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Recombinant adeno-associated virus (rAAV)-mediated gene
delivery shows promise to transduce the pancreas, but safety/
efficacy in a neoplastic context is not well established. To iden-
tify an ideal AAV serotype, route, and vector dose and assess
safety, we have investigated the use of three AAV serotypes
(6, 8, and 9) expressing GFP in a self-complementary (sc)
AAV vector under an EF1a promoter (scAAV.GFP) following
systemic or retrograde pancreatic intraductal delivery. Sys-
temic delivery of scAAV9.GFP transduced the pancreas with
high efficiency, but gene expression did not exceed >45% with
the highest dose, 5� 1012 viral genomes (vg). Intraductal deliv-
ery of 1 � 1011 vg scAAV6.GFP transduced acini, ductal cells,
and islet cells with >50%, �48%, and >80% efficiency, respec-
tively, and >80% pancreatic transduction was achieved with
5 � 1011 vg. In a KrasG12D-driven pancreatic cancer mouse
model, intraductal delivery of scAAV6.GFP targeted acini,
epithelial, and stromal cells and exhibited persistent gene
expression 5 months post-delivery. In normal mice, intraductal
delivery induced a transient increase in serum amylase/lipase
that resolved within a day of infusion with no sustained pancre-
atic inflammation or fibrosis. Similarly, in PDAC mice, intra-
ductal delivery did not increase pancreatic intraepithelial
neoplasia progression/fibrosis. Our study demonstrates that
scAAV6 targets the pancreas/neoplasm efficiently and safely
via retrograde pancreatic intraductal delivery.

INTRODUCTION
The pancreas is a primary site of origin for a wide variety of diseases,
including diabetes, pancreatic cancer, and pancreatitis.1 Pancreatic
ductal adenocarcinoma (PDAC) has the worst prognosis among
pancreatic diseases.2,3 In the United States, it is the third leading cause
of cancer deaths and is projected to become the second leading cause of
cancer-related deaths in just over a decade.4Although combination che-
motherapies such as Nab-paclitaxel/gemcitabine and FOLFIRINOX5,6
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modestly improve survival, the overall 5-year survival rate has not
exceeded 8% for the last 30 years.7 Furthermore, PDAC has a well-
characterized mutational profile that plays a key role in disease onset
and progression,8 but the knowledge of these genetic perturbations
has yet to yield effective, targeted therapies. A combination of novel
gene/cell-based therapeutic strategies with conventional chemo-radia-
tion therapies may improve the survival rate of this deadly cancer.

Pre-clinical animal models, particularly genetically engineered mouse
models (GEMMs) of PDAC, have played a pivotal role in understand-
ing the pathobiology of oncogenes/tumor suppressors and in devel-
oping new therapeutic strategies.9–14 Importantly, large-scale deep
sequencing data and The Cancer Genome Atlas (TCGA) are identi-
fying new genetic aberrations associated with PDAC pathogen-
esis.15–17 Developing pre-clinical mouse models for new oncogenic
mutations and/or in combination with well-characterized genetic
mutations associated with PDAC progression is a daunting process
that typically takes several years. Genome editing tools such as
CRISPR/Cas9 in combination with targeted gene delivery could serve
as a potential surrogate to transgenic mouse models to study in vivo
gene function.18–21 However, because of its anatomical location, tar-
geted pancreatic gene delivery without safety concerns, particularly
pancreatitis, is a major challenge for in vivo gene delivery.

A wide range of non-viral and viral gene delivery systems have been
exploited to target the pancreas for therapeutic purposes and func-
tional studies.22 Non-viral liposomes and nanoparticles have been
18 ª 2017 The Authors.
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commonly employed to deliver conjugated drugs/chemotherapy or
therapeutic genes. However, a major limitation with non-viral deliv-
ery methods is low efficacy, and they require repeated delivery to
achieve therapeutic benefit.23,24 Viral vectors have been shown to
be more efficacious to achieve long-term gene expression with limited
off-target effects. Among the viral vectors, integrating lentiviral vec-
tors target the pancreas efficiently (exocrine and endocrine) with no
immune response.25 However, insertional mutagenesis is a major
concern and limits its use for in vivo delivery.26,27 Recombinant
adenoviruses (rAds) or adeno-associated viruses (rAAVs) are pre-
dominately episomal while still achieving efficient in vivo pancreatic
delivery.28,29 Ad vector-mediated pancreatic gene transfer is transient
in nature because of potent host immune responses and vector-medi-
ated cytotoxicity.30–32 On the other hand, non-integrating AAV
vectors are particularly promising in efficiently targeting the whole
pancreas,33–35 have the potential to target specific cell types in the
pancreas36–38 and pancreatic neoplasms,39 and do not elicit humoral
responses or alterations in pancreatic functions.33–35,39,40 AAV
vectors contain a single-stranded DNA (ssDNA) genome with a
packaging capacity of �4.8 kb and are able to mediate long-term
transgene expression because of their lack of pathogenicity and low
immunogenicity.41–43 In addition, ssAAV vectors have been engi-
neered to contain a double-stranded DNA (dsDNA) genome
(hairpin) to circumvent the requirement for second-strand DNA
synthesis, a requisite for transgene expression, and are self-comple-
mentary (sc) AAV viral vectors.44,45 Improved scAAV vectors have
been shown to be more efficacious in in vivo gene delivery.46

Determining an ideal delivery route with limited off-target effects is
another critical component to target the pancreas efficiently. A wide
range of gene delivery routes have been exploited, such as direct
pancreatic injections,30,35,47 intraperitoneal delivery,39,48 systemic
delivery,49,50 in conjunction with clamped hepatic circulation,33

celiac/hepatic artery delivery,51 retrograde ductal delivery via pan-
creaticobiliary ductal infusion,21,28,34,40 or catheterizing the cystic
duct through the gallbladder/common bile duct.25,33 Among several
AAV serotypes tested, AAV8 and AAV9 have been shown to be
well-suited for systemic delivery,52,53 and AAV6 has been shown
to transduce the normal pancreas very efficiently via retrograde
pancreatic ductal delivery.33 Accumulating evidence documents
the use of AAV to deliver therapeutic molecules/genes to neoplasms,
including pancreatic tumors,39,54 and tissues undergoing rapid
degeneration and regeneration.55,56 However, comprehensive study
of the ideal serotype, route, vector dose, and safety profile to target
the pancreas with limited off-target effects and in the context of
cancer is not well established using scAAV vectors. In this study,
we have investigated the use of three scAAV serotypes (AAV6,
AAV8, and AAV9) to target the pancreas via systemic delivery or
retrograde targeted ductal delivery and optimized the vector dose
to maximize pancreatic gene expression. In addition, we evaluated
the effect of ductal delivery-mediated pressure on pancreatitis and
use of AAV to target the pancreas in a PDAC mouse model driven
by KrasG12D, a common Kras mutation found in PDAC. We demon-
strate that retrograde intraductal delivery of 5 � 1011 scAAV6.GFP
Molec
viral genomes (vg)/animal transduces the pancreas with >80% trans-
duction efficiency without causing sustained inflammation or
fibrosis. Furthermore, we have also shown that scAAV6 transduces
acini, epithelial cells, and stromal cells in a PDAC mouse model
with persistent long-term gene expression and does not adversely
affect PDAC progression.

RESULTS
Comparison of scAAV8 and scAAV9 Serotypes to Target the

Pancreas via Systemic Delivery

In both clinical and pre-clinical settings, either direct injection or
systemic delivery to the target tissue is a preferred route of adminis-
tration for therapeutic purposes because of the ease of use. Because
direct injection of the pancreas would be more invasive and may
not achieve uniform gene expression in the entire pancreas, for our
initial studies, we elected systemic delivery. Previously, systemic
delivery of ssAAV serotype 8 and 9 (AAV8 and AAV9) has been
demonstrated tomodestly transduce the pancreas.52,53 scAAV vectors
are known to transduce target tissues with higher efficiency compared
with ssAAV vectors.46 To test the ideal serotype for systemic delivery,
an scAAV viral vector expressing GFP under an EF1a promoter
(scAAV.GFP) (Figure 1A) was packaged using AAV8 and AAV9
serotypes, 1 � 1012 vg/animal were delivered systemically
(n = 3 mice/group) to normal C57BL/6 mice, and animals were
sacrificed 3 weeks post-vector administration. As documented by
fluorescence microscopy for GFP expression, AAV9 showed a
modestly higher pancreatic transduction efficiency (14.6% ± 2.5%
SEM) compared with AAV8 (11.5% ± 0.2% SEM) (Figure 1B) with
some off-targets (Figures S1A and S1B).

To test the ideal dose for achievingmaximum pancreatic transduction
efficiency via systemic delivery of scAAV9.GFP, we compared three
different doses ranging from 1 � 1012–5 � 1012 vg/animal. Although
an increase in vector dose improved the transduction percentages,
none of the tested doses reached >45% pancreatic transduction effi-
ciency (Figures 1C and 1D). This level of gene expression may be
sufficient to develop therapeutic strategies for non-neoplastic tissues,
but in the context of cancer, optimal transduction efficiency is
preferred for therapeutic benefit and functional studies. A further
dose increase via systemic delivery may improve the transduction
efficiency, but producing large quantities of clinical vectors for sys-
temic dosing of adult PDAC patients without causing toxicity with
high dose may be challenging.

Retrograde Intraductal Infusion of scAAV6 Transduces the

Pancreas Uniformly and Efficiently

A wide range of gene delivery methods was previously evaluated to
directly target the pancreas, such as retrograde pancreatic ductal
delivery by direct injection of the distal common bile duct,21,34 cannu-
lation of the common bile duct through the gallbladder/cystic duct,
and intravenous injection coupled with liver blockage.33 Although
each of these methods was shown to be effective to transduce the
whole pancreas or various cell types of the pancreas (acini, islets of
Langerhans, and ductal cells), we elected for retrograde ductal
ular Therapy: Methods & Clinical Development Vol. 8 March 2018 9
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Figure 1. Comparison of scAAV8 and AAV9 to

Target the Pancreas via Systemic Delivery

(A) Schematic of the scAAV.GFP vector. (B) Quantification

of GFP expression in C57BL/6 mice administered

1 � 1012 vg/animal of scAAV8.GFP and scAAV9.GFP via

tail vein injection (n = 3/group), as determined by

percentage GFP+ acinar cells. A representative image of

global pancreatic GFP expression is shown below each

graph column; �6-mm frozen tissue sections. (C) Quan-

tification of GFP expression in C57BL/6 mice adminis-

tered scAAV9.GFP at various doses via tail vein injection

(n = 3/group), as determined by percentage GFP+ acinar

cells. (D) Representative global pancreatic GFP expres-

sion of C57BL/6 mice dosed with 5 � 1012 vg

scAAV9.GFP 3 weeks post-vector administration.

20� magnification. Data represent mean ± SEM;

*p < 0.05.
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delivery via cannulation of the common bile duct to evaluate its safety
profile and use in cancer settings using scAAV vectors.

Initially, to optimize the conditions for cannulation and retrograde
ductal delivery, we dosed a cohort of mice with Evans Blue dye. As
elaborated in Materials and Methods, a customized 10-mm catheter
was advanced through the gallbladder and cystic duct to the common
bile duct (Figure 2A). A microclamp was placed on the bile duct and
sphincter of Oddi to prevent vector leakage into the liver and small
intestine, and 100 mL of Evans Blue was injected over 2–3 min to
target the pancreas. We observed a uniform distribution of Evans
Blue in the entire pancreas (Figure 2A).

Subsequently, to test the efficacy of rAAV to target the pancreas, in
our initial studies, we packaged scAAV.GFP with the AAV6 serotype,
which has been shown to efficiently target the pancreas.33,34 We
administered 1 � 1011 vg/animal of scAAV6.GFP via retrograde
ductal delivery, and animals were sacrificed 3 weeks later for global
pancreatic GFP expression analysis. As documented under direct
fluorescence, scAAV6 transduced the pancreas with uniform GFP
expression (Figure 2B).

Identification of an AAV Serotype to Efficiently Target the

Pancreas via Retrograde Intraductal Infusion

Single-stranded AAV 6, 8, and 9 serotype vectors have been shown to
transduce the pancreas efficiently via retrograde pancreatic intraduc-
tal delivery.57 However, the efficiency of scAAV vectors has not yet
10 Molecular Therapy: Methods & Clinical Development Vol. 8 March 2018
been determined. To address this question, we
compared scAAV.GFP serotypes 6, 8, and 9,
and dosed a cohort of C57BL/6 mice for
each serotype (n = 3–4 mice/group) with
1 � 1011 vg/animal via retrograde pancreatic
ductal delivery. 3 weeks post-vector infusion,
animals were sacrificed, and pancreata were
collected from each animal to compare GFP
transduction efficiency. As documented by
fluorescent microscopy, scAAV6 and scAAV9 transduced acinar cells
(exocrine cells) more efficiently with 53% ± 3.8% SEM and 52% ±

2.7% SEM, respectively (Figure 2C), compared with scAAV8
(21.7% ± 5.9% SEM). Similarly, scAAV6 transduced ductal cells
(48.2% ± 10.25% SEM) more efficiently compared with scAAV8
(12.1% ± 3.2% SEM) and scAAV9 (13.6% ± 3.7% SEM) (Figure 2D).
Furthermore, scAAV6 transduced pancreatic islet cells with relatively
higher efficiency (82.1% ± 3.1% SEM) compared with scAAV8
(16.3% ± 3.1% SEM) and scAAV9 (30.5% ± 5.0% SEM) (Figure 2E).
To achieve maximum pancreatic transduction via intraductal deliv-
ery, we dosed a cohort of mice (n = 3–5 mice/group) with three
escalating doses (1 � 1011, 3 � 1011, and 5 � 1011 vg/animal) using
scAAV6.GFP. Quantification of the transduced exocrine acinar cells
showed an increase in transduction percentages, with maximum
gene expression achieved at 5 � 1011 vg (Figure 2F).

Because scAAV6 and scAAV9 showed comparable transduction effi-
ciency at the lowest dose (1 � 1011 vg/animal), to achieve maximum
pancreatic gene expression in this model, we compared the transduc-
tion efficiency of AAV6 and AAV9 at a dose of 5 � 1011 vg/animal.
AAV6 had statistically significant higher pancreatic GFP expression
(86% ± 2.4% SEM) compared with AAV9 (75% ± 1% SEM) (Figures
3A and 3B). We also examined GFP expression in the livers of these
mice (a common off-target of intraductally dosed mice),40,57 and
AAV9 had relatively higher liver transduction percentages compared
with AAV6 (Figure 3A). To further confirm this observation, we
quantified transduced vector genomes of the pancreas and liver by



(legend on next page)
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Figure 3. scAAV6 Has Increased Specificity in

Transducing the Pancreas Compared with scAAV9

C57BL/6 mice were dosed with scAAV6.GFP or

scAAV9.GFP at 5 � 1011 vg/animal. (A) Pancreatic and

liver GFP+ expression was determined via fluorescence

microscopy. Representative pancreatic and liver images

are shown for each serotype at 20� magnification.

(B) Quantification of pancreatic and liver transduction was

determined by the percentage of GFP+ acinar cells and

hepatocytes, respectively. (C) DNA was isolated from

pancreata and livers of scAAV6.GFP or scAAV9.GFP

retrograde intraductally infused C57BL/6 mice and sub-

jected to qPCR analysis for AAV genome copy numbers.

Data represent mean ± SEM. *p < 0.05. (D) Quantification

of pancreatic GFP expression was determined in male

and female C57BL/6 mice dosed with 5 � 1011 vg of

scAAV6.GFP.
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qPCR. AAV6 had more specificity in targeting the pancreas with
more vector genomes compared to AAV9, whereas AAV9 had rela-
tively very high vector genome copies in the liver compared with
AAV6 (Figure 3C). We further tested this phenomenon in animals
dosed with 5 � 1011 vg/animal of AAV6 and AAV9 and found that
AAV6 has more specificity in transducing the pancreas compared
with AAV9 (Table S1). scAAV6-mediated GFP expression was not
found in any other tissues in the body, including the heart, lung,
and kidney (Figure S1C). Finally, to test the effect of murine gender
on AAV6-mediated pancreatic transduction, we dosed a cohort of
C57BL/6 males and females with 5 � 1011 vg of scAAV6.GFP
(n = 3 mice/group) and found that gender did not have a significant
effect on pancreatic transduction (Figure 3D).
AAV6 Targets and Shows Long-TermGene Expression in Acinar,

Epithelial, and Stromal Cells in PDAC Mice

To test the feasibility of using scAAV6 to target the pancreas of
PDAC mice, we dosed a cohort of a well-characterized PDAC mouse
model, LSL-KrasG12D; Pdx1-Cre (KC) with scAAV6.GFP at 1 month
Figure 2. Optimization of Retrograde Intraductal Infusion via Catheterizing the Common Bile Duct thr

(A) Uniform Evans Blue dye delivery to the entire pancreas via the retrograde intraductal infusion procedure. (B) AC5

via retrograde intraductal infusion, and pancreatic GFP expression was observed via direct fluorescence. (C–E) A c

9 at 1� 1011 vg/animal (n = 3–4/group). Serial sections of frozen (6 mm) pancreatic tissue collected 3 weeks post-

cells), (D) Cytokeratin 19 (CK19, ductal cells), or (E) insulin (INS, islets) or with H&E to quantify cell-specific GFP tran

red; DAPI, blue; 20� magnification; scale bar, 50 mm; representative images are presented. (F) A cohort of C57B

scAAV6.GFP (n = 4–6/group), and the percentage of GFP+ acinar cells was determined. Data represent mean ±
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of age via intraductal delivery. As documented
via fluorescence microscopy and immunohis-
tochemistry for GFP, scAAV6 transduced KC
mice pancreata efficiently 3 weeks post-vector
administration (Figure S2). To test AAV-medi-
ated long-term gene expression, we collected
the pancreata of scAAV6.GFP intraductally
dosed KC mice 5 months post-infusion and
found persistent GFP expression (Figure 4;
Table 1) in acinar, epithelial/cancer, islet, and pancreatic stellate cells
(PSCs). scAAV6 transduced PSCs (28.5% ± 4.7 SEM) and pancreatic
intraepithelial neoplasm (PanIN)/ducts (7.6% ± 2.6% SEM) with
relatively lower efficiency compared with acinar cells (55.0% ±

16.5% SEM) and islets cells (41.5% ± 5.5% SEM) (Figure 4; Table
1). The efficiency of scAAV6 to target neoplastic tissues needs to
be further optimized through understanding the mechanisms associ-
ated with AAV6 transduction in the various pancreatic compart-
ments. Nevertheless, our findings provide evidence that persistent
gene expression can be achieved in proliferating epithelial and
stromal cells in the context of a genetically engineered mouse model
of pancreatic cancer.

Retrograde Intraductal Delivery Is Safe, with No Evidence of

Pancreatitis in Normal Pancreata, and Does Not Enhance

Disease Progression in PDAC Mice

An increase in pancreatic intraductal pressure is known to cause
inflammation/pancreatitis, a known risk factor for PDAC.58–60 To
evaluate the effect of intraductal delivery-mediated pressure on
ough the Gallbladder and Cystic Duct

7BL/6mousewas dosedwith 1� 1011 vg of scAAV6.GFP

ohort of C57BL/6 mice was dosed with scAAV6.GFP, 8, or

vector infusion were stained for (C) amylase (AMY2, acinar

sduction percentages. GFP, green; AMY2, CK19, or INS,

L/6 mice was intraductally infused with different doses of

SEM, *p < 0.05, **p < 0.01, ***p < 0.001.



Figure 4. Retrograde Pancreatic Intraductal Delivery of scAAV6 Targets Acinar, Epithelial, and Stromal Cells and Shows Long-Term Gene Expression in

PDAC Mice

5� 1011vg of scAAV6.GFP was dosed in 1-month-old KCmice, and pancreata were collected 5months post-delivery for the late time point and stained for amylase (AMY2),

CK19, aSMA, or insulin (INS) to identify acinar cells, ductal cells, PSCs, and islet cells, respectively. Serial sections were stained with H&E, and representative images are

presented. GFP, green; AMY2, CK19, aSMA, or INS, red; DAPI, blue; 20� magnification; scale bars, 50 mm; inset, 40�; arrows indicate aSMA+/GFP+ PSCs.
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pancreatic inflammation, we dosed a cohort of C57BL/6 mice with
PBS and monitored serum pancreatitis markers, amylase and
lipase.61–63 We observed a rapid increase in amylase and lipase levels
3 hr post-vector delivery that resolved within a day of intraductal
infusion (Figures 5A and 5B). By histopathological examination,
there was minimal to no pancreatic inflammation seen at various
time points (Figure 5C), except for a detectable peri-pancreatic fat
lymphoid response in a few mice at 2–5 days post-infusion (Fig-
ure 5D). We also stained pancreata with a B cell marker (B220) to
monitor lymphoid responses. Normal mice were negative for B220
at all time points, 1–15 days post-infusion (Figure 5C; Table S2). In
addition, to evaluate the effect of intraductally mediated pressure
on pancreatic fibrosis, we stained pancreata of C57BL/6 mice with tri-
chrome (Figure 5C) and found no significant increase in pancreatic
fibrosis in intraductally dosed mice compared with non-injected con-
trol mice (Figure 5E).

Finally, to evaluate the effect of intraductal delivery-mediated inflam-
mation on PDAC progression, we performed histopathological
analysis in KC mice dosed with PBS or scAAV6.GFP at 5 months
post-infusion. As shown in Figures 6A–6C, there was no significant
difference in the size and number of PanIN grades between intraduc-
tally infused KC mice and controls. Furthermore, intraductally
infused KC mice were negative for B220 staining <1% (Table S3),
and there was no significant increase in pancreatic fibrosis based on
trichrome staining (Figure 6D).
Molecu
DISCUSSION
Previously, numerous non-virally and virally mediated delivery
methods were employed to deliver therapeutic molecules/genes to
the pancreas via direct,30,35 systemic,50,51 intraperitoneal,39 and retro-
grade ductal delivery.21,25,33 Among the various vector systems and
routes of administration, retrograde ductal delivery of AAV demon-
strated efficient pancreatic gene expression.33,34,40 However, the
safety and efficacy of retrograde ductal delivery regarding develop-
ment of pancreatitis, a known risk factor for PDAC, and use of
AAV in cancer settings have not been well established. Here we
compared the use of different AAV serotypes for efficient delivery
to the pancreas via intravenous (AAV8 and AAV9) or retrograde
pancreatic ductal delivery (AAV6, AAV8, and AAV9) using dou-
ble-stranded scAAV vectors expressing GFP under a ubiquitous pro-
moter, EF1a. Our results indicate that retrograde pancreatic ductal
delivery of scAAV6 via catheterizing the common bile duct through
the gallbladder/cystic duct transduces various cell types of the
pancreas, such as acini, ducts, and islets, efficiently compared with
scAAV8 and scAAV9 without inducing pancreatitis. Furthermore,
as a proof of concept, we showed that retrograde pancreatic ductal
delivery of scAAV6 transduces acini, epithelial cells, and stromal
cells in a pre-clinical PDAC mouse model and demonstrated persis-
tent gene expression up to 5 months post-infusion.

Although direct pancreatic targeted delivery is very robust and
achieves maximum gene expression because of the retroperitoneal
lar Therapy: Methods & Clinical Development Vol. 8 March 2018 13
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Table 1. Percent Transduction in Various Pancreatic Compartments of KC

Mice

Pancreatic Compartment % Transduction

Acini (AMY2) 55.0% ± 17% SEM

Epithelial cells (CK19) 7.6% ± 2.6% SEM

PSCs (aSMA) 28.5% ± 4.7% SEM

Islets (INS) 41.5% ± 5.5% SEM
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location of the pancreas, less invasive systemic gene delivery is a
preferred method of choice in clinical settings. In an attempt to iden-
tify a serotype that can be used to efficiently target the pancreas via
systemic delivery, we compared the pancreatic transduction
efficiency of scAAV8 and scAAV9. scAAV9 showed a relatively
higher pancreatic transduction efficiency compared with scAAV8
via systemic gene delivery. However, maximum acinar gene
expression was <60% in spite of the high scAAV9 dose,
5 � 1012 vg/animal. Previous reports indicate that systemic delivery
of ssAAV9 transduces the pancreas robustly at a relatively low
vector dose (1.8 � 1012 vg/animal).53 Perhaps the lower transduction
percentage observed in gene expression could be due to the use of an
endogenous promoter, EF1a, compared with the CMV promoter
used in previous studies.53 We used scAAV9 instead of ssAAV9,
which is known to transduce more efficiently compared with
ssAAV.46 In spite of utilizing scAAV vectors, pancreatic transduction
efficiency via systemic delivery was significantly lower compared with
previous reports that used ssAAV vectors. The low pancreatic trans-
duction percentage via systemic delivery may fulfill the required gene
expression levels for studies involving pancreatic origin diseases such
as diabetes, where restoration of a few functional copies of a gene may
have a functional/therapeutic effect.

Similar to previous reports using ssAAV,33,34,40 our observations
demonstrate that efficient pancreatic transduction can be achieved
via retrograde pancreatic ductal delivery of scAAV, a surgical proced-
ure that parallels clinical endoscopic retrograde cholangiopancreatog-
raphy (ERCP) in humans. Among the three AAV serotypes tested via
pancreatic ductal delivery, AAV6 transduced the whole pancreas and
various pancreatic compartments (acini, ducts, and islets) more effi-
ciently compared with AAV8 and AAV9. The transduction efficiency
of intraductally mediated delivery of AAV6 via the EF1a promoter in
various pancreatic compartments is comparable with previous
reports using a CMV promoter.34 In addition, AAV6 has relatively
minimal liver transduction, a common off-target of intraductally
dosed mice.33,40 AAV9 had comparable pancreatic targeting effi-
ciency to AAV6 but showed higher liver transduction. The increase
in liver transduction with AAV9 may be due to the higher abundance
of receptors and/or co-receptors for AAV9 in hepatocytes and is
consistent with a previous report indicating that AAV9 transduces
the liver more efficiently upon systemic injection compared with
AAV6.53 Because the liver is a common site for metastasis in pancre-
atic cancer, AAV9 may be more appealing for gene delivery at later
disease stages in a metastatic context.
14 Molecular Therapy: Methods & Clinical Development Vol. 8 March 2
Our results also demonstrate that retrograde pancreatic ductal deliv-
ery is safe and does not induce sustained pancreatitis in mice.
Although we observed a transient increase in pancreatitis markers
�1 day post-infusion, amylase and lipase levels resolved within
24 hr. Furthermore, no significant increase in lymphoid proliferation
or fibrosis was observed by histopathological examination in intra-
ductally infused mice. Pancreatitis is a known risk factor for PDAC,
and patients with chronic or acute pancreatitis have a higher risk of
developing cancer and can experience enhanced cancer progression.
To test the safety of intraductally mediated delivery in cancer settings,
we evaluated PanIN progression in a well characterized PDACmouse
model dosed with PBS and scAAV6.GFP and found no effect on
cancer progression.

Finally, to test the potential use of scAAV to target pancreatic
neoplasm via retrograde delivery, we dosed 1-month-old KC
mice, a KrasG12D-driven PDAC mouse model, with scAAV6.GFP
and found efficient transduction in acinar and ductal cells (the
primary cells of origin for PDAC) and PSCs, the major cells respon-
sible for PDAC stromal accumulation.64,65 Furthermore, we
observed long-term GFP expression in amylase+ acini, CK19+ ductal
cells, and aSMA+ stromal cells at 6 months of age, a time point
when KC mice develop more advanced PanIN 2–3 lesions.12 In
addition to our work, a recent report demonstrated the use of
capsid-optimized scAAV8 to target pancreatic neoplasms via intra-
peritoneal administration.39 Although capsid-optimized AAV8 has
limited off-target effects compared with WT AAV8, there was a
robust gene expression in the liver comparable with the pancreas,
which could be improved in combination with the retrograde
pancreatic targeted delivery we employed here to efficiently target
the pancreas.

Our current work and recent reports from others39 indicate the po-
tential applicability of AAVs to deliver therapeutic molecules/genes
to various compartments of PDAC and affect tumor progression.
Similarly, previous reports indicate that ductal delivery of AAVs in
combination with cell-specific promoters serves as an excellent surro-
gate for pancreatic cell lineage studies.36–38 Another potential applica-
tion of this work is using AAVs as a non-integrating delivery vehicle
for genome editing-mediated functional studies. The latest develop-
ments in genome sequencing technologies are rapidly unravelling
new genes underlying various human diseases.66 However, alternative
and more rapid methods than transgenic mouse models are required
for in vivo characterization of new genes to quickly translate basic
research findings into the clinic.20

Genome editing tools such as CRISPR/Cas9 have become useful to
study gene function.67–69 In fact, surrogate use of retrograde pancre-
atic targeted delivery of Cre-recombinase or CRISPR/Cas9 via ad-
eno- and lentiviral vectors has been elegantly demonstrated for the
development of PDAC mouse models.21 The AAV-mediated
pancreatic targeted delivery described here in combination with
cell-specific promoters is amenable to genome editing technologies
to study in vivo gene function and will aid in accelerating basic
018



Figure 5. Retrograde Pancreatic Intraductal Delivery Is Safe and Does Not Induce Chronic Pancreatitis

(A and B) Serum samples collected from intraductally dosed (100 mL PBS) C57BL/6mice were analyzed for (A) amylase and (B) lipase. Data represent mean ±SEM; *p < 0.05;

**p < 0.01; n.s., non-significant. (C) Representative H&E, trichrome, and B220 images; 20� magnification; scale bars, 200 mm. (D) Representative fat lymphoid responses

observed at early time points (1–3 days, H&E). Scale bars, 200 mm, 20� magnification. (E) Mean Sirius Red- or trichrome-positive area (percent) of pancreatic tissue in

retrograde pancreatic intraductally injected C57BL/6 (1–14 days post-infusion) mice (n = 3–4 mice/time point). Data represent mean ± SEM.
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research findings into the clinic. The AAV platform is more attrac-
tive because its safety profile and ideal serotypes are well established
to target various tissues. Although viral vectors may not replace
mouse models, they will serve as great tools to further advance
pre-clinical research by studying gene function alone or in combina-
tion with known genetic causes. Retrograde ductal delivery will be a
useful tool in studying the gene function of non-coding RNAs, such
as microRNAs (miRNAs). Often a single miRNA has several family
members70–72 that are expressed in a tissue- and cell-specific
manner. Developing a tissue/cell-specific mouse model for individ-
ual miRNA family members in combination with underlying dis-
ease-related genetic mutations is a daunting process. Using a similar
method as described here, miRNA families can be inhibited by
developing AAV vectors for miRNA inhibition strategies such as
tough decoys (TuDs), anatagomirs, etc. Proof-of-concept studies
suggest the use of viral vectors to inhibit endogenous miRNAs.73–75

Similarly, delivering synthetic miRNA duplexes for therapeutic
purposes has potential limitations associated with half-life and re-
quires repeated administration.76 Evidence suggests that the use of
AAVs for in vivo delivery of therapeutic miRNA has no associated
toxicity.77,78

In summary, our study demonstrates that scAAV6 targets both
normal and neoplastic pancreata via retrograde ductal delivery.
Our previous work and that of others support the use of AAV
vectors to target a wide variety of neoplasms54,78–83 and target tissues
undergoing multiple cycles of degeneration-regeneration.84–86 How-
Molecu
ever, a number of pre-clinical studies need to be performed before
this method reaches clinical settings because of the fact that AAVs
are non-integrating vectors, and their expression is lost in rapidly
proliferating neoplastic tissue. First, the transduction efficacy in
KC mice needs to be evaluated in animals dosed at early stages of
PanIN-1A/B development at <2 months of age versus more
advanced stages of PanIN-2/3 lesions at �9 months of age.12 Second,
transduction efficiency and long-term gene expression need to be
evaluated in a more aggressive PDAC mouse model that recapitu-
lates the aggressive form of human disease, such as KrasG12D;
p53R172H; Pdx1-Cre (KPC), etc.11 Third, further refinements to the
gene transfer vector will be necessary to allow for cell-specific target-
ing of pancreatic tumors, similar to previous reports.36–38 Fourth,
the underlying mechanisms for efficient scAAV6 pancreatic trans-
duction in neoplastic tissues and AAV receptor profiling in various
pancreatic compartments and cancer cells need to be evaluated,
particularly to further optimize the transduction efficiency of
neoplastic tissue. Fifth, the present study also points out the limita-
tions of AAVs to achieve high levels of long-term gene expression in
rapidly dividing neoplastic tissue. Nevertheless, our results point out
the potential use of AAVs in early stages of cancer development,
when transient therapeutic gene expression may have an effect on
disease progression and could be used to treat patients with pancre-
atitis, PDAC patients prophylactically, or as an adjunct therapy.
Furthermore, targeted AAV-mediated in vivo gene delivery to
various pancreatic compartments will serve as a great tool in pre-
clinical functional studies.
lar Therapy: Methods & Clinical Development Vol. 8 March 2018 15
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Figure 6. Retrograde Pancreatic Intraductal Delivery Has No Effect on PDAC Progression in KC Mice

(A) Pancreata collected from KCmice 5 months post-infusion (100 mL of PBS or 5� 1011 vg scAAV6.GFP) were analyzed and compared against un-injected control mice for

(A) PanIN grades (1A/B, 2, and 3) (n = 3–5 mice/group), and representative images for each PanIN grade, indicated by black arrows. An adjacent PanIN-3 lesion is indicated

by red arrows. 20�magnification; scale bar, 100 mm. (B and C) Average area of PanIN lesions (B) and number of PanIN lesions per mouse (C) (n = 5–7 mice/group). (D) The

trichrome staining-positive percentage area was quantified (n = 3–5 mice/group). Data represent mean ± SEM. The p values were determined by t test.
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MATERIALS AND METHODS
AAV Vector Production

A self-complementary recombinant AAV vector encoding a GFP
under an ubiquitous EF1a promoter has been described previously.78

Recombinant AAV vectors were produced by a standard triple trans-
fection calcium phosphate precipitation method using HEK293 cells
(ATCC, CRL-1573). The production plasmids were scAAV.GFP,
rep2-cap6/8/9 modified AAV helper plasmid encoding cap serotype
6, 8, or 9, and an adenovirus type 5 helper plasmid (pAdhelper) ex-
pressing adenovirus E2A, E4, ORF6, and VA I/II RNA genes. Purifi-
cation was accomplished from clarified HEK293 cell lysates by
sequential iodixanol gradient purification and ion exchange column
chromatography using a linear NaCl salt gradient for particle elution.
vg titers were determined by qPCR using EF1a primer and probe set
as described previously.78,87

AAV Transduction Efficiency

Fresh tissues were harvested and fixed in 4% paraformaldehyde,
followed by overnight incubation in 30% sucrose, and then embedded
in OCT. Tissue blocks were cut into 6-mm sections using a Leica cryo-
stat. Transduction efficiency was determined by counting the number
of GFP+ and negative acinar cells, ductal cells, PSCs, or islets using
four random 20� GFP and DAPI overlay images. GFP transgene
16 Molecular Therapy: Methods & Clinical Development Vol. 8 March 2
qPCR was performed on total DNA isolated from pancreatic and liver
tissues. Total tissue DNA was isolated using the Gentra Puregene kit
(QIAGEN) according to the manufacturer’s instructions. 60 ng of
DNA (10,000 cell equivalents) was used as a PCR template in tripli-
cate reactions, and vg numbers were extrapolated from a linearized
plasmid standard. Vector genome/cell calculations assumed 6 pg of
total DNA per cell using GFP primer and probe set as described
previously.78

Histology and Microscopy

Whole-Organ Pancreatic GFP Expression

At necropsy, the abdominal cavity was opened, and the whole
pancreas was imaged for GFP expression using a Leica dissection
fluorescence microscope.

H&E and Masson’s Trichrome/Sirius Red Staining

After formalin fixation, specimens were dehydrated through a graded
series of ethanols, cleared in two changes of xylenes, and infiltrated
through 3 changes of melted paraffin. The specimens were then
embedded in melted paraffin and allowed to harden. Thin sections
(�5 mm) were cut using a rotary microtome equipped with disposable
steel knives. Sections were flattened in a heated water bath, floated
ontomicroscope slides, and dried. Serial sections were de-paraffinized
018
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and stained with H&E, Masson’s trichrome stain (Sigma-Aldrich,
HT15-1KT), and Picro-Sirius Red to detect pancreatic fibrosis
following standard histological procedures or according to the man-
ufacturer’s instructions. Similarly, serial frozen sections (�5–7 mm)
were stained with H&E.

B220 Immunohistochemistry

Antigen retrieval was performed at high pH in the Dako Link Pre-
treatment module. After treating with a protein block (Dako) for
10 min, slides were incubated with CD45 primary antibody (clone
B220, BD-550286, 1:50) for 60 min, followed by biotinylated anti-
rat immunoglobulin G (IgG) (Jackson ImmunoResearch) for
30 min, and finally with LSAB2-SA-HRP (Dako) for 30 min. The
chromogen was developed with 3,30-diaminobenzidine (DAB;
Dako). All steps were separated by Tris buffer (Dako) washes and
performed at room temperature. All histological stains were per-
formed by histology cores at Indiana University (IU) School of
Medicine.

PanIN Analysis in KC Mice

Using a standard H&E slide, small clusters of abnormal ducts were
looked at as a first target. Using the Johns Hopkins School of Medi-
cine classification system,88 clusters of abnormal ducts were classified
into PanIN grades 0 (normal), 1-A, 1-B, 2, and 3. Each duct in the
cluster was scored, and PanIN size analysis was done using the Aperio
Imagescope system.

Fibrosis and Immune Response Quantification

Slides were analyzed using Aperio Imagescope and the Food and
Drug Administration (FDA)-approved algorithm with few a modifi-
cations. The entire pancreatic tissue was analyzed, with the exclusion
of vessels, lymph nodes, and peri-pancreatic fat.

Trichrome

An FDA-approved algorithm was altered to detect blue against a red
background. Hue value was altered from 0.1 (brown) to 0.62 (blue),
hue width was altered from 0.5 to 0.4, and color saturation was altered
from 0.04 to 0.005.

Sirius Red

Hue value was altered from 0.1 (brown) to 0.85 (red), and hue width
was not changed. Color saturation was altered from 0.04 to 0.6. The
intensity threshold was lowered from 175 to 100.

B220

A pathologist reviewed the slides and determined the quantity of cells
that were B220-positive.

Immunostaining

Serial frozen sections (5–7 mm) were rehydrated in PBS, permeabi-
lized with 0.5% Triton X solution, blocked with 10% BSA, and probed
with either aSMA antibody (Novus Biologicals, NB500-631, 1:200),
CK19 antibody (Abcam, ab52625, 1:200), insulin antibody (Cell
Signaling Technology, 4590S, 1:200), or a-Amylase (Cell Signaling
Molecu
Technology, 3796S, 1:200) overnight at 4�C. Epitope retrieval was
performed using 1� sodium citrate buffer, followed by Triton X
permeabilization. Subsequently, slides were stained with the second-
ary antibody Alexa Fluor 594 goat anti-rabbit IgG (Life Technologies,
A11037, 1:1,000). Slides were mounted with Vectashield antifade
mounting medium with DAPI (Vector Laboratories, H-1200), and
coverslips were sealed.

GFP Immunohistochemistry

Paraffin-embedded tissues were sectioned (5 mm), and epitope
retrieval was performed using heat-induced epitope retrieval
(HIER) with 10 mM citrate buffer. Endogenous peroxidase activity
was blocked using 3% H2O2 in methanol and subsequently blocked
with 0.5% BSA. Primary antibody, mouse anti-GFP (Cell Signaling
Technology, 2955, 1:200), was applied and incubated overnight at
4�C. Secondary anti-mouse IgG was utilized from the Vectastain
mouse IgG ABC kit (Vector Labs, PK-6102) and developed with
peroxidase substrate solution consisting of 0.05% DAB and 0.01%
H2O2 in PBS according to the manufacturer’s protocol. Sections
were counterstained in Gill no. 1 hematoxylin (Leica Biosystems,
3801520), cleared, and mounted with a resin-based mounting
medium.

Retrograde Pancreatic Ductal Delivery

Mice were sedated using isoflurane with 1.5%–3% oxygen, the
abdominal cavity was opened, and a customized catheter was in-
serted into the cystic duct through a small opening at the bottom
of the gallbladder. The catheter was then advanced into the com-
mon bile duct and secured in place with a microclamp around
the bile duct and catheter to prevent vector reflux into the liver.
A microclamp was placed on the sphincter of Oddi to avoid leakage
of the vector into the duodenum, and 100 mL of AAV vector con-
taining the GFP transgene or PBS (vehicle control) was slowly
infused into the pancreatic duct through the catheter. Successful
administration was documented by uniform swelling of the gland.
The microclamps used to temporarily block liver infusion and duo-
denum leakage were released 5 min after the infusion was
completed. The catheter was then removed, the inner abdominal
cavity was closed with absorbable sutures, and the outer skin was
closed with wound clips. Post-surgery, mice were placed on a heat-
ing pad to maintain body temperature during recovery. After the
animals recovered, they were returned to their cages. Mice were
treated subcutaneously with carprofen (5–10 mg/kg) to prevent
post-operative discomfort.

Mice

KC mice were generated as described previously.12 Conditional LSL-
KrasG12D mice were crossed with Pdx1-Cre animals to generate the
KC mice. All animal housing, use, and surgical procedures were car-
ried out in accordance with the regulatory guidelines set by Guide for
the Care and Use of Laboratory Animals of the NIH. All animal
protocols were reviewed and approved by the IU and The Research
Institute at Nationwide Children’s Hospital Animal Care and Use
Committees.
lar Therapy: Methods & Clinical Development Vol. 8 March 2018 17
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Statistical Analysis

Student’s t test and ANOVA with Tukey post hoc analysis were used
for statistical analysis. Data are presented as mean, and error bars
represent SEM.
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