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Abstract: The efforts to personalize treatment for patients with breast cancer have led to a focus
on the deeper characterization of genotypic and phenotypic heterogeneity among breast cancers.
Traditional pathology utilizes microscopy to profile the morphologic features and organizational
architecture of tumor tissue for predicting the course of disease, and is the first-line set of guiding
tools for customizing treatment decision-making. Currently, clinicians use this information, combined
with the disease stage, to predict patient prognosis to some extent. However, tumoral heterogeneity
stubbornly persists among patient subgroups delineated by these clinicopathologic characteristics, as
currently used methodologies in diagnostic pathology lack the capability to discern deeper genotypic
and subtler phenotypic differences among individual patients. Recent advancements in molecular
pathology, however, are poised to change this by joining forces with multiple-omics technologies
(genomics, transcriptomics, epigenomics, proteomics, and metabolomics) that provide a wealth of
data about the precise molecular complement of each patient’s tumor. In addition, these technologies
inform the drivers of disease aggressiveness, the determinants of therapeutic response, and new
treatment targets in the individual patient. The tumor architecture information can be integrated with
the knowledge of the detailed mutational, transcriptional, and proteomic phenotypes of cancer cells
within individual tumors to derive a new level of biologic insight that enables powerful, data-driven
patient stratification and customization of treatment for each patient, at each stage of the disease. This
review summarizes the prognostic and predictive insights provided by commercially available gene
expression-based tests and other multivariate or clinical -omics-based prognostic/predictive models
currently under development, and proposes a more inclusive multiplatform approach to tackling the
challenging heterogeneity of breast cancer to individualize its management. “The future is already
here—it’s just not very evenly distributed.”-William Ford Gibson

Keywords: breast cancer; prognosis; prediction; liquid biopsy; immunohistochemistry; digital
pathology; multigene assays

1. Introduction

It has become increasingly apparent over the past few decades that in order to grasp and effectively
combat the heterogeneity that typifies breast cancer (BC), high-granularity tumor biomarker profiling
is not merely desirable, but in fact, indispensable. Increasingly affordable novel technologies and
deep-content analytics are enabling molecular profiling of tumors throughout the course of patient
care. Specifically, the interrogation of the tumor tissue as well as its genome, transcriptome, epigenome,
proteome, metabolome, and other aspects of both the tumor and the host characterize the burgeoning
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field of -omics research, which uses bioinformatics and computational technology to explore the
mechanistic properties of molecules. The discovery and validation of definitive genetic and phenotypic
biomarkers have emerged as the cornerstone of predictive and prognostic testing that can be used
to parse patients with BC into subgroups and risk categories for analysis, thus helping to identify
targeted treatments for each patient’s unique molecular profile by “matching the pill to the ill.”

Molecular diagnostic tests, however, are only as good as the biomarkers they identify or measure.
Like any diagnostic test, a tumor biomarker test, whether genetic or phenotypic, must have analytic
and clinical validity as well as clinical utility. In the current BC landscape, several commercial genomic
assays available to oncologists are transforming patient treatment. The assays to determine the status
of the biomarkers such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2) have long been used for the primary identification of tumors for
targeted therapy and prognostication. Other assays serve as companion diagnostic (CDx) tests due to
their ability to predict tumor response to specific cancer therapy drugs. These CDx assays are useful
for existing as well as new drugs, increasing the clinical value of therapy by selecting for potential
responders or excluding patients at risk for severe adverse effects. For pharmaceutical companies, CDx
assays facilitate regulatory approval of new therapeutic regimens, enhance the probability of success
in clinical trials, and in combination with adaptive trial designs, make trials more cost-effective.

Clinical decision making in BC chiefly relies on determining clinicopathologic features of a
tumor as well as on protein- and gene-based biomarker panels. The review, ordered in a broadly
chronological fashion, begins with examining these mainstays and developments therein. This is
followed by a discussion on more recent technologies for data gleaning (liquid biopsies, tumor
microenvironment-based markers and metabolomics) that are receiving tremendous attention in
consonance with the significant information they generate. The advances in digital pathology,
particularly the use of convoluted and deep neural networks, adding invaluable tools to the
repertoire, have also been covered in the review. Figure 1 captures a comprehensive picture of
the current and emergent approaches in clinical management of BC patients, which are discussed in
the subsequent sections.
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Figure 1. An overview of the various data generating hubs that allows integration of clinico-pathological
and multi-omics data. This wealth of information can be meaningfully mined to identify new molecular
subtypes based on complex multi-omics generated bio-signatures that can facilitate tailored therapies
throughout the disease course in breast cancer patients.



Cancers 2019, 11, 1325 3 of 23

2. Integrating Clinico-Pathological Variables to Frame Breast Cancer Prognostic Models

The clinico-pathological parameters, typically the tumor size, grade, nodal status, age of patient
are crucial variables that when combined meaningfully can effectively determine the prognosis in
BC patients. In primary breast cancer, the Nottingham prognostic index (NPI) calculated using the
tumor size, lymph-node stage, and pathological grade is considered the standard [1]. The Nottingham
prognostic index plus (NPI+) is an improvement on this and is based on an initial determination of
the biological class of the tumor combined with clinicopathologic prognostic variables. The NPI+ can
predict the risk of metastases and is touted to provide enhanced risk stratification as well as predict
long-term survival [2]. Kwon et al. have proposed a modified Nottingham prognostic index (MNPI)
for stratifying patients with stage I to III of triple negative BC (TNBC), a notoriously aggressive type of
BC. The index incorporates information on the tumor size, LN status, and tumor grade according to a
modified Scarff-Bloom-Richardson (MSBR) grade, and is potentially an important prognostic tool for
patients with TNBC [3]. Given the highly heterogeneous nature of this BC subtype, and the existence of
distinct molecular subtypes within TNBC, it is possible that prognostic models assigning appropriate
weights to subtype-specific variables may need to be developed for the individual molecular subtypes
of TNBC. The Van Nuys prognostic index (VNPI) is a scoring system (based on the tumor size, margin
width, grade, comedonecrosis and age) that assists the treatment decision making in ductal carcinoma
in situ patients (DCIS) [4]. In addition to these, several web-based prognostic tools derived from
clinicopathologic variables, e.g., Adjuvant! Online, PREDICT, Clinical Treatment Score post–5 years
(CTS5) are freely available and may provide adjunctive information in clinical decision making [5,6].
The clinicopathologic variables in harness with the gene and protein-based biomarkers can provide far
superior and robust prognostication.

3. Immunohistochemistry-Based Prognostic Assays for Breast Cancer

The most widely used protein markers (ER, PR, HER2, Ki67) are well-described predictive markers
for hormonal and anti-HER2 therapy. Immunohistochemistry (IHC) is a commonly used technique
to measure the expression of these biomarkers. Additionally, in situ hybridization (e.g., fluorescence
in situ hybridization and chromogenic in situ hybridization) is performed to quantify HER2 gene
amplification which often results in HER2 overexpression. The IHC4 index is a non-commercial
algorithm that assesses these four protein markers, generating a disease recurrence score. A lack of
validation studies and poor reproducibility has marred this prognostic tool’s prospects in general
clinical application [7,8]. The IHC4 and CTS (a clinical treatment score based on clinico-pathological
parameters), have been combined by Cuzick et al., to yield an overall prognostic score that may prove
useful in predicting risk of recurrence in ER positive BC patients [7,9].

The urokinase plasminogen activator (uPA) and its inhibitor protein plasminogen activator
inhibitor-1 (PAI-1) have shown to be promising independent prognostic markers and have attained the
highest level of evidence (LOE-1a) in terms of clinical utility in BC [10,11]. In several European countries,
the value of uPA and PAI-1 as biomarkers for a predictive outcome in LN-negative BC has been validated
in both retrospective and prospective studies [11,12]. The high levels of these markers (measured by an
American Society of Clinical Oncology [ASCO] recommended enzyme-linked immunosorbent assay
[ELISA] based assay, using extracts of fresh or freshly frozen breast tumor tissue) correlate strongly
with an adverse prognosis and increased benefits from adjuvant chemotherapy [10,13,14]. Compared
with Oncotype Dx and MammaPrint, uPA/PAI-1 assessment is more convenient, cost-effective and
may even provide greater prognostic and predictive value for BC outcomes [15–17]. Unfortunately, no
validated assay for uPA/PAI-1 is currently available.

The multiplexed immunohistochemistry (mIHC) is a recent tool that allows for simultaneous
probing of several protein biomarkers on the same biological sample. The staining of samples can be
chromogenic or fluorescent. This is crucial when the tumor sample size is limiting. The mIHC can
provide valuable insights about the co-expression and spatial distribution of many targets without
compromising tissue integrity [18]. Despite the fact that IHC-based assays do not require tissue
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microdissection and are more clinically facile, pre-analytic tissue processing can significantly impact
test results [19]. Other studies have uncovered additional concerns with IHC-based assays, such
as inconsistent performance of IHC reagents, antibodies and widespread variation in slide scoring,
which can significantly influence test results and call into question the IHC platform’s consistency and
reliability [19].

4. Gene-Centered Biomarkers: Translating Molecular Complexity of Tumors by Gene
Expression-Based Assays

Many currently available prognostic and predictive tests in breast oncology utilize genomic and
gene expression-based biomarkers, a trend that was spurred by the continually decreasing costs of
whole-genome, gene panel, and RNA sequencing, and that requires only small sample volumes for
processing. Multigene assays often interrogate one or more pathways that drive tumor biology, and
predict the natural progression of the disease (with or without therapeutic intervention) based on its
inherent aggressiveness. Thus, these tests help distinguish patients who need more aggressive treatments
from those for whom the current standard-of-care may suffice, reducing healthcare expenditures. Several
multigene tests (MGTs) are now routinely used in the clinical setting, and have been described in previous
literature [20–71]. The focus of this review is on more recent and emerging technologies, and these MGTs
are summarized in Table 1 and their gene/protein signatures illustrated in Figure 2.
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Table 1. Prognostic/predictive multigene tests routinely used in the clinical settings for breast cancer. FFPE/FPET [Formalin-fixed Paraffin-embedded].

MGT/IHC Assay and
Provider

Tissue Type,
Technique, Facility Endorsement Clinical Indications Prognostic/Predictive Value Risk Groups/Stratification and Implications Trials and

Validation Studies
Comparative
Advantage

Oncotype DX
Genomic Health

[20–41]

FFPE,
qRT-PCR,

Centralized

NCCN,
ASCO,

St Gallen

ER+,
0–3 node+,
Stage I–II
invasive,

Treatment decision with
tamoxifen or aromatase

inhibitors

Prognostic for distant recurrence
(5–10 years).

Predictive for chemo and radiation
sensitive in high recurrence score

group.
Oncotype DX DCIS is predictive of

DCIS recurrence.
Benefits women who have had

surgery for DCIS, whether
additional adjuvant treatment
(radiotherapy or tamoxifen) is

needed based on their risk score.

Continuous Recurrence Score (formerly triple risk
stratification; intermediate score discarded on basis

of TAILORx trial results): Low risk (RS 0–25; no
additional benefit with chemotherapy), High Risk

(RS 26–100; substantial chemotherapy benefit).
Risk score for ipsilateral recurrence (invasive or
DCIS); Low risk < 39, Intermediate risk 39–54,

High risk ≥ 55.

TRANS ATAC,
NASBP B 14/B 20,

RxPONDER,
TAILORx,

ECOG-ACRIN,
Ontario study

Considered the gold
standard in MGTs with

high amplification
efficiency, precision and

linearity.

MammaPrint
Agendia
[42–52]

Fresh/frozen
or FFPE,

Microarray,
Centralized

FDA,
St Gallen

Stage I–II,
0–3 node+,

ER+

Prognostic for short-term distant
recurrence (0–5 years).

Predictive for chemoresponse in
high risk group, ER+ cancer.
Strong predictor of 10-year

metastasis-free survival.

Binary risk classification (MP low risk or MP high
risk) for recurrence without adjuvant chemotherapy.

Combined with BluePrint (a molecular subtyping
test) stratifies patients into four subgroups:

Luminal-type/MP Low Risk; Luminal-type/MP
High Risk; HER2-type and Basal-type.

TRANSBIG,
MINDACT

In contrast to Oncotype
DX, test was devised
from patients with no
hormonal (tamoxifen)
or chemo-therapy and

thus its robust
prognostic ability.

The test is endorsed for
the clinical high risk

group (OncotypeDx is
endorsed for clinical

low risk group).

Prosigna (PAM 50)
NanoString

Technologies
[53–61]

FFPE, nCounter,
Decentralized; kit

compatible with other
pathology labs

FDA,
NCCN,
ASCO,

St Gallen

Stage I–III,
HR+

Prognostic for 10 year recurrence in
stage I–III.

Prognostic and predictive for
adjuvant tamoxifen.

Continuous Rate of Recurrence (ROR) score: Low
risk (0–40), Intermediate risk (41–60), High risk

(>61).

Trans ATAC,
ABCSG8,

RxPONDER

Its Prediction Analysis
of Microarrays (PAM) is

an almost fully
automated platform

technology.
RNA is extracted and
hybridized (by hand)
from FFPE tissue in

much smaller quantity
than other MGTs.

EndoPredict
Myriad Genetics

[62–65]

FFPE,
RT-PCR,

Decentralized

ASCO,
St Gallen,NCCN

Early stage,
ER+,Her2−

Prognostic for early (0–5 years) and
late (5–15 years) distant recurrence.

Predictive for benefit from both
adjuvant chemotherapy as well as

which patients can safely forgo
extended endocrine therapy

beyond five years.

The multi-gene EP test (Figure 2) and clinical factors
(nodal status and tumor size) are combined into an

EPClin score stratifying patients into low- or
high-risk groups: EP low-risk (<5), EP high-risk

(≥5); EPclin low-risk (<3.3), EPclin high-risk (≥3.3).

GEICAM 9906,
ABCSG6 and

ABCSG8

EndoPredict is a
second-generation,

multigene
prognostic test.

Breast Cancer Index
Biotheranostics

[66–70]

FPET,
Real time RT-PCR,

Centralized

ASCO,
St Gallen

Stage I–III,
HR+,

Her2−,
Node–

Predictive for adjuvant
aromatase inhibitor.

Predictive for hormonal therapy for
5 additional years for total of

10 years.
Prognostic for late distant

recurrence (post-five years).

0–10 year recurrence risk score is continuous: Low
risk BCI < 5.0825, Intermediate risk BCI ≥ 5.0825 to

6.5025 and High risk BCI > 6.5025.
Bimodal score informs late distant recurrence: Low

risk BCI <5.0825, and High risk BCI ≥ 5.0825.
BCI index for predictive utility (to direct adjuvant
aromatase inhibitor treatment) is determined with

the H/I ratio (Figure 2) and is just a High and
Low qualification.

Trans
ATAC,Stockholm

trial

Outperformed both
OncotypeDx and

Mammostrat in its
5–10 years’

prognostic ability.
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The performance of six multigene signatures were compared in women with early ER-positive BC
who underwent endocrine therapy for 5 years. These multigene signatures included the oncotype Dx
recurrence score, the PAM50-based Prosigna risk of recurrence (ROR), the breast cancer index (BCI),
EndoPredict (EPclin), the clinical treatment score, and the 4-marker immunohistochemical score. The
BCI, EPclin, and the PAM50-based Prosigna ROR showed significant prognostic value for predicting the
overall and late distant recurrence in patients with lymph node (LN)-negative disease. The results from
this telling study have proven useful for guiding oncologists and patients in choosing the most suitable
testing to inform decisions regarding chemotherapy and/or extended endocrine therapy. These tests,
however, have provided limited prognostic information for patients with node-positive disease [72].

Identifying specific mutations such as in the BRCA1, BRCA2, PALB2 and PTEN genes by sequencing,
can be especially useful in selecting BC patients who may be eligible for poly ADP-ribose polymerase
(PARP) inhibitors [73]. Comprehensive BRCA testing is offered by multiple companies to identify
BC patients with germline BRCA mutations. The myCHoice HRD (Myriad Genetics) CDx is a
next-generation sequencing homologous recombination deficiency (HRD) assay that assesses both
BRCA1 and BRCA2 as well as tumoral genomic instability. The assay uses DNA extracted from FFPE
or frozen tumor tissue and labels a tumor as homologous recombination-deficient or -nondeficient,
thus identifying patients who are most likely to benefit from treatment with PARP inhibitors. The
BRACAnalysis CDx (Myriad Genetics) is an FDA-approved test for BRCA1 and BRCA2 for selecting
patients suitable for olaparib treatment [74,75].

4.1. Number of Risk Categories: An Ongoing Debate

Of all aforementioned BC assays, only two prognostic assays, namely, Oncotype DX and Prosigna,
originally assigned triple-category risk groups. However, Oncotype DX has recently discarded the
intermediate recurrence score group. The intermediate recurrence score (RS) (initially 18 ≤ RS ≤ 30;
re-classified as 11–25) in Oncotype DX had arguably been a grey area, leaving many women uncertain
and concerned about their best treatment options (to omit chemotherapy or not) [29,33]. To address
this issue, in 2006, began the TAILORx Study, one of the largest, randomized adjuvant BC treatment
trials (in early stage, hormone-receptor–positive, HER2 negative, axillary node-negative BC patients).
The intermediate group (RS 11–25) were randomly assigned to receive hormone therapy alone or
hormone therapy plus adjuvant chemotherapy [27]. The results published in 2018 showed that women
in this group did not additionally benefit from chemotherapy [76]. In the wake of these results, the
intermediate RS group was eliminated and Oncotype DX now provides a binary stratification, that is, a
low (0–25) or high (26–100) score with the former deriving no benefit from chemotherapy and the latter
benefitting substantially from it. Thus, there is only one true triple-category risk group assay which
is commercially available for breast cancer prognostication. The intermediate score category of the
FDA-endorsed Prosigna PAM50-based MGT follows the ROR scoring system based on the LN spread
of BC. If the LN is not affected (node-negative), the intermediate range is 41 ≤ ROR ≤ 60. However, if
one or more (typically 1–3) LNs are affected, only a bimodal score is assigned. Several studies have
shown that the node-negative ROR score is a better risk discriminator than the Oncotype DX RS [58].

4.2. Gene-Based Prognostic Assays: The Major Takeaways

In summary, MGTs offer several advantages. MGTs assign appropriate weightage to each variable
and optimally extract information provided by multiple continuous variables. The information they
provide is robust due to redundancy by capturing similar information from multiple genes. Even
though these tests require specialized expertise to perform and interpret the results, overall, they
prove to be cost-effective. Gene expression signatures are, however, unable to capture the prognostic
information contributed by variables, such as tumor size or LN spread status, that lack an equivalent
gene expression imprint. Therefore, there is a need to elevate the use of these clinicopathologic
prognostic variables from merely providing complementary information to their incorporation as
integral components of multivariate clinicogenomic risk models. These models could be built for
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distinct subtypes of BC because the prognostic value of each variable varies with the subtype and
its unique tumor biology. In this regard, recently, Sparano et al., determined whether clinical risk
assessment i.e., integrating tumor size and histologic grade, added prognostic and/or predictive
information to the Oncotype DX RS. This was accomplished via secondary analyses of the TAILORx
trial, and the results concluded that combining these information (from binary clinical-risk stratification
and RS), provided prognostic information but was not predictive of chemotherapy benefit [77].

As the currently available MGTs assess the different pathways/gene sets, there remains the issue
of discordance in risk assignment for a given patient sample by different MGTs. This ambiguity
poses a challenge and increases the practical difficulty for clinicians in recommending a particular
test, necessitating a head-on-head comparison of the MGTs. Although the prognostic gene signatures
are being applied in clinical research trials, their ability to predict response to specific therapeutic
agents is not as clear-cut. They are yet to graduate into routine clinical use for BC management.
Furthermore, the gene expression-based tests focus only on the transcriptome, and it is becoming
increasingly clear that gene expression and proteomic landscapes can diverge substantially. The MGTs
entail gene expression profiling of a single sample from a tumor and evaluating a limited number of
genes. They are thus, unable to adequately capture several aspects of the tumor’s phenotype, including
intratumoral heterogeneity, the tumor microenvironment, and profiles of tumor infiltrating cells, all of
which profoundly influence tumor biology and patient prognosis. Moreover, the current gene panels do
not inform about driver mutations and epigenetic events involved in disease progression. Intratumoral
heterogeneity has implications in therapy resistance as well as cancer progression and recurrence.
Early detection of resistant subclones and tracking evolution of tumors requires longitudinal tissue
sampling which is not practically feasible. This information can be gleaned by liquid biopsies instead,
that offer a relatively non-invasive real-time monitoring method for serial sampling of circulating
tumor DNA and tumor cells.

In many ways, nucleic acid markers seem ideal for elucidating disease pathology, and a fair number
of molecular diagnostic tests exploit genetic variations (such as single-nucleotide polymorphisms
[SNPs], mutations, and copy number variations [CNVs] that exist between abnormal and unaffected
genomes. However, protein-based biomarkers more accurately profile the more relevant workhorses
of the cell (functional proteins), and allow the capture of information pertaining to their subcellular
localization, thus providing an edge over their nucleic acid counterparts. Furthermore, protein-based
biomarkers are able to capture intratumoral heterogeneity and the expression of biomarkers in the
tumor microenvironment, combining biological with morphological information. The following
sections focus on the development of assays to analyse secreted protein molecules, circulating tumor
cells and nucleic acids.

5. Liquid Biopsy Holds Promise for Guiding Breast Cancer Management

Liquid biopsy involves the analysis of circulating tumor cells (CTCs), cell-free circulating nucleic
acids (circulating tumor DNA [ctDNA], and microRNA [miRNA]) and exosomes, released into the
peripheral blood or urine from the primary tumor and/or metastatic deposits. It has recently emerged
as a noninvasive prognostic, surveillance, and predictive tool in both early and metastatic BC that
may complement, augment, or replace (in some cases) the use of tissue biopsy. The ease of sampling
combined with the ability to monitor tumor burden or mutation changes temporally with ctDNA, allows
for disease monitoring, the evaluation of therapeutic response, and molecular profiling in the advanced
disease setting to determine therapeutic targets. The research in using ctDNA to tailor treatments has
shown encouraging results. For example, the BELLE-2 trial and the SoFEA trial have demonstrated
the clinical applicability of ctDNA to detect PI3K and ESR1 mutations, respectively, and the benefit of
targeting these mutations with PI3K inhibitors and fulvestrant, respectively [78,79]. The NeoALTTO
phase III trial found that the detection of ctDNA before starting NAC (neoadjuvant chemotherapy)
correlated with lower pCR rates [80]. Thus, measuring ctDNA may aid in predicting the response
to NAC. Another study in a series of patients with advanced breast cancer, showed that mutation
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levels in plasma samples (liquid biopsies) can provide similar information about clonal hierarchy as
that determined by sequencing tissue biopsies. Thus, ctDNA can help characterize multifocal clonal
evolution in metastatic cancers [81]. Furthermore, Chen et al., have used next generation sequencing
(NGS) to analyze ctDNA and found a high specificity for predicting disease recurrence but a low
sensitivity, possibly due to the low number of mutated DNA molecules in circulation [82].

In addition to ctDNA, CTCs may be used to predict the risk of relapse in early-stage disease [83].
The ECOG-ACRIN E5103 trial, in which samples were collected between 4.5 and 7.5 years after
diagnosis, reported that patients who were positive for CTCs had a 21.7-fold higher chance of
recurrence compared to those who were CTC-negative [83]. While CTC testing at a single time point is
effective for risk stratification of patients, more studies are needed to define how these tests can be
used in the clinical setting to make meaningful clinical decisions. As the circulation rate of CTCs is one
per 1 × 109 normal blood cells in metastatic cancer, their identification and isolation is particularly
difficult [84]. Despite this, recent technologic advances have spawned new approaches for the selection
and capture of CTCs, such as CTC-based assays that exhibit high specificity and low signal-to-noise
ratio, especially in the detection of early-stage BC.

The CELLSEARCH Circulating Tumor Cell Kit (Menarini-Silicon Biosystems), a real time liquid
biopsy currently licensed by Janssen Diagnostics among other companies, is the only CTC technology
accredited by the FDA for the management of patients with metastatic BC. The semi-automated
system uses a simple, actionable blood test based on an immunomagnetic enrichment technology [85].
A cut-off value of ≥5 CTCs per 7.5 mL of blood has been established, separating patients into shorter or
longer survival groups [86–88]. Using the CELLSEARCH system, a few studies have validated CTC
count as an independent prognostic factor for both metastatic and nonmetastatic BC, and found it to
be more reproducible than radiology, detecting disease progression ahead by several weeks [88–90].
Monitoring CTC count during therapy potentially allows for the early detection of resistance to therapy.
Due to its clinical validation and FDA approval, the assay has gained prominence as a type of gold
standard within the field. However, the system uses expensive equipment and its cost is a major
limitation. Furthermore, CTC capture is based on the presence of antigens on the cell surface that
may result in both false-positive and false-negative results, with false-positives increasing during
inflammatory conditions [91].

The EPISPOT assay (EPithelial Immuno SPOT) is also used to detect living CTCs although it
employs a strategy different from CELLSEARCH [92,93]. A multicenter study observed an improved
stratification of patients with metastatic BC (low- and high-risk groups) upon adding CTC status as
measured by CELLSEARCH to that by EPISPOT, and found that a combination of both assays was the
strongest predictor of OS (overall survival) [94].

The Nagrath Laboratory at the University of Michigan has created a superior CTC isolation
technology in the form of a prototype wearable that continuously and directly traps CTCs from the
patient’s blood. As the remaining blood products are returned post-CTC enrichment, larger blood
volumes can be scanned, providing a lucid picture of tumor cell heterogeneity. This counters one of the
major shortcomings in the current CTC technologies that rely on smaller blood draws, thus suffering
from statistical variability [95].

When integrated at different points in the disease course, liquid biopsies can proffer information
over and above that provided by standard clinicopathologic variables alone. Compared with CTC-based
assays, ctDNA assays are superior when it comes to providing an individualized snapshot of a patient’s
disease status, and they have greater sensitivity for early cancer detection. Unlike CTCs, ctDNA
capture does not require specialized equipment [96]. Although ctDNA and CTC assays harbor
immense potential, a lack of stringent studies and robust comparative assays are impairing their
clinical application.



Cancers 2019, 11, 1325 9 of 23

5.1. Serum Protein Markers

Videssa Breast (Provista Diagnostics) is a combinatorial multi-protein biomarker blood test for BC
that evaluates 11 serum protein biomarkers (SPBs) and 33 tumor-associated autoantibodies (TAAbs)
(Figure 2). The data are then combined with the patient age into a logistic regression algorithm, and
the outcome is defined as a high protein signature (HPS) or low protein signature (LPS) [97]. One
study validated the use of this noninvasive, actionable tool in detecting BC in women aged 50 years or
younger with a low or intermediate risk who had abnormal or difficult-to-interpret imaging results
(BI-RADS scores of 3 and 4). The Videssa Breast test used in conjunction with imaging results improved
the diagnostic accuracy and reduced unnecessary biopsy by up to 67% when applied to cases that
presented a challenging clinical assessment (compared with imaging alone), and the negative predictive
value was 99%. Thus, in cases where mammogram results are abnormal, this tool can help clinicians
identify the patients who are highly unlikely to have BC [98]. Another study demonstrated that the
assay could reliably rule out BC in women with both dense and non-dense breasts [97].

A few FDA approved serum BC markers worth mentioning are the Carcinoma Antigen 15-3
(CA 15-3), Carcinoma Antigen 27-29 (CA 27-29) and PIK3CA. These have proved useful in monitoring
the disease course in metastatic BC [99]. The clinical guidelines from the ASCO recommends using
CA 15-3 and CA 27-29 as adjunctive assessments in informing treatment decisions (a ≥ 25% increase is
suggested clinically significant) [100].

5.2. Circulating microRNAs

Several microRNAs (miRNAs) are dysregulated in BC [101]. This knowledge, coupled with the
ease of isolation and their relative stability through sample processing and isolation, makes circulating
miRNAs an attractive biomarker. Despite extensive research, clinically useful miRNA signatures elude
oncology practice. Owing to the differences in patient selection, miRNA isolation and measurement
techniques, low levels of miRNAs, concurrent diseases, effects of therapy, and insufficient studies
validating its clinical utility, there has been little consensus among different miRNA panels identified
so far. The future course lies in determining the most appropriate fluid for measuring miRNA (whole
blood, serum or plasma), identifying the tissue of origin, standardizing the sample collection, handling
and the methods of measurement, as well as the normalization of miRNA concentrations [102,103].

6. Metabolomics in Breast Cancer Prognosis

Equipped with the information that cancer cells display altered metabolism, a signature indicative
of the presence and behavior of cancer can be generated via metabolite profiling. The information
regarding the variant levels of metabolites between healthy subjects and those with cancer can be
obtained by combining techniques of nuclear magnetic resonance (NMR) spectroscopy and mass
spectrometry with multivariate statistical analysis. The application of metabolomics in cancer
diagnostics and therapeutics is fairly new and promising, as it can provide a much-needed link between
the genotype and phenotype together with some insight into oncogenesis [104]. Moreover, various
studies have determined the use of this approach in predicting BC prognostic factors (ER and PR status)
in tissue samples, differentiating early-stage from metastatic disease patients using serum samples,
predicting BC recurrence, and predicting the response to NAC [105–110]. Additionally, metabolomics
may detect micrometastasis in patients with early BC [111]. Metabolomics can also be used to search
for drug metabolites in serum, in order to monitor the metabolic response to adjuvant therapy [112].
The study of the cancer metabolome is being used to identify biomarkers and potential therapeutic
targets, thus also paving the way for pharmacometabolomics in cancer [104]. Akin to proteomics
and transcriptomics, the assays for metabolite profiling, once established, are relatively inexpensive,
rapid, and automatable [113]. Metabolomics has unbroached potential, and in the near future this new,
rapidly expanding field promises to be a prime contributor to cancer diagnostics and therapeutics.
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7. Tumor Microenvironment-Based Biomarkers: Tumor Infiltrating Lymphocytes as Prognostic
and Predictive Variables in Breast Cancer

Tumor infiltrating lymphocytes (TILs) are an integral part of the tumor microenvironment
and have been observed in all BC subtypes, with high counts detected in high-grade, aggressive
tumors [114]. Particularly in triple-negative BC (TNBC) and HER2-positive BC, TILs display prognostic
and predictive value [115–117]. In general, higher TIL density is associated with good prognosis and
can be correlated with pathologic complete response (pCR) [115,118–127]. However, a standard method
for evaluating TILs for effective integration into clinical histopathologic practice remains lacking. In
2014, an international TILs working group published a series of methodologic recommendations for
evaluating TILs in BC using hematoxylin and eosin (H and E)-stained tumor sections, and recommended
that TILs be reported for the stromal compartment and assessed as a continuous parameter [128]. Later,
Hida et al. modified this scoring system and classified the triple-negative and HER2-positive BCs into
low (<10%), intermediate and high (>50%) TIL scores [129].

Even though several studies have demonstrated the prognostic value of TIL assessment, and
standardized methods are now available, the St. Gallen International Breast Cancer Conference
guidelines from 2017 still do not require the inclusion of TILs in routine pathology reporting [130]. The
highlights from the 2019 conference, however, do mention the potential of TILs for further improving
risk stratification [131]. The clinical utility of TILs may lie not in isolation but in conjunction with
other clinicopathologic variables, such as the patient age, disease stage, alterations in the genome, and
other microenvironment factors [132], and their utility is likely gain prominence as immunotherapies
are introduced into clinical settings. In addition, the incorporation of TIL assessment as a prognostic
variable in multivariate statistical analysis is likely to further increase the role of TILs in the near future.

8. Neoantigens as Biomarkers of Treatment Response

Among emerging biomarkers, neoantigens display great promise in predicting responses to
immunotherapy [133]. Exome sequencing along with protein mass spectrometry has led to the
identification of patient-specific tumor neoantigens that result from somatic mutations in the tumor
tissue. As neoantigens correlate well with the overall somatic mutation rate, as well as with the
clinical response, the assays based on them can be used to measure the drug response. For example, a
neoantigen landscape has been described in tumors with a strong response to CTLA-4 blockade [134].

9. Digital Pathology and Tissue Phenome Analysis

Pathology has always been a driver behind precision medicine, and a H and E-stained slide is the
touchstone of a pathologic analysis, especially when the tissue amounts are insufficient for molecular
analysis [135]. Histopathology requires large volumes of biologic tissues to be scrutinized by highly
skilled pathologists, making it time-consuming, labor-intensive, and error-prone. The advances in
image analysis of stained slides now enable the objective, reproducible, and automated quantification
of features, including multiple co-registered features, subcellular expression patterns of biomarkers,
and cellular morphometrics from digitized tissue sections. Many of these features can be captured as
continuous data, and the distances between the features can also be calculated so that spatial statistics
and other exhaustive computing analyses can be employed to reveal new and potentially actionable
insights that could not be uncovered by the human eye alone [136–140].

A 2017 study by Bejnordi et al. showed the use of convolutional neural networks (CNN) in
diagnosing and classifying whole-slide images from breast biopsies into three classes (normal/benign,
DCIS, and invasive ductal carcinoma [IDC]). The overall classification accuracy for their system was
81.3% [141]. More recently, Sergey et al. have devised a novel machine learning based whole slide
image analysis tool that can significantly predict recurrence in DCIS patients and identify those that
may benefit from additional therapy [142]. In addition, Google is applying deep-content learning
technology to build an automated detection algorithm that will complement the pathologist workflow.
In scanning LN metastasis, their approach demonstrated substantially lower false-negative rates
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compared with those ascertained by pathologists [143]. Furthermore, the deep neural networks (DNNs)
function by anatomizing images into pixels and sequentially combining them into features representing
specific diagnostic patterns. They can also be trained to integrate follow-up studies into diagnostic
algorithms, thus expanding their intelligence and enhancing the overall performance. Foreseeable is a
cloud-based online DNN image analysis tool that can provide consensus on cancer diagnosis, which
can be meaningful for pathologists working at small centers in receiving timely, cost-effective second
opinions [144]. Although deep-learning based technologies are currently at an incipient stage, they are
poised to become indispensable to personalized and precision oncology in the near future.

10. Scoring Centrosome Amplification: An Emerging Prognostic Marker

Centrosome amplification (CA) (i.e., an abnormal increase in the number and/or volume of
centrosomes) is commonly observed in pre-invasive lesions, such as DCIS as well as invasive breast
tumors. Its reputation as a BC prognostic marker strengthened in light of research that showed,
high-risk BC subtypes such as TNBC patients, display higher CA (and overexpression of CA associated
genes), which is associated with tumor aggressiveness and poor clinical outcomes [145]. Furthermore,
CA status is connected to metastatic risk and progression free survival. A different study revealed
that CA strongly correlates with higher BC grade and stage, and leads to chromosomal instability,
thus driving intratumoral heterogeneity [146]. This formed the basis for a continued focus on, and
development of CA as a scorable marker. Profiling CA conventionally, is technically challenging and
requires advanced approaches to enhance its clinical utility.

10.1. Immunofluorescence-Based Three-Dimensional Image Analysis Yields a CA Score for Ductal Carcinoma
In Situ Stratification

Mittal et al. have rigorously quantitated structural amplification of centrosomes in tumor samples
by integrating immunofluorescence confocal microscopy with digital image analysis via an IP-protected
semi-automated pipeline technology. This yields a quantifiable biomarker, the centrosome amplification
score (CAS), which can stratify DCIS into low- and high-CA categories, the latter associated with a
greater risk of local recurrence. The CAS may prove to be superior to the VNPI in terms of predicting
the risk of local recurrence for women with DCIS of the breast [147].

10.2. CA20: A Transcriptomic Signature

Ogden et al. identified and validated CA20, a 20 gene CA transcriptomic signature (consisting
of centrosome structural genes and genes involved in inducing CA), in breast tumors. CA20 is an
independent predictor of poor survival and a high score is indicative of high chromosomal instability
(CIN) and tumor aggressiveness [148]. Later, Almeida et al. in their pan-cancer computational analysis
(from The Cancer Genome Atlas [TCGA] cohort) confirmed the association of CA20 with clinical and
molecular features of BC as well as with CIN. In their study, CA20 correlated with poor prognosis in
eight different cancers (including BC) and can aid stratification of patients with BC. In concert with
immunofluorescence, CA20 can prove to be a valuable marker [149].

11. Prognostic Breast Cancer Staging

A major challenge for large-scale precision medicine research is in harmonizing data from different
sources. This can be overcome by standardizing nomenclature and developing sophisticated metadata
descriptions that enable data integration, and by enabling the portable reproducible reanalysis of
datasets. In this context, two prominent BC staging systems are being discussed, the American Joint
Committee on Cancer (AJCC) Tumor/Node/Metastasis (TNM) classification and the Neo-Bioscore
system (University of Texas MD Anderson Cancer Center).

Recognizing the need to incorporate biologic factors (tumor grade, proliferation rate, and
ER/PR/HER2 expression) and gene expression-based prognostic panels, in addition to the traditional
anatomic factors into its staging system, the AJCC recently extensively revised its eighth edition of
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the TNM classification system, which remains the worldwide basis for BC staging. Furthermore, the
AJCC Breast Expert Panel has recommended providing two BC Prognostic Stage tables; the Clinical
Prognostic Stage Group (based on history, physical examination, imaging studies, and relevant biopsy
results) and the Pathologic Prognostic Stage Group (for patients who have surgical resection as the
initial treatment).

Furthermore, emphasizing and lending credence to the importance of tumor biology as critical for
BC prognosis, researchers at the MD Anderson Cancer Center have developed the Neo-Bioscore system,
a new BC staging system that builds on their previously developed CPS+EG staging system. The
CPS+EG system predated the routine use of trastuzumab (Herceptin) in the neoadjuvant setting, and
uses the clinical stage of cancer before NAC treatment and the pathologic stage post-NAC (CPS score),
the estrogen receptor status (E), and cancer grade (G). The system generates a score that helps estimate
5-year distant metastasis-free survival post-NAC, but is unable to provide prognostic information for
patients with HER2-positive disease. The Neo-Bioscore staging system overcomes this limitation by
incorporating HER2 status into the score [150].

12. Future Perspectives

Although NGS, the backbone of multigene assays and whole-exome/genome sequencing, has
vastly improved our understanding of the origin and evolution of cancer, it has generated a deluge of
information and new quandaries. The clinical interpretation of the results (e.g., how to differentiate
among the errors, polymorphisms, and causal mutations), as well as properly assigning pathogenicity
to variants, is a work in progress. Importantly, the possibility of overinterpreting NGS testing results
may lead to unnecessary medical action and add to the high levels of anxiety experienced by patients
with BC and their families. Cancer gene panels do provide a middle ground by addressing the clinical
questions while avoiding information overload. Additionally, NGS data yield variants of uncertain
significance and incidental findings (i.e., findings unrelated to the condition under investigation) that
raise ethical-legal concerns. Moreover, privacy issues are inherent when placing genomic data in
the public domain and sharing genetic information, particularly regarding heritable mutations, with
genetic relatives. Clearly, physician training has become crucial. Physicians need to understand the
value/limitations of the data derived from these assays in the context of clinical care, and collaborate
closely with genetic counselors to help their patients receive the best treatments possible.

The global profiling of an individual’s tumor at the genomic, proteomic, transcriptomic,
metabolomic, and other – omic levels is technologically achievable now. A case in point is GPS
Cancer, a molecular test by NantHealth that integrates whole-genome and whole-transcriptome
sequencing with quantitative targeted proteomics of both normal and cancerous tissue. The presence
of protein biomarkers in tumor cells at levels as low as attomoles/µg of tumor tissue can be ascertained,
providing actionable insights for immunotherapy, chemotherapy, targeted therapy, hormonal therapy,
and monoclonal antibody therapy. DNA, RNA, proteomic, copy number variant, and other information
can now be seamlessly woven together using sophisticated big data analytics to generate probabilistic
causal networks, improving the chances of identifying the perturbations that drive a tumor’s biology,
or enabling a deeper segmentation of heterogeneous patient cohorts for precision medicine. However,
all data are not created equal, and multi-omic analysis can be time- and cost-prohibitive. Thus, different
variables might need to be accorded different weights depending on the subtype of BC and/or the stage
of disease (early versus advanced) to optimize the treatment and achieve the best outcomes possible.
There is also a pressing need for multivariate prognostic/predictive models that are not plagued by
a lack of biomarker standardization and inter-observer variability. A useful addition to the current
models would be that of a monitoring tool/biomarker (for a period > 10 years) to address the issue of
late disease recurrence.

Projects like the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas
(TCGA) are working toward a shared goal of cataloging oncogenic mutations in order to further
our understanding of the genetic basis of cancer, which can have a direct bearing on the diagnosis
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and management of the disease. The TCGA has generated exhaustive, multidimensional maps of
crucial genomic alterations in 33 cancer types. The ICGC is coordinating genomics studies in tumors
from 50 different cancer types and/or subtypes. The International Cancer Genome Consortium for
Medicine (ICGCmed) will link the (as yet) aggregated genomics data to clinical and health information
and response to therapies. The concerted efforts of these and other similar global projects are
generating huge amounts of data (e.g., the TCGA dataset, accessible to the public, is currently pegged at
2.5 petabytes) that comprise RNA sequencing, proteomic, and imaging data, apart from genomic data.

To effectively employ NGS and the various biomarkers in the field of precision medicine requires
complement with next-generation functional diagnostic technologies. The next-generation functional
testing approach works around the limitations of traditional chemosensitivity tests by involving new
cultivation methods for patient-derived tumor cells ex vivo, entailing the monitoring of live tumor
states, and exposing a patient’s tumor biopsy ex vivo to drugs, thus directly revealing the cellular
response to the applied agent. This does not require prior knowledge of a drug’s mechanism of action,
and if the tumor cells are sensitive (usually measured by the level of tumor cell death), the drug can be
clinically administered promptly [151]. Novel methods of tumor manipulation have been established
that include organoids developed from cultivating single patient-derived cells, or artificial organotypic
cultures developed from multiple patient-derived cells. Organoids grow in three dimensions, proving
to be superior to two-dimensional cultures by more accurately mirroring the endogenous architecture
of the parent tissue [152–154]. In addition, patient-derived xenograft (PDX) mouse models (in which
biopsy material is subcutaneously or orthotopically implanted and expanded in vivo) can be generated
that more faithfully recapitulate the patient’s tumor environment [155] and can be used as avatars
for drug testing. Another cutting-edge development involves in situ functional diagnostics, wherein
the drug effects can be directly tested with micro-dosing of solid tumors using novel devices inside
the patient [156,157]. These tests require further preclinical and clinical validation to be of value for
treating patients with BC, and to be incorporated into the clinical setting.

13. Conclusions

Cutting- edge - omics technologies, digital pathology, and new multibiomarker assays, together
with clinical annotation, have granted unprecedented insights into the biology driving tumor
development and the exploitable vulnerabilities, and are daily transforming the management of
BC. The key lies in the effective integration of these multi-platform data and mining it for meaningful
information. While the field of precision medicine in BC is making remarkable strides, it is important
not to lose sight of the potential roadblocks ahead and the limitations of the current biomarkers and
technologies. One such limitation is the lack of sensitive and specific biomarkers for early detection of
BC. Another matter of concern is the copious amounts of genomic data being generated currently, which
is only set to multiply in the future. Based on the current infrastructure, most research organizations will
struggle to store and manage these data, let alone optimally analyze them. There is also the problem of
underrepresentation of minority populations in most research cohorts. Detecting significantly mutated
genes and all alterations involved, requires the interrogation of thousands of samples. There is thus a
pressing need for increasing sample sizes for precision medicine research. Finally, increasing cohort
size tackles the problem that not all genetic variants associated with disease are equally common, or
equally easy to detect. As the number of sequenced genomes grows, it may be found that rare variants
make important contributions to many diseases.
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