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The context in which learning occurs is sufficient to reconsolidate stored memories and neuronal reactivation may be crucial to
memory consolidation during sleep. The mechanisms of context-dependent and sleep-dependent memory (re)consolidation are
unknown but involve the hippocampus. We simulated memory (re)consolidation using a connectionist model of the hippocampus
that explicitly accounted for its dorsoventral organization and for CA1 proximodistal processing. Replicating human and rodent
(re)consolidation studies yielded the following results. (1) Semantic overlap between memory items and extraneous learning
was necessary to explain experimental data and depended crucially on the recurrent networks of dorsal but not ventral CA3.
(2) Stimulus-free, sleep-induced internal reactivations of memory patterns produced heterogeneous recruitment of memory
items and protected memories from subsequent interference. These simulations further suggested that the decrease in memory
resilience when subjects were not allowed to sleep following learning was primarily due to extraneous learning. (3) Partial
exposure to the learning context during simulated sleep (i.e., targeted memory reactivation) uniformly increased memory item
reactivation and enhanced subsequent recall. Altogether, these results show that the dorsoventral and proximodistal organization
of the hippocampus may be important components of the neural mechanisms for context-based and sleep-based memory
(re)consolidations.

1. Introduction

The memory formation process can be decomposed into
acquisition, consolidation, and reconsolidation phases in
which information is gained, stored, and modified, respec-
tively [1, 2]. Consolidation involves the integration of a new
memory into an existing memory network; however, that
memory can become labile and may be updated through one
of several episodes or reconsolidations [3–5]. During this
process, a memory item is linked with both newly formed
and previously stored memory items [6, 7]. Though the
mechanisms of reconsolidation are still unclear, behavioral
studies in humans and rats have shown that passive reex-
posure to a past context is sufficient to reactivate and alter
a learned set of objects that was learned in that context
[8–11].

Memories can be reconsolidated through associational
reactivation, and memories have also been shown to replay
during sleep [12–14]. Memory replay has been proposed as
the major neural mechanism supporting the consolidation
of recently formed memories [15–17]. Experimental studies
suggest an active consolidation process during sleep both
behaviorally and at the cellular level [18–20]. Interrupting
sleep-inducedmemory replay is detrimental to consolidation
and to subsequent recall performance [21]. Conversely, tar-
getedmemory reactivations during sleep by reintroducing an
odor or sound associated with a behavioral task during sleep
have been shown to enhance memory reactivation leading
to increased behavioral performance the next day [22–24].
These studies have provided behavioral data that can be
used to validate mechanistic models of the (re)consolidation
process.
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The “trisynaptic circuit” of the hippocampal formation
is believed to be central to memory processing [25, 26].
Input to the hippocampus originates from superficial layers
of the entorhinal cortices [27, 28]. Contextual information
from the parietal “where” pathway enters the hippocampus
through the medial entorhinal cortex (MEC), which, with
the discovery of spatially selective grid and boundary cells,
has been shown to depend on an animal’s surroundings
[29, 30]. Complementary to this contextual input, the lateral
entorhinal cortex (LEC) has been shown to provide the
hippocampus with nonspatial, object-related sensory “what”
information from temporal lobe neurons [31, 32]. Inputs from
the entorhinal cortex into the hippocampus are orthogo-
nalized throughout the relatively large dentate gyrus (DG)
before reaching area CA3 [33, 34]. Neurons within CA3 have
highly recurrent connectivity and have been suggested to
autocomplete partial signals and form memory associations
before being sent to CA1 [35–37]. It has been further sug-
gested that subregions of CA1more proximal toCA3 compare
this associational information with unprocessed contextual
information from the MEC, whereas distal regions integrate
CA3 output with direct object information from the LEC
[38, 39].Thus, memories and the context in which they occur
are processed in an interacting fashion in the trisynaptic
circuit of the DG, CA3, and CA1.

Experimental studies have also suggested a functional
distinction along the dorsoventral axis of the hippocampus
[40–42].The dorsal hippocampus is necessary for spatial nav-
igation because it receives more inputs from sensory cortices
than the ventral hippocampus. Output projections from
the dorsal and ventral hippocampus also differ, but the
organization of the trisynaptic network is conserved along
the dorsoventral axis. Functionally, place cells fire over a
larger area of space ventrally, suggesting that the environment
is encoded at different scales along the dorsoventral axis.
Additionally, patterns formed in the dorsal CA3 have been
shown to be biased towards object representations, while
ventral CA3 place cells encode contexts [43, 44]. Computa-
tional models have been used to understand place field size
variability and functional roles in spatial navigation along the
dorsoventral axis [45–47], but no computationalmodels have
been used to investigate the dynamics of the memory forma-
tion process stemming from this functional segregation.

The dorsoventral organization of the hippocampus and
that of the proximodistal axis of the CA1 region have been
largely absent in past computational models constructed
from hippocampal anatomy [48], making it difficult for
these models to separate the complex dynamics of object
and context associations. Current models simulating con-
textual based object reconsolidation tackle this problem
via conceptual modeling of memory dynamics, using the
temporal evolution of context or set associations [49, 50]. In
addition, simulations of sleep processes have focused mainly
onmemory reactivation [51, 52] and not consolidation during
sleep.

Previous work has shown that the spatial context had an
important influence on the manner with which two mem-
ories learned at different times are stored and recalled [8–
11]. These experimental results, and many others, make the

Table 1: Network parameters. The number of cells is for single
sublayers in dorsal/ventral stream and proximal/distal stream. Inhi-
bition is implemented using a 𝑘-Winner Take All algorithm (𝑘-
WTA) where 𝑘 is indicated for each layer. Layer compositions are
identical for dorsal and ventral divisions as well as proximal and
distal.

Layer Number of cells 𝑘-WTA
DG 800 12
CA3 256 6
CA1 400 10

strong, yet reasonable, assumption that the memory items
learned are independent from each other. Experimentally
testing the amount of semantic overlap between items is
notoriously difficult and subject to a large amount of indi-
vidual differences. However, computational models allow for
a systematic study of the influence of this overlap on recall.
Furthermore, all experimental paradigms to date involve an
offline period during which subjects undergo a “break” or
“wait” period during which their activity is uncontrolled
and in many cases not monitored. Subjects undoubtedly
acquire new memories during that time, some of which
may significantly interfere with the items that were part
of the experiments. The influence of this new learning on
the recall performance of the subject is unknown. Again,
computational models allow for a systematic study of this
influence by controlling the amount of interfering learning.

In this study, we use a connectionist model highlighting
the functional difference between the dorsal and ventral levels
of the hippocampus and the difference between proximal and
distal CA1 computations to study the associational and spon-
taneous memory reactivations leading to (re)consolidation.

2. Materials and Methods

2.1. Model Architecture. The network structure we present
here was created from anatomical and functional studies,
compared to other architectures, and selected for its ability to
form object-context associations that are robust in the face of
5% parameter variations [46]. The model was implemented
using the Emergent simulator [53]. The network included
interacting dorsal and ventral divisions at all hippocam-
pal subsections and we further segregated the CA1 along
the proximodistal axis, as suggested by experimental work
(Figure 1(a)) [39]. Inputs were represented by patterns of
activation in the lateral entorhinal cortex (LEC, layer size
16 × 16) and medial entorhinal cortex (MEC, layer size
16 × 16, Figure 1(b)). These layers sent outputs to dorsal and
ventral dentate gyrus (DG, 2 layers, dorsal and ventral, size
20 × 40 each), CA3 (2 layers size 16 × 16 each), and CA1
(4 layers size 20 × 20 each, Table 1). Projections from the
DG reached CA3 which in turn sent outputs to CA1. The
two CA3 layers included recurrent all-to-all connections to
themselves (Table 2). Each CA1 was further partitioned into
distal (layer size 20 × 20) and proximal (layer size 20 ×
20) subdivisions that received monosynaptic inputs from
the LEC and MEC, respectively. The choice of the layer
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Table 2: Model connectivity. Synaptic weights have arbitrary units.

In\out synaptic
strengths

Dorsal
DG

Ventral
DG

Dorsal
CA3

Ventral
CA3

Distal dorsal
CA1

Proxim. dorsal
CA1

Distal ventral
CA1

Proxim. ventral
CA1

Lateral EC 1 0.3 0.1 0.1 1 0.1
Medial EC 0.45 1 0.15 0.1 0.15 1
Dorsal DG 1
Ventral DG 1
Dorsal CA3 0.1 1 1
Ventral CA3 0.1 1 1

Lateral EC Medial EC

Dentate gyrus Dentate gyrus

CA3

Proximal CA1Distal CA1

CA3

Proximal CA1Distal CA1

Context guess

Context-based
object guess

Object-based
context guessObject guess

(contextual information)(object information)

Dorsal Ventral

(a)

Se
t1

Se
t2

Memory items/objects Contexts

· · ·

· · ·

(b)

Figure 1:Model architecture. (a) Inputs to themodel are segregated into twopathwayswith item information entering the dorsal hippocampus
and context information entering the ventral hippocampus. Both information types interact and influence each other to yield 4 outputs.
Element color denotes level of activity with yellow > red > grey. (b) Different inputs are represented by different subsets of active EC neurons
(black squares). For simplicity contextual inputs are represented as nonoverlapping blocks.
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sizes was motivated by computational considerations, to
yield enough combinatorial choices for the various manip-
ulations used (e.g., noise variation, semantic overlap) in
the simulations. Of the eight intrahippocampal layers, the
dorsal-distal and proximal-ventral CA1 layers were the only
ones not receiving monosynaptic inputs from the opposite
streams (the dorsal-distal layer does not have monosynaptic
input from the ventral stream and the proximal-ventral
layer does not have monosynaptic input from the dorsal
stream). Since, by design, the dorsal stream was dominated
by object information and the ventral stream was dominated
by contextual information, we labeled the output of dorsal-
distal and proximal-ventral layers “object guess” and “context
guess,” respectively. The dorsal-proximal CA1 layer receives
monosynaptic inputs from the context-dominated stream
(ventral, MEC inputs) and should therefore carry context
information. However, because it is polysynaptically biased
by object information (dorsal/LEC stream), this contextual
information is in part based on the nature of the object.
We therefore labeled the output of the dorsal-proximal CA1
“object-based, context guess.” Similarly, the output of the
ventral-distal CA1 is labeled “context-based object guess.”
Because there is only one context and multiple objects, the
size of the object-based context guess layer is identical to that
of the context representation, while that of the context-based
object guess is scaled to the size of the possible number of
objects present per context.

2.2. Simulations. Prior to simulations, all synaptic connec-
tion weights were initialized at random. The model was
trained in discrete epochs, whereby at the end of an epoch
synaptic weights between nodes were updated in an error
driven manner using the generalized recirculation algorithm
(GeneRec) of the Leabra model system [53–55]. Object and
contextual information used for training were represented by
binary 16 × 16 matrices introduced to the network through
the LEC and MEC, respectively (Figure 1(b)).

In some simulations, we manipulated the similarity
between different objects, to capture the likely subjective
semantic links between the stimuli presented experimentally
in humans (e.g., doll and fire-truck are both “toys” [8]) or in
rats (e.g., set items are rewarded by the same reward delivery
system [10]). Object overlap was implemented by limiting
the region of potential activity within the 16 × 16 matrix
(Figure 2(a), top: no limits, only a subset of the neurons of
the lower half of the matrix was used, bottom: only the lower
third). Overlap in a network layer requires that individual
representations share active elements. Constraining the active
elements to a subset of the neurons forces the entries
to recapitulate this patterning. Since input layers into the
network include neither lateral inhibition nor connections
that rely on spatial arrangement, performing simulations
in this manner is identical to distributing this overlapped
subset of active elements throughout the input matrices. The

overlap between two objects was assessed post hoc using
(1), measuring the similarity between two object represen-
tations. During testing, an object was considered recalled
correctly if the object guess output had a similarity of 0.5
or more with any of the input objects presented during that
test.

In the reactivation experiments, noise inputs used to reac-
tivate previously learned object memories were constructed
by pseudo-randomly activating 1–9% of the object neurons,
ensuring that the total number of active neurons was kept
constant (Figure 2(b)).

similarity = |𝐴 ⋅ 𝐵|√|𝐴| |𝐵| . (1)

2.3. Reconsolidation Simulations. We first investigated con-
text-based object memory reconsolidation as was done in
human and rodent studies [8–11]. In these experiments,
subjects learned a first set of items in spatial context A (Set1:
20 objects for humans, 3 out of 8 feeder locations for rats,
Figure 3(a)). After a fixed amount of time (break), a second
set of items were presented for learning (Set2), in either the
same context (reminder group) or a different context (no-
reminder group). A separate group was not presented with
any new learning (interference control). After a fixed amount
of time, subjects were then asked to recall the first set of
items (Set1 recall). In the following, we focus on the human
version of the task. Tomodel learning, we trained the network
on a set of 20 objects (pseudo-randomly presented) in a
given context until the error between the network input and
output was below 15%within 4 epochs of training. To account
for the fact that human subjects likely perform additional,
possibly interfering, learning in the break periods, the model
also performed additional item learning after Set1 or Set2
learning in unique contexts different from A and B made up
of randomly distributed elements around the entire context
matrix. The objects learned (Set3.x) were different from that
of Set1 and Set2 butwere allowed to have an average overlap of
2.5 +/− 0.5% with sets 1 and 2. As in the human experiments,
a control simulation was also performed where the model
skipped Set2 learning and was only trained on a new set
of objects in a unique context (interference). Object guess
outputs that were similar to an object from Set1 were labeled
as correctly recalled, while objects similar to objects fromSet2
were labeled as intrusions from Set2. We fit the performance
of themodel to experimental data by varying both the average
overlap between the 40 objects comprising Set1 and Set2 as
well as the combined sizes of intermediate Set3.x learning
sets. To compare human and rodent experimental (exp)
results with our simulations (sim) weminimized the distance
function shown in (2) which simultaneously accounts for the
interference (int), reminder (rem), and no-reminder (norem)
conditions.

dist (𝑖) = √(intexp (𝑖) − intsim (𝑖))2 + (remexp (𝑖) − remsim (𝑖))2 + (noremexp (𝑖) − noremsim (𝑖))2. (2)
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Figure 2: Input variations in object representations. (a) Semantic overlap between 2 objects (left and right columns) consists in activating
identical neurons in the two objects layers (black squares with red squares overlapping). Examples are given for 2, 5, and 10% overlaps. (b)
Representation noise is introduced by randomly activating neurons each time an item is presented. For clarity, objects are shown as linear
arrays of 256 neurons. 90 objects are presented for each noise level.

To determine the extent to which the recurrent network
of CA3 is involved, we selectively reduced the number of cells
composing the dorsal, ventral, or entire CA3 by 25%, 50%,
75%, and 100% of its nominal size. These adjusted models
were then used to simulate the context-based object memory
reconsolidation paradigm.

2.4. Sleep Simulations. To investigate the role of sleep in
memory consolidation,we trained themodel using a different
experimental paradigm [18, 56]. After learning a set of 20
objects, memory reactivation was induced by testing the
model on 810 object-context pairs composed of 1–9% random
activity (90 object-context pairs per noise level, Figure 2(b)).
The network was tested with noise inputs, but with synaptic

plasticity disabled, to allowmemory reactivations to be spon-
taneously recalled based on the synaptic weights established
during previous object-context pair learning. To simulate
reactivation during sleep, objects for which output layers
were at least 60% similar to one of the previously learned
objects were “fed back” into the network for 3 epochs. These
3 reverberations simulated the process of reactivation.

Using this protocol of sleep consolidation, we simulated
human behavioral results [18] as follows: the network was
trained on a set of 20 objects (here, an object is akin to
the “word pair” used in the experiments) to 15% error
within a given context A. These simulations were followed
by either a sleep period (reactivation, as described above)
or a “wake” period, implemented as in the reconsolidation
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Figure 3: Simulation paradigms. (a) Paradigm models on Hupbach et al. 2007. Intervening learning (Set3.x) was added in the break periods
to account for the cognitive activity of subjects during the 48 h experimental gaps they were given. (b) Paradigm modeled on Ellenbogen et
al. 2006.

experiments by additional learning. In these simulations, the
model was required to learn 3 sets of interfering memory
items (20 items per set) in 3 different contexts. In the human
experiments, memory resilience was challenged by having
subjects learn a new set of objects upon waking, prior to
recalling the original object set. To investigate the effect of
the sleep and wake simulations on memory resilience from
subsequent interference, we performed additional training
on a new set of 20 objects (Word pairs 2) before recalling
the original set (Figure 3(b)). Finally, to simulate sleep as
a passive mechanism that merely protected memories from
interfering sensory inputs, we also performed simulations
without sleep or wake epochs.

2.5. Memory Enhancement during Sleep. We conducted an
additional set of simulations to test the possibility that
targeted memory reactivations during sleep may enhance
memory consolidation [22–24, 57, 58]. In the experimental
study, subjects exposed to the same odor during learning
and subsequent sleep showed increased performance in
memory recall upon waking. In our simulations, the odor
was represented by a partial contextual element, as has been
previously suggested [59]. To model the human studies,
the network was trained on a set of 20 objects in a given

context before performing the sleep simulation with a partial
representation of the context in half of the inputs to theMEC.
A partial context was represented by allowing every active
entry of the original context to have a pseudo-random value
of 0-1 in addition to the 1–9% noise fed into the network
during memory replay.

2.6. Statistical Analyses. Two-sampled unpaired 𝑡-tests were
used to test significance on data simulated using the model.
Significance is indicated as ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 <
0.001.
3. Results

Our simulations allow for an investigation of semantic object
overlap as well as the effect of interfering learning onmemory
stability. Figure 4 shows the result of systematically varying
the amount of semantic overlap among objects (𝑦-axis)
and the amount of additional, unrelated, learning during
the wait/break periods (𝑥-axis) on the amount of correctly
recalled Set1 items (top) and the amount of context-induced
intrusions of Set2 items into Set1 recall (bottom). In both
context conditions, the large majority of Set1 items were
correctly recalled (Figures 4(a) and 4(b), top), although
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Figure 4: Effect of varying semantic overlap and amount of intermediate learning (i.e., Set3) on reconsolidation performance. (a) Same
context condition. (b) Different contexts condition.

learning Set1 in a different context than Set2 (different con-
texts condition, Figure 4(b) top) yielded better performance.
Note that the parameter variations did not yield a strictly
smooth change in recall (or intrusion, see below) mea-
sures due to the discrete sampling of nonlinear interactions
between overlap (continuous variable) and number of inter-
mediate items (discrete variable). Overall, semantic overlap
was found to be inversely proportional to Set1 recall, and
increasing the number of intermediate items learned had little
to no effect on Set1 recall. In the condition where both sets
were learned in the same context (same context condition,
Figure 4(a), bottom), the overall amount of intrusions was
significantly larger than in the different contexts condition
(Figure 4(b), bottom), as observed experimentally. In general,
larger semantic overlap of objects yielded less correct recall
and larger amounts of intrusions. In contrast, increasing the
number of additional items learned while keeping overlap
constant did not significantly change the amount of correct
recall or intrusions (Figure 4(a) bottom).

Experimental studies in humans (Figure 5(a)) and rats
(Figure 5(b)) have shown that the overall amount of correctly
recalled Set1 items was similar in both context conditions
and during the interference control (blue bars, Figures 5(a)
and 5(b)). However, a clear difference was found in the
amount of intrusions produced during recall. Intrusions were
significantly more numerous if Set2 items were learned in
the same context as Set1 items (red bars, Figure 5(a)). Using
the simulations shown in Figure 4, only varying the amount
of semantic overlap and intervening learning, we found that
best fits to the experimental data were slightly different for

humans and rats. We found that 10% object overlap and 60
objects of intervening learning (Set3) were the best fit to
human data (Figure 5(c)) and that 12% object overlap and
70 intervening learned objects were the best fit to rodent
experimental data (Figure 5(d)).

Because the heavily recurrent networks of CA3 have long
been known to perform functions such as pattern completion
[36, 37], we studied their influence on memory reconsoli-
dation by artificially inactivating a random subset of CA3
neurons. Taking the parameters derived to match the rodent
data above, without inactivation (100% volume), the amount
of correctly recalled Set1 items and the amount of intrusions
match the behavioral data for the same and different contexts
(Figures 6(a) and 6(b), 100% volume data points). Increasing
the levels of inactivation of the entire structure yielded a
progressive decrease in the amount of correctly recalled items
(blue squares, decreasing volume), with little (same context,
Figure 6(a)) or no effect (different contexts, Figure 6(b)) on
intrusions. By design (Figure 1), CA3 receives a mixture of
object and context information. Next we studied the effect
of selectively inactivating the dorsal or ventral CA3. Selective
dorsal CA3 inactivation had a biphasic effect on Set1 correct
recall. Irrespective of context, behavioral performance wors-
ened until about 50% inactivation at which point there was
about the same amount of correct recall as intrusions (Figures
6(c) and 6(d), arrows). A further reduction in CA3 neurons
restored correct Set1 recall performance somewhat, leaving
intrusions low. Interestingly, inactivation of the ventral CA3
had comparatively little effect on Set1 correct recall, with a
small dip in performance at 50% inactivation in the different
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Figure 5: Fit to experimental data. (a) Behavioral data obtained using human subjects (adapted from Hupbach et al. 2007). (b) Behavioral
data obtained using rats (adapted from Jones et al. 2012). (c) Best model fit to human data. (d) Best model fit to rat data. (c and d)The amount
of representation (semantic) overlap and the number of intervening items learned during the wait/break periods were independently varied.
Error bars are standard error of the mean. ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001.

context condition only (Figure 6(f) arrow). Set2 intrusions
remained similar to that in the intact (100% condition) at all
other levels of inactivation. Interestingly, a total inactivation
of CA3 or of just dorsal CA3 yielded perfect recall and
negligible intrusions in both context conditions, suggesting
that the complex recurrent networks of dorsal CA3 may
be responsible for the effect observed (lower correct Set1
performance and context-dependent intrusions).

Sleep is characterized by spontaneously occurring epi-
sodes of reactivation during which the neural representations
of recently acquiredmemory items replay.These replay events
are thought to be supported by various oscillatory mecha-
nisms such as hippocampal sharp waves and corticothalamic
spindles, though the exact manner in which these oscillations
constrain replay is not yet clear. It is also not clear which
memory items are replayed and for what reason. As a first

step, we used the model to induce memory reactivation
during sleep. We trained the network on a set of 20 objects
with 10% average overlap. To simulate memory replay during
sleep, we first disabled synaptic plasticity and let the network
spontaneously respond to varying amount of object and
context noise applied to its input layers. Because the synaptic
connections were established by the learning of Set1, we
hypothesized that the network would respond nonrandomly
in a manner that would reflect Set1 items. Differing amounts
of input noise produced object guesses that presented various
amounts of similarity with Set1 objects (Figure 7(a)). The
graph shows that small (1-2%) or large (7–9%) amounts of
input noise were not able to produce outputs with similarity
greater than 60% with Set1 (blue and green bars only).
Intermediate noise levels (3–6%) were able to increase the
similarity, with up to 90% similarity with Set1 for 3% noise
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Figure 6: Role of CA3 in memory consolidation. Simulations were performed separately for the same (a, c, e) and different (b, d, f) context
conditions. (a and b) show the effect of inactivating random subset of CA3 neurons (both dorsal and ventral) on the fraction of Set1 items
correctly recalled and on the fraction of Set2 intrusions. Panels (c and d) show the effect of selective dorsal inactivation and panels (e and f)
show the effect of selective ventral inactivation. Error bars are standard deviation.
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Figure 7: Simulations of replay during sleep. (a) Response of the network to noisy inputs of different levels. After each presentation, the object
guess output layer is correlated with each of the Set1 items, and the highest correlation above 50% is tallied. (b) Same data as in (a), plotted
per Set1 memory item.

levels. 3% noise was optimal and was commensurate with
the amount of activity the LEC received during object
learning (6/256 = 2.4%); however, these stochastic inputs
were unrelated to the objects replayed (object/noise similarity
= 3.45 ± 0.11%). Averaging across those bins revealed that
Set1 items were replayed unevenly with some items not being
replayed at all (e.g., items 11 and 13, Figure 7(b)) and others
being replayed much more than the others (e.g., items 8 and
9, Figure 7(b)). Testing the hypothesis that this uneven object
replay was related to initial object learning, we noted that
the similarity of objects recalled after training was linearly
correlated to their similarity during replay (𝑟 = 0.5678).
Control simulations without Set1 learning showed no object
guess outputs with a similarity greater than 50% (not shown).

To investigate the role of memory reactivation on mem-
ory consolidation during sleep, we developed a protocol to
train the network on reactivated items. We first trained the
network on 20 Set1 items with 10% average overlap. After
training, synaptic plasticity was disabled (frozen synaptic
weights, as above) and 810 inputs comprised of 1–9% ran-
dom noise (90 object-context pairs per percentage of noise,
Figure 2(b)) were input to the network. If an object guess had
a similarity of at least 60% with a Set1 item, then the object
guess and context guess were fed back into the LEC andMEC,
respectively, and synaptic plasticity was allowed to occur for
3 epochs (i.e., reactivation-driven synaptic modifications). In
order to test our proposed sleep-induced memory consolida-
tion protocol, we simulated the experiments of Ellenbogen
et al. (2006) in which sleep was found to protect newly
acquiredmemory from interference due to postsleep learning
(Figure 3(b)). Figure 8 (left) summarizes the experimental

results. Without additional Set2 learning, subjects could
recall Set1 items very well, whether they were allowed to
sleep or not before recall (orange hashed bars, Figure 8),
with a small marginally significant enhancement of recall if
sleep was allowed (0.5 < 𝑝 < 0.1, not shown). If Set2
learning was introduced, however, a significant difference
was found. Subjects that were not allowed to sleep recalled
less than 40% of the Set1 items, whereas subjects that were
allowed to sleep could recall almost 80% of the Set1 objects
(green hashed bars, Figure 8). Using the model as it was
tuned in the previous simulations, and without any new
modifications, we could closely reproduce the experimental
data under the assumption that subjects kept awake were
in fact undergoing additional learning (“model awake with
awake learning,” Figure 8). Removing this additional learn-
ing reduced the goodness of fit and produced larger no-set2
learning performance and lower Set2 learning performance
than experimentally observed (Figure 8, right most bars).
This result suggests that the model architecture and replay
protocol are sufficient to capture the performance features of
this experiment and that part of the reason why performance
of the awake group is so lowmay rely on the fact that subjects
undergo uncontrolled/unmonitored learning that interferes
with the storage of the experimental memory items. In the
experiments and the model, sleep did not increase recall but
increased resilience to additional interference learning (Set2).

To further test our model on data and protocols that it
was not originally designed for, we conducted simulations
aimed at assessing the role of the contextual inputs in targeted
memory reactivations during sleep. Experimental work has
shown that when items are learned in a specific odor context,
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Figure 9: Context-biases replay. (a) Experimental data of Rasch et al. 2007 show that presentation of the odor with which Set1 items were
learned produced a better recall if the odor was presented during SWS but not during REM sleep (hashed bars). Our model correctly
reproduced the SWS data (grey and black bars). (b) All Set1 items were significantly replayed during simulated sleep. Error bars are standard
error of the mean. ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001.

presenting that odor during SWS (but not REM) would
improve the performance of the subjects during subsequent
recall [22] (Figure 9(a) hashed bars). To simulate these
experiments, we included a partial representation of the
context associated with the learned Set1 within our sleep
simulations. Without the addition of partial context inputs
to the object-context noise pairs (analogous to the vehicle

condition) during replay, ourmodel produced a correct recall
fraction comparable to that of REM sleep or SWS-vehicle
condition in humans (Figure 9, rightmost grey bar). A partial
presentation of the Set1 contextual inputs (akin to the odor
in humans) added to the object-context noise pairs yielded
a marked improvement of the recall (Figure 9, black bars).
A careful analysis of the manner in which each Set1 item
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Figure 10:Odor duringwake does not bias recall. Experimental data
of Rasch et al. (2007) show that presentation of the odor with which
Set1 items were learned did not produce differences in recall if the
odor was presented during wake (hashed bars). Ourmodel correctly
reproduced this data (grey and black bars). Error bars are standard
error of the mean.

reactivates during sleep in this partial context condition
reveals that all memory items are replayed in a similar fashion
(Figure 9(b), comparedwith Figure 7(b)).This result suggests
that using context information to bias replay has a strong and
uniform effect on the memory engrams associated with that
context. Duringwake, this odor was not found to affect object
recall, andwe also foundno difference in recall if the odorwas
presented to the model prior to Set1 recall (Figure 10).

4. Discussion

In this study, we explored the mechanisms of memory
(re)consolidation using a connectionist model of the hip-
pocampus that included segregation into dorsal and ventral
pathways and along the proximal-distal CA1 axis, combining
object and context information from the LEC and MEC,
respectively.Memories are believed to exist as representations
of synaptic weights throughout distributed networks using
a combinatorial code [60, 61], so that any neuron can
contribute to multiple memory item representations. While
this property allows a network to store numerous memories,
it requires that memories are not entirely separate from one
another and must coexist. Computationally, most models
implement memories with no representation overlap and
while experimenters strive to select stimuli with little to no
similarity, they can only hope to approach the zero overlap
state used in most models. In this study, we have shown
that memory overlap must be included in context-based
object reconsolidation to account for the experimental data.

Using the model, we quantified the semantic overlap that
likely exists in human and rodent studies [9, 10]. Addi-
tionally, we investigated the impact of intermediate learning
outside of experimentation, a parameter that is difficult for
experimenters to control in behavioral studies. Intermediate
learning reduced the number of object guesses from Set1
by providing retroactive interference in a way that created
competition duringmemory recall [62].While this parameter
is less crucial to support the behavioral findings, it was a vari-
able that had to be included to properly model this paradigm.
Researchers undertaking experimental projects with humans
or animals are required to study subjects with preexisting
network structures encoding past experiences. Our simula-
tions modeled this constraint by initializing synaptic connec-
tion strengths at random. It is the most prudent approach,
short of accounting for true subject existing knowledge. The
most striking benefit from this implementation is the need
for fewer numbers of simulations to recreate experimental
findings. Altogether these findings support and partly explain
recent evidence that prior knowledge may be crucial for
memory reactivation and consolidation [63].

We found that the dorsal CA3 was necessary for context-
based object reconsolidation. This result is compatible with
previous studies and theories establishing CA3 as the major
attractor network of the hippocampus [36, 37]. Note the
crucial placement of CA3 in our model, suggesting that
CA3 is a “hub” in the hippocampus, mediating object-
context associations. Interestingly, when the dorsal CA3 was
completely removed, the model recalled Set1 perfectly and
without intrusions from Set2. This can be attributed to the
fact that, without the dorsal CA3, the network is constrained
to learn objects based on the direct LEC to distodorsal CA1
pathway that is isolated from contextual impingement, thus
preventing the formation of object-context associations. This
suggests that the hippocampus can compose objectmemories
without CA3, but it cannot form object-context associations
without it. This may be the “price to pay” for possessing a
pattern-completion recurrent network.This relates to animal
lesion studies, where rodents without a CA3 were aware of
rewards but were impaired at localizing the rewards using
contextual clues [64]. Another example of this is found
in toddlers; prior to development of CA3 complex object-
context associations were unable to be formed using direct
LEC to CA1 pathways [65].

Next we evaluated the potential of the trained model
to replay memories by introducing noise into the system.
Plasticity in network structure enables an animal to adapt
to an environment and react appropriately to subsequent
identical or similar stimuli. When a network is exposed to
a stochastic input, the noise percolates through the learned
internal structure to bias the outputs. This is a property of
recurrent autoassociative networks that was proposed as a
mechanism for memory reactivation [14]. This phenomenon
was nicely presented in a human imaging study where learn-
ing was shown to sculpt spontaneous brain activity during
resting state [66]. Using noise to reactivate memory traces
has been done computationally before [51, 52]; however,
utilizing these outputs to reprocess memories was absent
from these studies. A more recent computational study also



Computational Intelligence and Neuroscience 13

showed noise induced memory reprocessing [67], but this
model assumed that memories were not strengthened during
sleep and instead synaptic connections were downregulated
to restore synaptic homeostasis.

Over a decade ago, it was posited that sleep actively
downregulates synaptic connections in order to maintain
network homeostasis [68, 69]. Since its conception, the sleep
and synaptic homeostasis hypothesis has been shown exper-
imentally in the drosophila [70], but more data are lacking.
Synaptic homeostasis is an important aspect of normal net-
work functioning; however, it has recently been shown that
homeostatic synaptic mechanisms may occur independently
of the sleep-wake cycle [71]. Further, a number of studies
demonstrated that offline memory processing during sleep
is likely additive [18–20] rather than multiplicative as the
homeostasis theory implies. Monitoring dendritic branches
using two-photon microscopy in live rodents indicated that
sleep improved dendritic structural resilience following sleep
when memory reactivations occurred [20]. Additionally, it
has been shown in humans that sleep protects memories
against subsequent interference [18], and we recreated this
result by strengtheningmemories as opposed to using synap-
tic downregulation. To reconcile these opposing views, a
computational study used a spiking Boltzmann network to
model sleep by reducing input frequency and plasticitymech-
anisms and predicted that synaptic homeostasis may occur
during REM sleep [72].This aligns with a recent rodent study
demonstrating that animals with disrupted REM sleep show
reduced synaptic downscaling compared to control animals
[73]. While our simulations did not include downscaling
operations per se, ourmodel doesmodify synaptic weights up
and downduring learning, and relearning replayedmemories
may have indirectly acted as a homeostatic mechanism.

Simulating sleep as reactivated memories that are then
actively processed matches behavioral data. Compatible with
human studies, our findings demonstrated that sleep does
not enhance retrieval performance compared to waking in
the absence of an interference challenge. We found that
memory resilience to interference is significantly improved
by learning reactivated memories when compared to not
performing additional processing. These results suggest that
replayedmemories are actively used to process newly formed
memories. Molecularly, the genes involved in awake learning
are upregulated in sleep [74, 75], further suggesting that
additive learning processes occur during sleep. However, this
mechanismwould suggest that any reexposedmemorywould
be consolidated whether it was correctly stored or not, and
indeed it has been shown experimentally that even false
memories are enhanced during sleep [76].

Our model suggests that a feedback loop in the hip-
pocampusmay be necessary duringmemory replay. Memory
reactivation during sleep in the hippocampus relies on sharp
wave ripples, which are thought to originate in CA3 [51, 77]
and propagate to the entorhinal cortex [78]. Interestingly
memory reactivation in the DG has been shown to follow
activity in CA3 [79], which suggests that the signal would
have to propagate within the hippocampus in a loop fashion.
Experiments have detailed a deep to superficial pathway in
the entorhinal cortex that could loop hippocampal output

back into the trisynaptic network [80, 81]. Deinhibition of this
pathway leads to epileptic seizures [82–84], which suggests
that only weak signals circulate naturally. The loop architec-
ture of the hippocampus may allow reactivated memories to
be relearned.

The simulations also showed that a separate state of
“recall” may not exist in and of itself but that, in fact, recall is
always accompanied by learning and subsequent reconsolida-
tion of the items being recalled [3–5]. From this perspective,
it is possible that the neural processes underlying the sponta-
neous firing that occurs during sleep-inducedmemory replay
and the processes that occur during awake memory retrieval
could both be the same and could rely on NMDA receptor-
mediated spike timing dependent synaptic plasticity [85] (for
a computational investigation of memory reconsolidation
aiming to understand the role of NMDA and calcium influx
in synaptic efficacy, see [86]).

In addition to active learning during sleep, the model
shows that partial contextual input can increase reactivation
of objects associated with that context. It has been demon-
strated that odor exposure during learning in subjects who
were awake increased activity in the anterior human hip-
pocampus (ventral in rodents), and odor exposure during
slow wave sleep increased activity in both the anterior and
posterior hippocampus (ventral and dorsal in rodents, resp.)
[22]. This suggests that odor is encoded contextually in the
awake state [59], and that its presence in sleep can stimulate
the dorsal circuit to reactivate associated objects. Our results
reproduce and explain these findings by biasing the stochastic
contextual input to the MEC with a partial context which
overall increased object reactivation. This suggests that the
consolidation of these additional memory reactivations leads
to increased recall following sleep. The odor present during
sleep allowed weaker storedmemories, tied to the association
with the odor present duringwake, to become reactivated and
strengthened.

As in experimental studies, ourmodel showed differences
between the effect of reactivation onmemory stability inwake
or sleep. Wake reactivation degraded memory following a
contextual reminder during additional learning, while reac-
tivation during sleep led to enhancement via relearning
replayed memories. The difference between these results is
rooted in their condition. Wake reactivation occurs in the
presence of additional unrelated learning which, in our
simulations, is modeled by the learning of a novel object set.
In contrast, ourmodel is kept fromadditional external stimuli
during sleep-induced memory reactivation. From this, it
appears that memory replay by itself aids in consolidation;
however, if reactivation occurs in the presence of additional
learning, it leads to a weakening of previous memories and
reconsolidation. Additionally, our results demonstrate that
odor-driven targeted memory reactivations during sleep can
increase consolidation processes, and in wake, this appeared
to have no additive effect without the introduction of another
learning set. A recent study in humans examined this dichot-
omy using object value and auditory reminders instead of
odor [24].

Learning in our model can be understood as forming
attractors inmemory space constrained by network structure,
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and our findings suggest that CA3 is necessary to form a
subset of these attractors. By varying the stimulus overlap
of context-dependent memories, our results suggest how
reactivated attractors interact with newly formed attractors.
Additionally, our results also detail how intermediate learn-
ing degrades an attractor in memory space. In contrast to
degradation, consolidation during sleep appears to stabilize
attractors in memory space. Noise propagated through the
network can then reactivate memories encoded in synaptic
connections, and the context associations defining an attrac-
tor can be utilized to bias memory replay during wake and
sleep.
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