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Abstract: Massa Medicata Fermentata (MMF), known as Shenqu, is an important traditional Chinese
medicine widely used to treat indigestion, vomiting, and diarrhea. In this study, a new benzochroman,
3(S)-3,4-dihydro-5,10-di-β-D-glucopyranoside-2,2-dimethyl-2H-naphtho(2,3-b)pyran-3-ol (1), and five
known galactosyl acylglycerols (2–6) were isolated from a methanol extract from MMF. In addition,
their chemical structures were determined by chemical and spectroscopic methods, which were
compared with the previously reported data. Furthermore, the effects of isolated compounds
on lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells were investigated.
Compounds 1–3 exhibited significant inhibitory effects on the LPS-induced production of IL-6 and
IL-12 p40, with IC50 values ranging from 1.6 to 10.2 µM. Compounds 2 and 3 also exhibited strong
inhibitory effects on the LPS-stimulated production of TNF-αwith IC50 values of 12.0 and 11.2 µM,
respectively. The results might provide a scientific basis for the development of the active components
in MMF, as well as for novel anti-inflammatory agents.
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1. Introduction

Massa Medicata Fermentata (MMF), also known as Shenqu, is one of the widely used traditional
medicines [1]. MMF is fermented using six traditional medicinal materials: wheat (Triticum aestivum
L.); red bean (Vigna umbellata (Thunb.)); bitter almond (Prunus armeniaca L.); sweet wormwood
(Artemisia annua L.); cocklebur (Xanthium sibiricum L.); and water pepper (Polygonum hydropiper
L.) [1–3]. MMF has been widely used for treating indigestion, vomiting, diarrhea, obesity, and related
metabolic diseases. Recent pharmacological research showed that MMF demonstrates significant
anti-inflammatory activity in an LPS-mediated inflammatory insult, either individually in vitro using
RAW264.7 cells or in combination with in vivo using rats [2]. However, the active components have
not been reported. The present phytochemical and pharmacological study on MMF searched for
anti-inflammatory constituents and unique compounds, which resulted in the isolation of a new
benzochroman derivative (1) from an MMF methanol extract.

Lipopolysaccharide (LPS) is the most abundant component within the cell wall of Gram-negative
bacteria that suppresses inflammatory responses in vivo. It can stimulate the release of several
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inflammatory cytokines in various cell types, leading to an acute inflammatory response towards
pathogens. Interleukin (IL)-6, IL-12, and TNF-α is the important pro-inflammatory cytokines that
play a significant role in inflammation. Tumor necrosis factor (TNF)-α is a pro-inflammatory cytokine
produced from monocytes and macrophages after the invasion of various pathogens that attack the
host defense mechanisms. TNF-α plays a crucial role in host defense and in inflammatory response [4].
Specifically, IL-6 is an important molecule because it exhibits pro- and anti-inflammatory effects,
and has been implicated in several inflammatory diseases [5]. IL-12 plays a key role in the initiation
and regulation of the cellular immune response [6]. Independent of IL-12 and IL-23, p40 and p80
exhibit specific biological activities [7,8]. On the other hand, dendritic cells (DCs) play a pivotal
role in orchestrating immune responses, especially by modulating T-cell function. To identify the
MMF anti-inflammatory components, the isolated compounds were investigated for the LPS-induced
expression of the pro-inflammatory cytokines IL-6, IL-12 p40, and TNF-α in bone marrow-derived
dendritic cells (BMDCs).

2. Results and Discussion

2.1. Isolation and Structural Elucidation

Seven compounds (1–6) were isolated from the methanol extract of the dried MMF, based on
spectroscopic data, chemical evidence, and comparison with the previous studies (Figure 1). The HPLC
confirmed the purity of the isolated compounds was greater than 95%. Their structures were elucidated
as 3(S)-3,4-dihydro-5,10-di-β-D-glucopyranoside-2,2-dimethyl-2H-naphtho(2,3-b)pyran-3-ol (1),
(2S)-1-O-eicosapentaenoyl-2-O-palmitoyl-3-O-(β-D-galactopyranosyl-6-1α-D-galactopyranosyl)-glycerol
(2) [9], (2S)-1-O-eicosapentaenoyl-2-O-linoleoyl-3-O-(β-D-galactopyranosyl-6-1α-D-galactopyranosyl)-
glycerol (3) [10], gingerglycolipid A (4) [11], (2S)-3-O-otadeca-9Z,12Z,15Z-trienoylglyceryl-6′-O-(α-D

-galactopyranosyl)-β-D-galactopyranoside (5) [12], and spongilipid (6) [13]. These compounds were
isolated from MMF for the first time; in addition, compounds 2, 3, and 5 were first isolated from the
plant material.
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The molecular formula (C27H36O14) of compound 1, isolated as yellow amorphous powder,
was determined on the basis of the positive HR-ESI-MS at m/z 607.1996 [M + Na]+ (calcd. 607.1997).
1H and 13C-NMR spectra of 1, which revealed three segments, viz. a benzochroman backbone and
two glucosyl groups (Table 1, Supplementary Materials), respectively [14]. Signals corresponding to
an ABCD system (1,2-disubstituted aromatic ring) were observed at δH 8.27 (d, J = 7.5 Hz, H-9), 8.25
(d, J = 7.5 Hz, H-6), 7.27 (t, J = 7.5 Hz, H-7), and 7.19 (t, J = 7.5 Hz, H-8). In the 1H-NMR spectrum of
1. Signals of the chroman group were observed at δH 3.77 (dd, J = 8.5, 5.5 Hz, H-3), 3.59 (dd, J = 18.2,
8.5 Hz, H-4(a)), and 2.93 (dd, J = 18.2, 5.5 Hz, H-4(b)), and two methyl groups at 1.31 (s) and 1.32 (s).
Moreover, two β-D-glucose units corresponding to the anomeric proton signals at δH 4.78 (d, J = 7.6 Hz,
H-1′) and 4.76 (d, J = 7.6 Hz, H-1′ ′) were observed in the 1H-NMR spectrum of 1. The large coupling
constants between H-1 and H-2 of the sugar units provided β-linkage.

A total 10 aromatic carbons were observed at δC 148.4 (C-10), 143.4 (C-10a), 137.3 (C-5), 130.0
(C-5a), 126.6 (C-6), 124.7 (C-7), 123.8 (C-9a), 123.6 (C-8), 122.9 (C-9), and 118.4 (C-4a) in the 13C-NMR
spectrum of 1. Carbons typical of chroman were observed at δC 79.0 (C-2), 69.5 (C-3), and 29.1 (C-4),
in addition to two methyl groups at δC 25.2 and 22.7, respectively. From the above data, 1 was possibly
a benzochroman glycoside. Correlations between δH 4.78 (H-1′)/137.3 (C-5) and 4.76 (H-1′ ′)/148.4
(C-10) were observed in the HMBC spectra of 1, revealing the attachment of two glucosyl groups to
the C-5 and 10 of the backbone (Figure 2, Supplementary Materials). The benzochroman backbone
was determined by HMBC correlations at δH 3.59, 2.53 (H-4)/δC 143.4 (C-10a) and 137.3 (C-5), δH

3.77 (H-3)/δC 118.4 (C-4a), δH 8.25 (H-6)/δC 137.3 (C-5) and 123.8 (9a), and δH 8.27 (H-9)/δC 148.4
(C-10) and 130.0 (C-5a). The enzymatic hydrolysis of 1 afforded D-glucose as the sugar residues by
the comparing with those reported previously by a GC experiment. The enzymatic hydrolysis of
1 afforded aglycone. A positive value for the optical rotation of 1a ([α]25

D : +15.0 (c 0.1, MeOH))
was obtained, revealing the 3S configuration of 1 by comparing the physical and spectral data
with those reported previously [15]. Based on this result, the structure of 1 was determined to
be 3(S)-3,4-dihydro-5,10-di-β-D-glucopyranoside-2,2-dimethyl-2H-naphtho(2,3-b)pyran-3-ol.
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Table 1. 1H (600 MHz) and 13C-NMR (150 MHz) spectroscopic data of compound 1 (methanol-d4,
δ, ppm, J/Hz).

Pos. δH δC δH δC

2 79.0 1′ 4.78, d,
7.6 106.8

3 3.77, dd, 8.5, 5.5 69.5 2′ 3.54, m 75.9

4 (a), 3.59, dd, 18.2, 8.5
(b), 2.93, dd, 18.2, 5.5 29.1 3′ 3.71, m 78.2

4a 118.4 4′ 3.38, m 71.5
5 137.3 5′ 2.97, m 77.9

5a 130.0 6′ 3.65, m
3.57, m 62.7

6 8.25, d, 7.5 126.6 1′′ 4.76, d,
7.6 106.7

7 7.27, t, 7.5 124.7 2′′ 3.52, m 75.7
8 7.19, t, 7.5 123.6 3′′ 3.71, m 78.0
9 8.27, d, 7.5 122.9 4′′ 3.36, m 71.3

9a 123.8 5′′ 2.99, m 77.8

10 148.4 6′′ 3.64, m
3.54, m 62.5

10a 143.4 CH3 1.32, s 25.2
CH3 1.31, s 22.7

Assignments were confirmed by heteronuclear multiple quantum correlation (HMQC) and HMBC experiments,
with J values (Hz) indicated within parentheses.

2.2. Bioassays

To identify the active anti-inflammatory constituents in the MMF methanol extract, the effects of
1–6 (at a concentration of 50 µM) on the cell viability of BMDCs was evaluated by a colorimetric MTT
assay. Results revealed that the tested compounds did not exhibit cytotoxicity at the concentrations
tested (data not shown). Next, the inhibition of the IL-12 p40 production was examined with a
concentration of 25 µM. In general, the inhibitory effects were higher than 50%, we considered that the
compounds exhibited the inhibitory effects on the production of IL-12 p40. Results revealed that the
isolated compounds decreased the production of IL-12 p40 (>50%).

Next, the effects of 1–6 on the production of IL-6, IL-12 p40, and TNF-α were examined at various
concentrations (1 to 50 µM). 4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole
(SB203580), which was an inhibitor of p38 kinase, was used as the positive control [16]. SB203580
inhibited the production of IL-6, IL-12 p40, and TNF-α, with IC50 values of 1.7, 2.5, and 3.6 µM,
respectively (Table 2). Compound 1, which was benzochroman, significantly inhibited the production
of IL-6, with IC50 value of 4.6 µM, as well as exhibited strong inhibitory effects on the production
of IL-12 p40, with IC50 values of 10.2 µM. However, 1 exhibited the least relevant inhibitory effect
on the TNF-α LPS-stimulated production. On the other hand, among galactosyl acylglycerols (2–6),
2 and 3 significantly inhibited the production of IL-12 p40, IL-6, and TNF-α, with IC50 values ranging
from 1.6 to 12.0 µM (Table 2). In addition, other compounds exhibited moderate activity at the
tested concentrations. The anti-inflammatory activities and structural properties of 2–6 also helped to
procure information regarding the structure-activity relationship. Interestingly, the effects significantly
increased the unsaturated aliphatic substituted acylglycerol, and the activity was proportional to the
number of olefinic bonds on each of the aliphatic moieties, suggesting that the number of olefinic
bonds played a critical role in the anti-inflammatory activity. These data might be useful in evaluating
the SAR of other acylglycerols.
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Table 2. Anti-inflammatory effects of isolated compounds on LPS-stimulated bone marrow-derived
dendritic cells.

Compound IC50 (µg/mL) a

IL-12 p40 IL-6 TNF-α

1 10.2 ± 0.2 4.6 ± 0.1 >100
2 7.9 ± 0.2 7.6 ± 0.3 12.0 ± 0.5
3 7.6 ± 0.1 1.6 ± 0.1 11.2 ± 0.3
4 38.3 ± 0.6 20.6 ± 0.6 49.4 ± 0.7
5 29.7 ± 1.1 22.5 ± 0.3 36.0 ± 0.1
6 50.4 ± 0.6 >100 >100

SB203580 b 2.5 ± 0.1 1.7 ± 0.2 3.6 ± 0.2
a IC50 values for selected compounds are tabulated in the columns of IL-12 p40, IL-6 and TNF-α. Values >100 µM
are inactive. b Positive control.

2.3. Concluding Remarks

In this study, seven compounds including a new benzochroman (1) and five galactosyl
acylglycerols (2–6) were isolated from a methanol extract of MMF. All isolated compounds were
evaluated for their inhibitory effects on the production of the LPS-stimulated cytokines (IL-12p40,
IL-6, and TNF-α) in BMDCs. To our knowledge, this is the first study on the benzochroman and
galactosyl acylglycerol components of MMF and their anti-inflammatory activity. Most of the isolated
compounds (1–3, and 5) were isolated from the plant material for the first time. The results suggested
that benzochromans and galactosyl acylglycerols were bioactive MMF components, which might
provide a scientific basis for the development of the active components in MMF, as well as for novel
anti-inflammatory agents.

3. Materials and Methods

3.1. General Information

Optical rotation was determined on a JASCO DIP-370 automatic polarimeter (Jasco, Tokyo,
Japan). GC profiles were recorded on a Shimadzu-2010 spectrometer, with an FID detector (Shimadzu,
Kyoto, Japan); a detection temperature of 300 ◦C; an SPB-1 column (0.25 mm i.d. × 30 m); a column
temperature of 230 ◦C; a He carrier gas (2 mL/min); an injection temperature of 250 ◦C; and an injection
volume of 0.5 µL. NMR spectra were recorded on a JEOL ECA 600 spectrometer (1H, 600 MHz;
13C, 150 MHz; JEOL Ltd., Tokyo, Japan), with tetramethylsilane (TMS) as the internal standard.
Heteronuclear multiple quantum correlation (HMQC); heteronuclear multiple bond correlation
(HMBC); and 1H–1H correlation spectroscopy (COSY) spectra were recorded using a pulsed field
gradient. ESI-MS spectra were recorded on an Agilent 1200 LC-MSD Trap spectrometer. Melting
points were determined on an Electrothermal IA-9200 system (Agilent Technologies, Santa Clara, CA,
USA). Column chromatography was performed over silica gel (Kieselgel 60, 70–230, and 230–400 mesh,
Merck, Darmstadt, Germany). YMC RP-18 resins, and thin layer chromatography (TLC) was performed
using pre-coated silica-gel 60 F254 and RP-18 F254S plates (both 0.25 mm, Merck, Darmstadt, Germany),
and the spots were detected under UV light and using 10% H2SO4.

3.2. Preparation of Extracts of MMF

Dried MMF was purchased from a herbal company, Naemome Dah (Ulsan, Korea), in April
2016, and identified by Prof. Young Ho Kim, College of Pharmacy, Chungnam National University.
A voucher specimen (CNU16105) was deposited at the herbarium of the College of Pharmacy,
Chungnam National University (Daejeon, Korea). Dried MMF (5.0 kg) was extracted thrice with
MeOH (10 L each for three times) under reflux. After solution concentration, the extract equaled
(99.0 g).
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3.3. Isolation

The extract (99.0 g) was partitioned with EtOAc, affording EtOAc (32.0 g) and H2O (67.0 g)
fractions. The H2O fraction (67.0 g) was subjected to chromatography over a highly porous polymer
(Diaion HP-20) and successively eluted with H2O and MeOH to give two fractions (Fractions H1
and H2, respectively). Fraction H1 (45.0 g) was subjected to column chromatography over silica
gel (8.0 × 30 cm) with a gradient of CHCl3–MeOH–H2O (30:1:0–1:3:0.1; 1.5 L for each step) to
obtain 6 fractions (Fractions H1.1–H1.10). Fraction H1.5 (2.0 g) was separated by RP (1.5 × 60 cm)
column chromatography using MeOH–H2O (3.5:1–10:1; 1.5 L for each step) as the eluent, affording
4 subfractions (i.e., Fractions H1.5.1–H1.5.4, respectively). Subfraction H1.5.2 (500.0 mg) was
further purified on a chromatography column over silica gel (1.0 × 80 cm), affording compound
2 (64.0 mg). Subfraction H1.5.3 (675.0 mg) was purified on a chromatography column over silica gel
(1.0× 80 cm), affording compound 3 (90.0 mg). Fraction H1.8 was subjected to RP (1.5× 60 cm) column
chromatography with a gradient of MeOH–H2O (3:1, 10:1, 1.0 L for each step), affording compounds
4 (80.0 mg) and 6 (36.0 mg). Fraction H2 (10.0 g) was separated by column chromatography over
silica gel (4.0 × 50 cm) with CHCl3–MeOH–H2O (20:1:0.1–3:1:0.1; 1.5 L for each step), affording 11
fractions (fractions H2.1–H2.11, respectively). Subfraction H2.8 (500.0 mg) was further purified on a
chromatography column over silica gel (CHCl3–MeOH–H2O: 5.5:1:0.1; 1.5 L; 1.0 × 80 cm) to obtain
compound 6 (50.0 mg). Compound 1 (50.0 mg) was isolated from fraction H2.10 by RP (1.0 × 80 cm)
column chromatography with MeOH–H2O (1:6–1:2; 1.0 L for each step).

3(S)-3,4-Dihydro-5,10-di-β-D-glucopyranoside-2,2-dimethyl-2H-naphtho(2,3-b)pyran-3-ol (1): yellow
amorphous powder; [α]25

D : +11.8 (c 0.1, MeOH); UV (MeOH): 238 and 280 nm; 1H-NMR (methanol-d4,
600 MHz) and 13C-NMR data (methanol-d4, 150 MHz), see Table 1; HR-ESI-MS: m/z 607.1996 [M + Na]+

(calcd. for 607.1997, C27H36O14).

3.4. Enzymatic Hydrolysis

Compound 1 (2.0 mg) was mixed with β-glucosidase (2.0 mg) in water (1.0 mL), followed by
shaking in a water bath at 37 ◦C for 12 h. Next, the reaction mixture of 1 was concentrated and subjected
to column chromatography over silica gel (1.0 × 15 cm, 40–63 µm), using CHCl3–MeOH (15:1, 70 mL),
and CHCl3–MeOH–H2O (7:3:0.5, 60 mL)1a (0.8, affording aglycone mg) and a sugar fraction. Sugar
fraction was concentrated to dryness using N2. The resulting residues were dissolved in dry pyridine
(0.1 mL), followed by the addition of L-cysteine methyl ester hydrochloride in pyridine (0.06 M, 0.1 mL)
solution. After heating the reaction mixtures at 60 ◦C for 2 h, 0.1 mL of the trimethylsilylimidazole
solution was added. Heating at 60 ◦C was continued for an additional 1.5 h. The dried products were
partitioned with n-hexane and H2O (0.1 mL each), and the organic layers were analyzed by gas liquid
chromatography on a DB-5 capillary column (0.32 mm × 30 m) with an FID detector; at a column
temperature of 210 ◦C; an injector temperature of 270 ◦C; detector temperature of 300 ◦C, and a He
carrier gas flow rate of 3 mL/min. Under these conditions, peaks were observed at tR (min) = 12.26
and 14.17 for standard sugars L and D-glucose, respectively. Peaks corresponding to the hydrolysate of
1 were detected at tR (min) = 14.18, which was identified as D-glucose by comparing with the retention
time of the authentic samples after treatment with trimethylsilylimidazole in pyridine.

3.5. Cell Culture

BMDCs were grown from wild-type C57BL/6 mice (Orient Bio Inc., Korea) as described in
the previous section. (Koo et al., 2012). All animal procedures were approved and performed
according to the guidelines of the Institutional Animal Care and Use Committee of Jeju National
University (#2010-0028). The mouse tibia and femur were obtained by flushing with Dulbecco’s
modified Eagle medium, affording bone marrow cells. The cells were cultured in RPMI 1640 medium
containing 10% heat-inactivated fetal bovine serum (FBS; Gibco, New York, NY, USA), 50 µM of β-ME,
2 mM of glutamine supplemented with a 3% J558L hybridoma cell culture supernatant, containing



Molecules 2018, 23, 2400 7 of 8

granulocyte/macrophage colony-stimulating factor. The culture medium was replaced with fresh
medium every second day. On culture day 6, non-adherent cells and loosely adherent DC aggregates
were harvested, washed, and resuspended in 5% FBS-supplemented RPMI 1640.

3.6. Cytokine Production Measurements

BMDCs were incubated in 48-well plates in 0.5 mL containing 1 × 105 cells per well, followed
by treatment with isolated compounds 1–6 at the indicated concentrations (1, 2, 5, 10, 25, and 50 µM)
for 1 h before stimulation with 10 ng/mL of LPS from Salmonella minnesota (Alexis, New York, NY,
USA). Supernatants were harvested 18 h after stimulation. Concentrations of murine TNF-α, IL-6, and
IL-12 p40 in the culture supernatants were determined by ELISA (BD PharMingen, San Jose, CA, USA)
according to the manufacturer’s instructions. Data are indicated as means ± standard deviation (SD)
of at least three independent experiments performed in triplicate.

3.7. Statistical Analysis

At least triplicate measurements were independently performed. Data were expressed as the
mean ± SD. Statistical significance was determined by one-way analysis of variance followed by
Dunnett’s multiple comparison tests, p < 0.05.

Supplementary Materials: Supplementary data associated with this article can be found in the online version.
The following are available online. Figure S1: 1H-NMR spectrum of compound 1 in CD3OD (600 MHz); Figure S2:
13C-NMR spectrum of compound 1 in CD3OD (150 MHz); Figure S3: HMQC spectrum of compound 1 in CD3OD;
Figure S4: HMBC spectrum of compound 1 in CD3OD; Figure S5: COSY spectrum of compound 1 in CD3OD;
Figure S6: HR-ESI-MS data of compound 1; Figure S7: HPLC data of compound 1.
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