intended to be used using local computer; however, it 167 

can be scaled up using any High-Performance Computing (HPC) system that supports an HTML5 168 

web browser. We also provided scripts in our GitHub page to generate AnnData with dimension 169 

reduction and Leiden clustering through command-line interface (CLI) based HPC systems. 170 

 171 

 172 
Figure 1: The flowchart outlines steps and components of CAFE’s workflow. 173 
Preprocessing includes compensation, data scaling/transformation using a standard FCM 174 
software and scaled CSV files are then exported and renamed as Sample_Group.csv. Data 175 
processing performs error checks and concatenation of CSV files into an AnnData object/H5AD 176 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.626714doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.03.626714
http://creativecommons.org/licenses/by-nc-nd/4.0/


file. Major steps requiring user input include dimension reduction, batch correction, UMAP 177 
(UMAP Uniform Manifold Approximation and Projection) and community detection. Outputs are 178 
downloadable as CSV, H5AD, PNG, JPG, SVG and PDF files. 179 

 180 

Results: 181 

To demonstrate the functionality of the app, we have analyzed 35-color spectral flow cytometry 182 

data (Publicly available at FlowRepository: FR-FCM-Z3WR) of human peripheral blood 183 

mononuclear cells (PBMC) obtained from COVID-19 hospitalized patients and healthy controls20. 184 

A total of 10 samples were analyzed with 5 from each group. For best practices, we installed and 185 

ran CAFE through Pixi package manager. Users can also install and run the app using Anaconda 186 

package manager as described in our Github documentation. Once initiated through a terminal 187 

(pixi run cafe, or python cafe.py), a web browser opens with the CAFE app at localhost on port 188 

8501. The default data loading limit is set to 3GB, but a user can change the value from the 189 

cafe.py script if necessary. 190 

Data processing 191 

The uploaded public data were available as doublets-debris removed and CD45+ gated; so we 192 

obtained the CSV files just by exporting scaled values from FlowJo v10.10.0. Data scaling is 193 

generally recommended for high resolution clustering but there may be instances where users 194 

may use raw values. Data can be similarly exported from other flow cytometry software such as 195 

FCS Express. It is required that flow cytometry data have proper compensation. We recommend 196 

manual inspection of flow cytometry data and removal of debris, dead cells, and doublets prior to 197 

exporting the scaled files. A user can also gate on appropriate cell type and export the data to 198 

obtain more focused clustering results. To streamline downstream analysis, we have implemented 199 

a naming convention for the CSV files. Each CSV file name must begin with a unique 200 

“SampleName” followed by “GroupName”, separated by an underscore; for instance, 201 

“Sample01_Control.csv” and “Sample02_Treatment.csv”. After loading the data, the app will 202 

import the required libraries and perform initial checks for data structure and incorporate 203 

SampleID and GroupName into the dataframe based on the CSV file names. Within the 204 

dataframe, rows containing any missing values are skipped and anomalies in data structure are 205 

reported. In this study, we used the advanced KDE-based downsampling option in CAFE to 206 

downsample data to 35,000 cells per sample for a total of 350,000 cells and 12.25M data points 207 

(number of cells multiplied by number of markers). This is an optional step prior to data 208 
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processing. After loading the files, the app processed (7.8 sec) and combined the expression data 209 

and metadata without errors to create an AnnData object. 210 

Dimension reduction and batch effects 211 

After generating the AnnData object (H5AD file), we selected dimension reduction using PCA with 212 

SVD solver set to auto and retained components with 95% variance. The app ran PCA (2.16 sec), 213 

kept 12 components and generated (PC1 x PC2) graphs by Groups. Depending on the data size, 214 

a user can choose from auto, full, arpack, and randomized SVD solver. Randomized, for example, 215 

is better suited for larger datasets as it provides a balance between speed and accuracy. For 216 

batch correction, we applied ComBat (1.06 sec) and proceeded to Leiden clustering.  217 

Leiden clustering and metaclustering 218 

For the dataset, we applied Leiden resolution of 1.0 with flavor set to iGraph, UMAP n_neighbors 219 

to 15, min_dist to 0.1 and distance calculation method as Euclidean. A user has the option to use 220 

a slider control to choose from resolution values 0.01 to 2.0. To find the optimal resolution, we 221 

initially made use of Advanced Cluster Evaluation option in CAFE to generate a series of AnnData 222 

files with varied Leiden resolution and n_neighbor values and observed the UMAPs to find distinct 223 

clusters that are biologically meaningful for the dataset. With Leiden resolution of 1.0, we initially 224 

obtained a total of 30 clusters for the PBMC dataset which took 11.5 minutes for calculation. Once 225 

clustering was completed, CAFE generated a frequency table of each sample by Leiden cluster 226 

for the number of cells, frequency of cells, and median fluorescence intensity of each marker for 227 

each cluster. Using these 3 tables, users can perform statistical analyses to compare cluster count 228 

and frequency by groups and expression of marker proteins within clusters by group. Using the 229 

Advanced Cluster Merging option, we merged the subclusters with similar profile into 230 

corresponding metaclusters resulting in a new total of 16 clusters.  231 

 232 
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 233 

Figure 2: Profiling of Human PBMCs Reveals Distinct Immune Subpopulations and Marker 234 
Expression Patterns. (a) UMAP plots showing selected marker expression intensities across all 235 
cells in the UMAP space to highlight lineage-specific marker distribution. (b) Dot plot of all marker 236 
expression across all identified PBMC cell types. Dendrogram highlighted distinct marker-based 237 
groupings. (c) UMAP visualization showing 16 distinct clusters with annotated cell types including 238 
Naive CD4 and CD8 T cells, central memory CD4 and CD8 T cells (Tcm), effector memory CD8 239 
T cells (Tem), terminally differentiated effector memory CD8 T cells (Temra), mucosal-associated 240 
invariant (MAIT) T cells, classical monocytes (cMO), intermediate monocytes (iMO), B cells, NK 241 
cells, gamma delta (γδ) T cells (Tgd), conventional dendritic cell (cDC) and plasmacytoid dendritic 242 
cell (pDC).  243 

Characterization of PBMC Subpopulations 244 

To characterize the phenotypic properties, we examined the expression of surface markers for 245 

each identified cluster by protein expression UMAP plots (Figure 2a). We found high CD3 246 

expression in T cells clusters with CD4 and CD8 expression showing corresponding T cell 247 
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subtypes. CD8+ effector memory (Tem) and central memory (Tcm) subsets were differentiated by 248 

high CCR7 and CD27 expression in Tcm. We used CD45RA expression to identify terminally 249 

differentiated Tem cells (Temra). Monocyte clusters were identified by CD14 and CD16 250 

expression, distinguishing classical monocytes (cMO) from other monocyte subsets, while natural 251 

killer (NK) cells showed high levels of CD56, corresponding with CD56Bright NK cells. Based on 252 

shared marker profiles and hierarchical ranking, T cell subsets (Tem, Tcm, and Temra) formed a 253 

distinct grouping separate from B cells and myeloid-derived cells, reflecting the differential 254 

expression of lineage-specific markers.  255 

Based on the expression profiles of marker proteins, we annotated the clusters using CAFE’s 256 

Advanced Annotation tab and classified them into 16 distinct cell types. We also used the dotplot 257 

to confirm annotations of the cell types (Figure 2b). For instance, the B cell-specific marker CD19 258 

and CD20 were used to identify the B cell cluster, the CD14 marker to identify monocytes, and 259 

the CD16 marker to identify NK cells. High CD20 expression in B cell cluster indicated their mature 260 

stage in immune response. Our annotated UMAP (Figure 2c) shows well-defined clusters that 261 

correspond to PBMC lineages, including Naive CD4+ and CD8+ T cell and Tcm for both CD4+ 262 

and CD8+ subsets. We also identified Tem and Temra cells, as well as mucosal associated 263 

invariant CD8+ T cell (MAIT). We also identified cMO, intermediate monocytes (iMO), B cells, NK 264 

cells, Gamma delta (γδ) T cells (Tgd) and dendritic cell (DC) types (cDC and pDC).  265 

 266 
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 267 

Figure 3: Comparative Analysis of Immune Cell Subpopulations in Healthy and COVID-19 268 
Individuals. (a) UMAP plots displaying distinct clustering patterns and differential distribution of 269 
cell types in PBMC across healthy and COVID-19 group. (b) Sankey diagram illustrates the 270 
distribution of cells across groups, with thicker flow indicating more cells. (c) Composite bar-strip 271 
plot summarizing cell count distribution across cell subpopulations. Dots represent each individual 272 
samples colored by group. (d) Stacked bar chat showing distribution of cells in percentage across 273 
two groups. (e) Effect size calculated using Cohen’s d indicating changes in the number of cells 274 
in COVID-19 compared to reference healthy control. (f) Comparison of individual cell type 275 
frequencies between healthy and COVID-19 groups with p-values for statistical significance. 276 
N=9/group 277 

 278 
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Distinct Cellular and Molecular Signatures Observed in COVID-19 Compared to Healthy 279 

Controls 280 

UMAP analysis of COVID-19 hospitalized patients compared to healthy controls revealed distinct 281 

clustering patterns between groups, particularly among monocytes, NK cells, and CD8 T cells 282 

(Figure 3a). To understand changes between the two groups, CAFE offers varied visualization 283 

options, for instance, we used a Sankey diagram to demonstrate that MAIT cells and Tgd are 284 

much less abundant in COVID-19 patients compared to healthy controls (Figure 3b). We also 285 

found that CD8 Tcm and B cells were significantly expanded in COVID-19 patients. A composite 286 

bar-strip plot also demonstrates the distribution of cells in frequency where each dot represented 287 

each sample colored by specific group (Figure 3c). The total number of cells in iMO were largely 288 

reduced in COVID-19 patients compared to healthy controls (Figure 3d). These data may indicate 289 

a possible shift from an innate response towards an adaptive response. To quantify the effect size 290 

of changes observed, we compared cell types within the COVID-19 group to healthy controls as 291 

a reference and found changes in naive CD8, TMAIT, and iMO cells have a larger effect size, 292 

demonstrating a bigger difference between the two groups (Figure 3e). We further compared 293 

these cell types by plotting box plots for individual cell types (Figure 3f) which demonstrated a 294 

non-statistically significant increase in Tcm CD8 (p=0.0777) and statistically significant decrease 295 

in naive CD8 cells (p=0.0372) in COVID-19 patients compared to healthy controls. 296 

 297 
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 298 

Figure 4: Marker expression and distribution differences between COVID-19 and healthy 299 
individuals. (a) Violin plot showed the median expression levels of CD161 across immune cell 300 
subtypes.  (b) Sankey diagram illustrated marker expression in CD8+ T cells, with thicker flows 301 
indicating more cells expressing that marker. (c) Bar chart showed median expression of markers 302 
across all cell types between COVID-19 and healthy individuals where positive values indicated 303 
upregulation. Box plots displayed (d) the number of cells expressing IgG, IgM and IgD in B cells, 304 
and (e) the number of CD8+ T cells expressing CD25, HLA-DR, and CD38. 305 

 306 

Altered Marker Expression Profiles in COVID-19 Patients 307 

CAFE outputs a file with expression data for all markers on each cluster by sample for use in 308 

external plotting and statistical software. In addition, further exploration of specific markers within 309 

clusters can be performed within CAFE. We used this approach to identify that MAIT cells have 310 

the greatest expression of CD161, as shown by violin plot (Figure 4a). We also examined marker 311 

distribution in CD8 T cell populations and found that more cells within the Tem CD8 population 312 

appeared activated based on greater HLA-DR, CXCR3, and CCR5 expression compared to other 313 

CD8 T cell subsets (Figure 4b). We found that median expression of CD8, CD14, CD11b, IgG 314 

were increased in COVID-19 patients compared to healthy controls across all clusters (Figure 315 

4c). These reflect the overall differences in some of the cell populations we observed between 316 
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groups. We examined marker expression within the B cell cluster and found that more B cells 317 

expressed IgG in COVID-19 samples compared to healthy controls although the difference was 318 

not statistically significant (p=0.1631), while IgD expression was statistically significantly reduced 319 

(p=0.0162) in COVID-19 samples compared to healthy controls (Figure 4d). We also examined 320 

activation markers in CD8+ T cells and found that COVID-19 patients had more CD8+ T cells that 321 

expressed CD25 and HLA-DR than healthy controls (Figure 4e).  322 

 323 

 324 

Discussion: 325 

 326 

As research in immunology increasingly relies on high-dimensional cytometric data, there is a 327 

growing need for a user-friendly analysis tools for everyday use. Here, we present CAFE as a 328 

free and open-source tool designed to address the analytical and accessibility issues posed by 329 

SFCM data. CAFE uses a GUI and interactive controls to enable immunologists to analyze 330 

complex data without needing specialized coding knowledge. 331 

 332 

Using a jupyter notebook, we have previously shown the ability of Scanpy’s Leiden function 333 

(scanpy.tl.leiden) to analyze a 50-color human PBMC dataset15. CAFE acts as a wrapper 334 

combining packages within Streamlit to provide a web interface, offering more accessible and 335 

extensive functionality than Jupyter notebooks’ CLI. We demonstrated analysis of a 35-color 336 

human PBMC dataset using CAFE in this study with 350,000 cells and 12.25M data points. Major 337 

steps including data processing, dimension reduction, batch correction and Leiden clustering 338 

were completed in under 12 minutes using an Apple M3 Pro laptop. In our analysis, we observed 339 

COVID-19 patients with altered immune cell distributions and marker expression profiles, 340 

consistent with prior findings, as well as MAIT cells expressing high CD161 and B cells expressing 341 

high CD2020. 342 

While developing CAFE, we have balanced compatibility and performance and included many 343 

options for customization of how the code processes and analyzes data while integrating default 344 

options and tooltips to help guide users. Our implementation of Pandas with PyArrow significantly 345 

improves processing speed over Pandas alone. However, transitioning to Polars’ lazy evaluation 346 

framework could further speed up processing once compatibility issues between ARM and x86 347 

machines are resolved. CAFE’s web app design and functionality also revolved around simplicity 348 

as we de-emphasized features that are not commonly used in order to streamline user-349 
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experience. For data dimension reduction, we adhered to a convention of using PCA as the 350 

primary method and using PCA-reduced representations for constructing UMAP neighbor graphs, 351 

as opposed to utilizing UMAP directly for primary dimensionality reduction. Although PCA is 352 

designed for linear data, it effectively reduces noise and enhances clustering performance.  Users 353 

have the choice to skip PCA to perform Leiden clustering on the raw data or use UMAP 354 

embeddings (i.e., X_umap) to use UMAP reduced data for clustering.  One viable alternative to 355 

PCA for non-linear data structure is Kernel PCA, but we have skipped adding the kernel PCA 356 

option in the CAFE workflow because it may not be practical since it is computationally taxing. 357 

UMAP parameters and Leiden resolution largely influence the number of clusters for community 358 

detection. Leiden clustering is performed on the graph structure, so evaluation of clustering quality 359 

solely based on methods such as elbow or silhouette score is not ideal. Rather a combined 360 

approach with prior biological knowledge can inform the most correct clustering resolution. We 361 

recommend using CAFE’s advanced clustering evaluation tab to generate plots with a range of 362 

varied UMAP parameters and Leiden resolutions for visual inspection. Using this approach, users 363 

can select the most appropriate clustering resolution for each dataset. Since this is an 364 

unsupervised algorithm, setting up an incorrect resolution can heavily skew the interpretation of 365 

data.  366 

Manual gating continues to be the gold standard in flow cytometry analysis, but it is limited by 367 

sequentially drilling down into subsets of cells with 2-dimensional bi-axial gating. Thus, our goal 368 

was to complement this hypothesis-driven approach  with the unsupervised computational 369 

algorithms. In this way, users can perform hypothesis-driven analysis with manual gating and 370 

hypothesis-generating analysis with unsupervised clustering. Compared to other open-source 371 

tools, CAFE provides a wide range of publication-ready visualization options. Due to its underlying 372 

code in python, CAFE is highly scalable to datasets of millions of cells and takes advantage of 373 

multi-threading to obtain higher performance. Previously, python-based Pytometry and CRUSTY 374 

integrated unbiased clustering algorithms within their tools21,22. Pytometry incorporates the Leiden 375 

algorithm10, which has been shown to be an improvement over the predecessor Louvain 376 

algorithm23; however, Pytometry requires coding using Python. CRUSTY incorporates an easy-377 

to-use GUI but it does not offer the Leiden algorithm and relies on FlowSOM and Phenograph. 378 

Another limitation of CRUSTY is that the cloud-based service limits users to analyzing 100,000 379 

total events. There are also limited visualization and analysis options in CRUSTY and they rely 380 

on most of the Phenograph and FlowSOM default settings which cannot be customized. Cloud-381 

based solutions may face limitations in availability, scalability, and data security. Users may be 382 
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prohibited from uploading data to cloud-based systems that have protected health information 383 

due to HIPAA. Among a few other GUI based tools, Cytoflow24, Floreada (floreada.io), EasyFlow25 384 

allow for flow cytometry data analysis but do not offer clustering. FlowPy (flowpy.wikidot.com) 385 

allows for clustering but uses k-mean clustering rather than the most advanced algorithms 386 

currently in use (i.e. Leiden). Additional tools like terraFlow26 and CellEngine (CellCarta, Montreal, 387 

Canada) are for-profit spectral flow cytometry analysis softwares and the price of these may be 388 

restrictive for many users. Finally, FlowJo is a staple for many immunologists and has some native 389 

clustering capabilities. It also supports plugins for additional clustering algorithms, but these add-390 

ons do not offer much customization in the clustering parameters.  391 

 392 

CAFE, while addressing many of these limitations as an open-source alternative, has its own 393 

practical considerations. CAFE is intended to be run locally which requires installing a package 394 

manager such as Pixi or Anaconda/Miniconda3 through terminal. Performance is also dependent 395 

on the user’s machine. For larger datasets, we recommend utilizing our provided scripts in Github 396 

to run data processing step through an HPC cluster by allocating more RAM. Once the user has 397 

Anndata file generated with cluster information, all the downstream analysis and figure generation 398 

steps become significantly less computationally demanding. Ultimately, CAFE’s aim is to become 399 

a secure, scalable, and open-source platform accessible to a broad range of researchers to run 400 

complex analyses through a simple intuitive graphical user interface. 401 
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Figure Legends: 479 

Figure 1: The flowchart outlines steps and components of CAFE’s workflow. Preprocessing 480 
includes compensation, data scaling/transformation using a standard FCM software and scaled 481 
CSV files are then exported and renamed as Sample_Group.csv. Data processing performs error 482 
checks and concatenation of CSV files into an AnnData object/H5AD file. Major steps requiring 483 
user input include dimension reduction, batch correction, UMAP (UMAP Uniform Manifold 484 
Approximation and Projection) and community detection. Outputs are downloadable as CSV, 485 
H5AD, PNG, JPG, SVG and PDF files. 486 

Figure 2: Profiling of Human PBMCs Reveals Distinct Immune Subpopulations and Marker 487 
Expression Patterns. (a) UMAP plots showing selected marker expression intensities across all 488 
cells in the UMAP space to highlight lineage-specific marker distribution. (b) Dot plot of all marker 489 
expression across all identified PBMC cell types. Dendrogram highlighted distinct marker-based 490 
groupings. (c) UMAP visualization showing 16 distinct clusters with annotated cell types including 491 
Naive CD4 and CD8 T cells, central memory CD4 and CD8 T cells (Tcm), effector memory CD8 492 
T cells (Tem), terminally differentiated effector memory CD8 T cells (Temra), mucosal-associated 493 
invariant (MAIT) T cells, classical monocytes (cMO), intermediate monocytes (iMO), B cells, NK 494 
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cells, gamma delta (γδ) T cells (Tgd), conventional dendritic cell (cDC) and plasmacytoid dendritic 495 
cell (pDC).  496 

Figure 3: Comparative Analysis of Immune Cell Subpopulations in Healthy and COVID-19 497 
Individuals. (a) UMAP plots displaying distinct clustering patterns and differential distribution of 498 
cell types in PBMC across healthy and COVID-19 group. (b) Sankey diagram illustrates the 499 
distribution of cells across groups, with thicker flow indicating more cells. (c) Composite bar-strip 500 
plot summarizing cell count distribution across cell subpopulations. Dots represent each individual 501 
samples colored by group. (d) Stacked bar chat showing distribution of cells in percentage across 502 
two groups. (e) Effect size calculated using Cohen’s d indicating changes in the number of cells 503 
in COVID-19 compared to reference healthy control. (f) Comparison of individual cell type 504 
frequencies between healthy and COVID-19 groups with p-values for statistical significance. 505 
N=9/group. 506 

Figure 4: Marker expression and distribution differences between COVID-19 and healthy 507 
individuals. (a) Violin plot showed the median expression levels of CD161 across immune cell 508 
subtypes.  (b) Sankey diagram illustrated marker expression in CD8+ T cells, with thicker flows 509 
indicating more cells expressing that marker. (c) Bar chart showed median expression of markers 510 
across all cell types between COVID-19 and healthy individuals where positive values indicated 511 
upregulation. Box plots displayed (d) the number of cells expressing IgG, IgM and IgD in B cells, 512 
and (e) the number of CD8+ T cells expressing CD25, HLA-DR, and CD38. 513 

 514 
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