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Abstract: The constitutive androstane receptor (CAR, NR1I3) is extremely important for the regulation
of many physiological processes, especially xenobiotic (drug) metabolism and transporters. CAR
differs from steroid hormone receptors in that it can be activated using structurally unrelated
chemicals, both through direct ligand-binding and ligand-independent (indirect) mechanisms.
By binding to specific responsive elements on DNA, CAR increases the expression of its target genes
encoding drug-metabolizing enzymes and transporters. Therefore, CAR is mainly characterized as a
ligand-dependent or ligand-independent transcription factor, and the induction of gene expression
is considered the canonical mode of CAR action. Consistent with its central role in xenobiotic
metabolism, CAR signaling includes a collection of mechanisms that are employed alongside the core
transcriptional machinery of the receptor. These so-called noncanonical CAR pathways allow the
receptor to coordinate the regulation of many aspects of cell biology. In this mini-review, we review
noncanonical CAR signaling, paying special attention to the role of CAR in energy homeostasis and
cell proliferation.
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1. Introduction

The constitutive androstane receptor (CAR, NR1I3) is a member of the nuclear receptor superfamily
(NR), which includes steroid, retinoid, and thyroid hormone receptors [1]. Members of this superfamily
play key roles in almost all aspects of development and physiology, as they function as ligand-activated
transcription factors. CAR belongs to the vitamin D receptor subfamily of the nuclear receptor
superfamily [1]. CAR is mostly expressed in the liver [2].

CAR, similar to most members of the superfamily, has a classic domain structure that includes a
DNA-binding domain (DBD) with two zinc fingers and a conserved ligand-binding domain (LBD).
DBD is involved in the interaction of the receptor with short stretches of DNA, termed response
elements, in the regulatory regions of target genes. LBD serves as a ligand docking site and also contains
dimerization motifs and transcription activation domains, such as the region of activation function 2
(AF-2) [3]. The AF-2 region of CAR contains a very stable helix H11 in its structure. Therefore, AF-2
is constantly fixed in the active conformation [4]. Interaction with ligands further enhances receptor
activity [5].

CAR is activated by various chemical compounds that are related to drugs, pesticides,
food flavonoids, polyphenols, etc. [6,7]. The half maximal effective concentrations (EC50s) for
ligand binding to CAR range from the nanomolar to micromolar range, suggesting that even
low-affinity binding of ligands to CAR can cause strong cellular signals. The ability of some
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ligands to bind to the receptor remains a matter of discussion, since only two compounds—
1,4-bis-[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and 6-(4-chlorophenyl) imidazo-[2,1-b][1,3]
thiazole-5-carbaldehyde-O- (3,4-dichlorobenzyl)oxime (CITCO)—display a direct interaction with the
CAR ligand-binding pocket. The affinity of these compounds for CAR varies significantly between
species. TCPOBOP activates CAR in mice, but not in humans, while CITCO has the opposite effect.
In addition, CAR can be activated by chemical compounds indirectly, through signal transduction
pathways. A classic example of an indirect CAR activator is phenobarbital (PB), which triggers a
signaling cascade in hepatocytes that leads to the CAR active state [8].

CAR was originally characterized as a xenosensor that induces the expression of the CYP2B gene
(cytochrome P450 of the 2B subfamily), which is involved in the biotransformation of a wide range
of xenobiotics, including drugs [9,10]. It was later demonstrated that CAR regulates many genes
encoding key enzymes of drug and xenobiotic metabolism, including phase I (CYP2B, CYP3A, etc.),
phase II (SULT, UGT, and GST), and transporter genes [11]. Drug-metabolizing genes are regulated by
CAR according to the canonical mechanism: CAR binds to the phenobarbital (PB)-responsive enhancer
module (PBREM) in the promoter of the target gene, activating its expression [9,10].

It was previously shown that the activation of CAR has a pleiotropic effect on physiological and
pathological processes: activation of CAR alters glucose homeostasis and lipid metabolism and also
leads to cell cycle disturbances and the inhibition of apoptosis. Using RNA-seq technology, it was found
that CAR activation causes a change in the expression of more than 2000 genes [12]. CAR activation
can lead to both the induction and inhibition of gene expression. For example, the activation of CAR
leads to a decrease in the expression of gluconeogenesis genes in the liver [13,14]. In addition, CAR
activation significantly enhances hepatocyte proliferation, followed by liver hyperplasia [15]. Often,
the regulation of processes, other than drug metabolism and elimination, is carried out by noncanonical
CAR signaling. This mini-review contains the recent progress in our understanding of noncanonical
CAR signaling and how it coordinates the regulation of several aspects of the biochemistry of cells.

2. Activation of CAR Nuclear Translocation

Compared to other nuclear receptors, CAR has a unique activation mechanism, which includes
both nuclear translocation and nuclear activation [16,17]. In addition, another feature of the activation
of CAR is the fact that a number of compounds that activate the transcriptional activity of the receptor
are not its ligands [18]. Therefore, the direct interaction of CAR with these chemical compounds is not
necessary for its activation [19]. In the inactive state, CAR is located in the cell cytoplasm in a complex
with several proteins: heat shock protein 90 (HSP90), cytoplasmic CAR retention protein (CCRP), and
the membrane-associated subunit of protein phosphatase 1β (PPP1R16A) [20–23]. In addition, this
complex is stabilized in an inactive state by the HSP70 chaperone protein [24]. When CAR interacts
with a ligand in the cytoplasm, the chaperone proteins HSP90 and CCRP, which maintain the inactive
state of the receptor, dissociate and CAR translocates to the nucleus.

Phenobarbital (PB) is a classic example of an indirect CAR activator, which exerts its activating
effect through signal transduction pathways. It has been demonstrated that the activation of CAR using
PB is mainly associated with its nuclear translocation. Moreover, nuclear translocation of the receptor is
reduced by a protein phosphatase 2A inhibitor [10]. This suggests that the nuclear translocation of CAR,
caused by an indirect activator, is associated with the signaling pathway in which dephosphorylation
of the receptor protein occurs. It was further shown that activation of the protein kinase ERK1/2
leads to the inhibition of CAR nuclear translocation and inhibition of the transcription of CAR target
genes. Inhibition of the ERK1/2 signaling pathway enhanced the induction of CAR target genes [25].
To activate hCAR nuclear translocation under the action of PB, phosphorylation of the receptor in
Thr38 (Thr48 in mCAR) is necessary [26]. In 2013, it was convincingly demonstrated that PB exerts its
activation effect through a pathway involving the epidermal growth factor receptor (EGFR) [8]. It has
been shown that PB is able to bind to EGFR and block the activation of its signaling pathway. This
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leads to the activation of protein phosphatase 2A (PP2A), which dephosphorylates CAR to the Thr38
position and triggers its nuclear translocation.

3. Canonical CAR Pathway

Through the canonical signaling pathway, CARs increase the expression of target genes encoding
drug-metabolizing enzymes and transporters. The marker CAR target gene is CYP2B, whose expression
upon receptor activation increases to a much greater extent than that of other genes. In 1995, it was
demonstrated that the response to PB is associated with a nucleotide sequence located in the region
of -2318/-2155 bp in the CYP2B2 gene promoter in rat hepatocyte cultures [27]. Later, in experiments
on cultures of mouse hepatocytes conducted in the laboratory of M. Negishi, a 51 bp sequence was
identified in the regulatory region of the Cyp2b10 gene. The introduction of mutations in this region
led to a loss of sensitivity to PB. The sequence was termed PBREM [28]. The sequence has also been
found in other species, such as rats and humans [29]. PBREM consists of two nuclear receptor binding
sites (NR1 and NR2) and a nuclear factor 1 binding site (NF1) [9]. NR1 and NR2 contain incomplete
direct repeats separated by four base pairs (DR4). The sequence of NR1 (5′-TGTACTTTCCTGACCT-3′)
in the promoter region of CYP2B genes in different species is the most conserved [30].

In a further series of experiments, using affinity chromatography with an NR1 oligonucleotide as a
ligand, CAR was identified as a key induction factor under the action of phenobarbital [9]. It was shown
that in fractions obtained from extracts of the liver nuclei of mice treated with PB, CAR accumulates
together with retinoid X receptor (RXR, NR2B). In the nucleus, CAR heterodimerizes with RXR and
recruits coactivators, which leads to interactions with PBREM in the regulatory regions of target gene
promoters [19]. In 2003, an additional CAR-specific regulatory element was identified in the CYP2B6
gene promoter. This regulatory sequence was termed the xenobiotic responsive enhancer module
(XREM), and is located in the region of −8500 bp in the promoter of CYP2B6 gene [31]. XREM contains
a cluster of CAR binding sites, which, by analogy with the NR1 and NR2 of PBREM, were termed
NR3–NR8. Both PBREM and XREM are required for maximum activation of the CYP2B6 gene in
human hepatocytes.

The main function of coactivators is to alter the chromatin structure, which facilitates the interaction
of the general transcription apparatus for induction of transcription of CAR target genes. The key
role among coactivators belongs to Steroid Receptor Co-activator-1 (SRC-1), Glucocorticoid Receptor
Protein-1 (GRIP-1), and Proliferator-activated receptor Gamma Coactivator-1 alpha (PGC-1α) [32–35].
In vitro, it was shown that the transcription factor Sp1 can act as a coactivator of CAR in the upregulation
of CYP2B gene expression [31].

According to this canonical mechanism, the activation of CAR leads to an increase in the expression
of genes involved in the metabolism and elimination of a wide range of xenobiotics. These genes include
members of the cytochrome P450 superfamily, glutathione-S-transferases (GSTs), sulfotransferases
(SULTs), UDP-glucuronyltransferases (UGTs), and transporters [11,36].

4. Noncanonical CAR Signaling in Gluconeogenic Gene Regulation

Recent studies have demonstrated new CAR functions in various cell processes, for example,
glucose metabolism and the regulation of hepatocyte proliferation. Many CAR functions in the liver,
other than the regulation of drug-metabolizing genes, are mediated by noncanonical signaling and result
in the downregulation of gene expression. The most studied is the CAR-mediated downregulation of
gluconeogenesis genes. It is well-known that the use of PB in patients with diabetes leads to a decrease
in blood glucose [37]. It was demonstrated that PB downregulates the expression of genes that encode
rate-limiting enzymes of hepatic gluconeogenesis: phosphoenolpyruvate carboxykinase (PEPCK) and
glucose-6-phosphatase (G6Pase) in a CAR-dependent manner [38]. In addition, CAR activation reduces
hyperglycemia and increases insulin sensitivity in mice with metabolic disorders [39–41]. Given the
important effects of CAR activation on metabolic processes, CAR can be considered an attractive
therapeutic molecular target for the treatment of metabolic disorders.
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In recent years, several studies have been carried out that have described in detail three possible
mechanisms underlying the regulation of gluconeogenesis by CAR activators. In these experiments,
it was demonstrated that CAR is able to regulate the expression of gluconeogenesis genes via
noncanonical pathways involving protein–protein interactions. Insulin has an inhibitory effect on
the transcription of the G6Pase and PEPCK genes in which rate-limiting enzymes are encoded. The
expression of these genes is regulated by the transcription factor forkhead box O1 (FoxO1), which binds
to the insulin-responsible sequence (IRS). Insulin activates protein kinase B (Akt), which phosphorylates
FoxO1. Such phosphorylation leads to the transfer of FoxO1 from the nucleus to the cytoplasm and its
proteosomal degradation [42]. In vitro and in vivo experiments showed that activated CAR binds to
FoxO1, thereby blocking its interaction with IRS in the regulatory regions of the PEPCK and G6Pase
genes [43,44] (Figure 1A).

Figure 1. Noncanonical mechanisms of the constitutive androstane receptor (CAR)-mediated
suppression of gene expression. When CAR interacts with a ligand in the cytoplasm, CAR translocates to
the nucleus. (A) Activated CAR binds to forkhead box O1 (FoxO1), thereby blocking its interaction with
the insulin-responsible sequence (IRS) in the gene promoters. (B) Activated CAR serves as an adapter
protein for the recruitment of Proliferator-activated receptor Gamma Coactivator-1 alpha (PGC1α)
into the complex with E3 ligase Cullin1, where PGC1α undergoes ubiquitination and subsequently,
proteasome degradation. (C) Activated CAR competes with hepatic nuclear factor-4α (HNF4α) for
binding to DR1.

PGC1a is also a major regulator of gluconeogenesis [45]. FoxO1 and PGC1a cooperate to induce
gluconeogenesis by activating PEPCK and G6Pase gene expression [46]. It was previously shown
that CAR suppresses the expression of gluconeogenic genes through post-translational regulation,
subcellular localization, and degradation of the PGC1α coactivator (Figure 1B). Activated CAR
translocates to the nucleus and serves as an adapter protein for the recruitment of PGC1α into the
complex with E3 ligase Cullin1 [47]. After that, PGC1α undergoes ubiquitination and, subsequently,
proteasome degradation. It has been suggested that such negative regulation of PGC1α by CAR
could be a cellular adaptive mechanism for adapting to energy-limited conditions. Therefore, the
protein–protein interactions described above underlie the suppression of the expression of key genes
involved in gluconeogenesis in response to the action of CAR activators.
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In addition to FoxO1, other transcription factors, such as hepatic nuclear factor-4α (HNF4α),
regulate G6Pase and PEPCK gene expression [48]. Both genes contain functional HNF4α-binding
sites (DR1 motif) in their regulatory regions. The third noncanonical mechanism of the regulation
of gluconeogenic genes mediated by CAR is associated with the transcription factor HNF4α. CAR
first competes with HNF4α for binding to DR1. The binding of activated CAR to DR1 leads to the
repression of transcription of the G6Pase and PEPCK genes [49–51] (Figure 1C). Secondly, CAR competes
with HNF-4α for a limited pool of common coactivators, including PGC-1α, which dissociate from
promoters of the HNF-4α target genes [49].

Recently, the existence of gender differences in CAR-mediated regulation of energy homeostasis
has been demonstrated [52]. Understanding the role of sex hormones in the CAR-mediated mechanism
underlying sexual dimorphism in glucose homeostasis may facilitate the development of sex-specific
therapy for metabolic diseases.

5. Noncanonical CAR Signaling in Hepatocyte Proliferation

It has been known for a long time that the activation of CAR is accompanied by a strong proliferative
effect in hepatocytes [53–55]. This fact gave grounds to consider CAR as a therapeutic target for partial
liver resection [56]. Moreover, in 2016 it was demonstrated that in CAR-/- mice, liver failure occurs
even after standard hepatectomy (2/3 of the liver). Pharmacological activation of CAR in wild-type
mice can improve liver regeneration and inhibit the development of liver failure during extreme
resections (more than 85% of the organ), and this effect is mediated by a decrease in the level of p21
protein [57]. Several studies have demonstrated a possible mechanism for CAR-mediated regulation
of p21 levels. A key role in the activation of liver hyperplasia is played by promitogenic protein cMyc
signaling, which promotes hepatocyte proliferation [58]. However, the question of how CAR regulates
the level of cMyc in response to TCPOBOP treatment remained has unanswered for a long time, since a
functional CAR binding site has not yet been identified in the cMyc gene promoter [58]. It has recently
been demonstrated that PB is able to reduce miR-122 in mouse livers [59]. Moreover, in the same
work, it was shown that PB inhibits the transactivation of the pri-mir-122 promoter. This suggests
that the suppression of miR-122 upon exposure to PB occurs at the level of transcription. MiR-122
is a liver-specific miRNA that accounts for about 70% of the miRNA population in this organ [60]
and plays a significant role in many physiological processes in the liver [61]. MiR-122 regulates cMyc
through regulation of the level of transcription factor E2f1 [62]. Transcription of pri-miR-122, the
precursor of miR-122, is regulated by hepatic transcription factors, including HNF4α [63,64]. HNF4α
increases the miR-122 level by directly binding to the regulatory region of pri-miR-122 [64]. As was the
case with the regulation of gluconeogenic genes, it was demonstrated that CAR decreases the level of
miR-122, which is the molecular target of the transcription factor HNF4α, competing with HNF4α for
binding to the DR1 motif in the pri-miR-122 promoter [65]. The decrease in miR-122 caused by CAR
activation is accompanied by an increase in E2f1, as well as its accumulation on the cMyc promoter.
CAR activation decreases miR-122 through the suppression of HNF4α transcriptional activity on the
pri-miR-122 promoter and indirectly regulates cMyc. Moreover, a CAR-mediated decrease in miR-122
could produce activation of the Akt through initiation of the cMyc-FoxM1-Nedd4-1-PTEN pathway [66]
and subsequent Akt-Foxo1-mediated decrease of p21 [67]. Therefore, the noncanonical CAR signaling
in gene regulation, based on competition with HNF4a for the DR1, appears to be involved not only in
the regulation of gluconeogenesis but also in the regulation of hepatocyte proliferation.

Understanding the molecular mechanisms of CAR-mediated induction of hepatocyte proliferation
is very important, since the loss of the ability of hepatocytes to maintain a balance between growth
stimulating and inhibitory signals may be a trigger for tumor promotion. In 2004, the role of
CAR in hepatocarcinogenesis was first demonstrated using wild-type and CAR -/- mice. It has
been demonstrated that chronic administration of PB induces liver tumors in wild-type mice [68].
Recently, it was shown that the hepatocarcinogenic effect of CAR activators appears in combination
with β-catenin [69,70]. There is evidence that CAR-mediated activation of the Akt pathway causes
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redistribution of β-catenin from the cytoplasm to the nucleus in dividing hepatocytes [71]. CAR
activates yes-associated protein (YAP) signaling, which may also be involved in CAR-mediated liver
carcinogenesis [72,73]. The question of how liver tumors are promoted upon activation of CAR
remains open.

6. Conclusions

CAR was originally characterized as a xenosensor that, when activated by chemical compounds,
acts as a transcription factor for the activation of drug-metabolizing genes and transporter genes.
However, intensive studies have recently demonstrated its pleiotropic effects on cellular processes,
including gluconeogenesis and hepatocyte proliferation. It is likely that the processes, such as
drug metabolism, gluconeogenesis, and hepatocyte proliferation, triggered by CAR activation, are
interrelated. Thus, liver hyperplasia in response to xenobiotic exposure may be part of the adaptation
process: an increase in the liver is caused by the need for more detoxification enzymes. Proliferating
hepatocytes require a building material; therefore, CAR-mediated reduction of gluconeogenesis can
lead to the redistribution of glucose-6-phosphate into the pentose phosphate pathway. The pentose
phosphate pathway provides hepatocytes with ribose for the synthesis of nucleotides, which are
precursors for the biosynthesis of nucleic acids. At the same time, CAR-mediated suppression of
gluconeogenesis may contribute to the maintenance of the required level of NADPH, which is also a
product of the pentose phosphate pathway, to perform the protective function of drug metabolism under
conditions of limited energy consumption. Nevertheless, several researchers have suggested CAR as a
therapeutic target for glucose level correction or improving liver regeneration. This necessitates a better
understanding of the signaling mechanisms that are triggered when CAR is activated, because these
can have a profound effect on numerous processes, from drug–drug interactions and toxicity responses
to tumor promotion. Studies conducted in recent years have shown that many of the effects of CAR
are mediated through noncanonical signaling. In this regard, knowledge of such “nontraditional”
mechanisms of gene regulation with the participation of CAR is very important. In our opinion,
subsequent discoveries over the next few years will be made outside the “canonical” mechanism of
CAR-mediated gene regulation.
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