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ABSTRACT

High-throughput sequencing technologies enable
direct approaches to catalog and analyze snapshots
of the total small RNA content of living cells.
Characterization of high-throughput sequencing
data requires bioinformatic tools offering a wide
perspective of the small RNA transcriptome. Here
we present SeqBuster, a highly versatile and
reliable web-based toolkit to process and analyze
large-scale small RNA datasets. The high flexibility
of this tool is illustrated by the multiple choices
offered in the pre-analysis for mapping purposes
and in the different analysis modules for data
manipulation. To overcome the storage capacity
limitations of the web-based tool, SeqBuster offers
a stand-alone version that permits the annotation
against any custom database. SeqBuster integrates
multiple analyses modules in a unique platform and
constitutes the first bioinformatic tool offering a
deep characterization of miRNA variants (isomiRs).
The application of SeqBuster to small-RNA datasets
of human embryonic stem cells revealed that most
miRNAs present different types of isomiRs, some of
them being associated to stem cell differentiation.
The exhaustive description of the isomiRs provided
by SeqBuster could help to identify miRNA-
variants that are relevant in physiological and
pathological processes. SeqBuster is available at
http://estivill_lab.crg.es/seqbuster.

INTRODUCTION

Small silencing RNAs are a family of non-coding RNAs
of 20–30 nt in length, associated with members of the
Argonaute family of proteins that are effectors of the
small RNA-directed silencing. Small non-coding RNAs
are involved in the guidance of diverse formats of gene
regulation, typically resulting in reduced expression of
target genes. The different classes of regulatory RNAs
differ in the type of RNA precursor and proteins
required for their biogenesis, the constitution of the
complexes mediating the regulatory process and the
biological functions in which they participate [reviewed
in (1) and (2)].
In animals, the small RNA family includes highly

abundant and functionally important RNA classes, such
as small interfering RNA (siRNA), Piwi interacting RNA
(piRNA) and microRNAs (miRNAs). Early examples of
siRNA-mediated gene expression regulation included
silencing induced by exogenous double stranded RNA
(dsRNA) such as that from viruses. However, endo-
siRNAs deriving from transposons, heterochromatic
sequences, intergenic regions or mRNAs have been
recently described in Drosophila and mammals, although
their biological role remains largely unknown (3,4).
piRNAs have thus far been found only in germ cells,
repressing the activity of mobile genetic elements (5).
miRNAs are the best-known class of small silencing

RNAs. miRNAs are genomically encoded and expressed
as long precursor RNAs (pri-miRNAs) that are processed
by the RNAses III Drosha and Dicer to 20–24 RNA
duplexes. Mature miRNAs use base pairing to guide
RNA-induced silencing complexes (RISCs) to the
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30UTR of mRNAs with fully or partially complementary
sequences. The repression of target mRNA is a common
outcome of RISC recruitment and might occur through
translational inhibition or mRNA degradation. miRNAs
are ubiquitously expressed and are believed to regulate
most biological processes in a tissue- and temporal-specific
manner, with a potential role in a number of patho-
logical processes, including cancer and neurological disor-
ders (6–8).
The identification of a near complete set of small RNAs

in organisms is of fundamental importance to understand-
ing small-RNA-mediated gene regulation. The available
second-generation sequencing technologies, including
454/Roche, Illumina/Solexa and SOLID, offer a novel
perspective for small RNA characterization, enabling
quantitative estimates of expression profiles and the dis-
covery of novel small RNAs by direct observation and
validation of the folding potential of flanking genomic
sequence (9). One of the distinctive capabilities of direct
sequencing is the detection of variation in the mature
miRNA sequence. miRNA variability has recently been
described using several large scale sequencing strategies
in plants (10,11), mouse tissues and human stem cells
(12,13) and human brain samples (14). These miRNAs
variants have been designated as isomiRs (12). IsomiRs
can be the consequence of Drosha and Dicer enzymatic
activities during miRNA biogenesis, which cleave the
pre-miRNA at variable positions (50- and 30-trimming
IsomiRs). In addition pri-miRNA post-trancriptional
editing as a consequence of adenosine or cytidine
desaminase activities results in nucleotide changes at dif-
ferent positions of the mature miRNA (nt-substitution
isomiRs) (10–20). Besides, nucleotide additions at the
30-end of the mature miRNA have been reported as the
most common form of miRNA enzymatic modification
(30-addition isomiRs) (11,12). Therefore, deep sequencing
provides a more complete view of the miRNA
transcriptome in a quantitative and qualitative fashion.
A major problem arising from high-throughput

sequencing strategies is the management of huge
amounts of data. Illumina in its current sequencing pro-
tocols and capacities produces over 7 million reads per
sample. The analysis pipelines published to date are
focused on general characterization of small RNAs, dif-
ferential expression analyses between libraries and predic-
tion of new miRNAs (21–24). Here we present SeqBuster,
an easy to use web-based toolkit specifically designed to
process and analyze large-scale small RNA datasets.
SeqBuster offers different types of analyses, including the
identification of small RNAs, length and frequency distri-
bution and the comparative expression levels of different
small RNA loci between different samples. Notably,
SeqBuster is the first web server tool offering several
packages capable of deeply characterizing qualitative
and quantitative miRNA variability. To demonstrate the
pipeline usefulness, Illumina/Solexa deep sequencing data
provided by Morin et al. (12) have been loaded into
SeqBuster and re-analyzed. The results of this analysis
suggest that this bioinformatic tool has the potential to
uncover small silencing RNA-related mechanisms under-
lying biological processes.

METHODS

SeqBuster implementation

Raw data processing has been performed in a Java-based
GUI (Graphical User Interface) engine as a stand-alone
version of SeqBuster available at http://estivill_lab.crg
.es/seqbuster/download. SeqBuster web-interface is based
on DHTML (Dynamic HTML) and CGI (Common
Gateway Interface) architecture. Pre-analysis modules
have been developed in Perl language and for the
computational modules the R statistical package has
been used. The users may upload R/perl-based packages
to the server, offering new or modified analyses to the
community (SeqBusterDev Center). Data were stored
and handled in a MySQL platform. The database is
composed of three data classes: general data, sample
data and results data. The general data stores all reads
that have been pre-analyzed and the different annotations
according to the distinct databases used. In subsequent
experiments, only new sequences that have not been
detected previously will go through the pre-analysis
module. Each sequence is assigned with an ID number,
which is used as a key to interact with other tables and
modules. Sample data contain a table per experiment that
stores all the information needed for the posterior analysis
(ID sequence, size, frequency, annotation, type of annota-
tion and type of sequence variability). Results data consist
in a single table containing the name of every output file
resulting from a specific analysis and may be saved
permanently by the user.

Sequencing data

Public raw data produced by Illumina deep sequencing of
short RNAs in undifferentiated and differentiated human
embryonic stem cells (hESC and EB) (12) were
downloaded from ftp03.bcgsc.ca/public/hESC.

Pre-analysis of embryonic stem cells sequencing data

The machine used for the pre-analysis was a HP
Workstation xw9300 with a Dual Core AMD
Opteron(tm) processor 275 2194.15MHz and 8 Gb of
RAM memory. We have used the stand-alone version
for the adapter recognition step allowing only three
mismatches and no gaps. The minimal size of the
adapter recognized was set up to 10 nucleotides. The
time process was 30min for 6 millions reads. After that,
sequences were annotated using human pre-miRNA and
mature miRNA databases provided by the miRBase
(http://microrna.sanger.ac.uk/sequences/) available at the
SeqBuster server (15min required). In addition, using
the stand-alone version, the data were also mapped
onto mRNA and genome databases (1 and 2.5 h
required, respectively) (http://hgdownload.cse.ucsc.edu/
goldenPath/hg18/bigZips/). The annotated files were
uploaded to the server and stored for subsequent analyses.

For precursor-miRNAs annotation, the following
parameters were configured: one mismatch, three
nucleotides in the 30 addition variants and the priority
degree equal to 3. For miRNAs and miRNA*annotation,
the following parameters were configured: one mismatch,
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three nucleotides in the 30 or 50 trimming variants, three
nucleotides in the 30 addition variants, a priority degree
equal to 1 and 2 for the miRNA and the miRNA*
databases, respectively, and the parental database was
the precursor miRNA database. These options permitted
the annotations of the following alignments: (i) perfect
match, where the sequence is completely identical to the
reference sequence; (ii) trimming at the 30-end of the ref-
erence miRNA sequence, which is a miRNA variant
several nucleotides shorter or longer that matches to the
mature or precursor reference sequence, respectively; (iii)
trimming at the 50-end of the sequence, an analogous case
focused in the 50-end of the miRNA; (iv) nucleotide addi-
tions at the 30-end of the sequence and (v) nucleotide sub-
stitutions, showing nucleotide modifications with respect
to the reference sequence. The parameters for the align-
ment in mRNA and genome databases allowed as much as
one mismatch and up to three nucleotide additions in the
30-terminus. The priority parameter was equal to 4 and 5
for the mRNA and genome databases, respectively.

IsomiR analysis of embryonic stem cells sequencing data

For deep characterization of miRNA variants, we applied
several filters in the different ‘IsomiRs analysis’ packages.
First, the sequences considered in the analysis presented
a frequency above 3. Second, 10 was chosen as the
‘Contribution Cut-Off’ parameter, meaning that every
isomiR considered in the analysis contributes in more
than 10% to the total number of variants annotated in
the same miRNA locus. Third, we applied the Z-score
option to exclude sequencing errors as the possible cause
of the nucleotide changes observed in some variants (25).

Differential expression in embryonic stem cells
sequencing data

The sequencing performance in the samples to be
compared was evaluated using the ‘Sequencing Capacity’
package in the ‘Basic Analysis’ module of SeqBuster with
default parameters. In this package, the Willcoxon test
was applied to determine statistically significant differ-
ences in the frequency distribution between samples.
For the expression profiling we used the ‘Differential
Expression Analysis’ module. Two types of sequences
were considered in the differential expression analyses:
50-trimming and nucleotide-substitution isomiRs affecting
the seed region of the miRNA and sequences perfectly
matching the reference miRNAs. To perform these
analyses several options and filters were applied. First,
the frequency was normalized to r.p.m. (reads per
million). Second, the Z-test (26) was applied to show sta-
tistical significance in the differential expression. Third,
the Hochberg and Benajmini (27) method was applied to
correct the P-value assigned by the Z-test. Fourth, in
analyzing the seed region variants, 10 was chosen as the
‘Contribution Cut-Off’ value (see isomiR analysis for
description). Fifth, we applied the Z-score option to
exclude sequencing errors as the possible cause of
the nucleotide changes observed in the isomiR (25).
Sixth, ‘Reference’, ‘50 trimming’ and ‘Nt-substitution’
(start position = 2 and end position = 8) options were

selected in order to discriminate between sequences with
variants affecting the seed region. In the output resulting
from the analysis, we only showed sequences with a total
count contribution above 50, considered as the sum of the
frequencies of the two libraries.

Function enrichment analysis

We used the TargetScan algorithm that predicts biological
targets by searching for the presence of conserved 8-mer
and 7-mer sites that match the seed region of each isomiR
(28). We used the TargetScan custom option (www
.targetscan.org) to predict mRNA targets of the seed
region isomiRs differently expressed between libraries.
The mRNA targets for the corresponding reference
miRNAs differently expressed were identified through
the SeqBuster ‘Target prediction’ module using the
TargetScan (28) algorithm. Since the cooperative action
of multiple miRNAs can be multiplicative and sometimes
synergistic (29), mRNAs with more predicted target sites
for co-expressed isomiRs or reference-miRNAs should be
more drastically affected. Therefore, we considered targets
predicted by more than one hESC- or EB-enriched
isomiRs or reference miRNAs. Then, ingenuity pathway
analysis (IPA) was used for the subsets of genes
exclusively targeted by hSCE- or EB-enriched isomiRs
and those affected by the corresponding reference
miRNAs. The P-value associated with a biological
process is calculated with the right-tailed Fisher’s exact
test, considering the number of functions/pathways/lists
eligible molecules that participate in that annotation, the
total number of knowledge base molecules known to be
associated with that function, the total number of func-
tions/pathways/lists eligible molecules and the total
number of genes in the reference set (IPA tutorial).

RESULTS

SeqBuster overview

We have developed SeqBuster, a web-based bioinformatic
tool offering a custom analysis of deep sequencing data at
different levels, with special emphasis on the analysis of
miRNA variants or isomiRs. The pipeline for small RNA
analysis is available at http://estivill_lab.crg.es/seqbuster
(Figure 1) and includes a pre-analysis module, for raw
data processing, and an analysis module (tutorials 1–4
provided in the ‘Documentation’ section of the web-server
home page). Pre-analysis consists in the recognition and
removal of the adapter and the annotation of the
sequences. The several gigabytes of output that are
generated after a sequencing experiment are by far too
many data to be pre-analyzed using a web server tool.
Therefore, to perform different steps of the pre-analysis,
SeqBuster includes a java-based, user-friendly stand-alone
version available in the ‘Download’ option of SeqBuster
home page. Recognition and removal of the adapter is
performed using the stand-alone version (tutorial 1).
Annotation of the sequences can be performed with the
web server (tutorial 2) that contains the miRNAs and
pre-miRNAs databases (http://microrna.sanger.ac
.uk/sequences/) or through the stand-alone version using
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any custom database (tutorial 3). The pre-analysis
produces a table that is then uploaded to the server in a
project for subsequent analysis (tutorial 4). The project
may contain as many tables as sequencing experiments.
The analysis modules offered by the web server include

(i) a general characterization of small-RNA datasets, (ii) a
deep analysis of miRNAs variability (IsomiRs), (iii) differ-
ential expression analysis and (iv) target prediction for sets
of miRNAs. All tutorials for data pre-analysis and
analysis are illustrated with practical examples (the
SeqExample project). In addition, other R/perl-based
specific analyses are available in the ‘Download’ section
of the SeqBuster web-server home page.

In the following sections, we describe the algorithms
SeqBuster applies for pre-analysis and the different
options that can be selected by the user. Then we similarly
describe the web-based analysis module with special focus
on the miRNA variability analysis. Finally, we present the
results of applying SeqBuster to human stem cells
small-RNA sequencing data (12).

Pre-analysis

For the pre-analysis, we have developed a pipeline tool to
parse small RNA sequences from the adapter, collapse the
data to uniread set, count the number of reads per unique

Figure 1. (A) Workflow of SeqBuster pipeline showing the architecture and connection of pre-analysis and analysis modules. In the pre-analysis
module, raw data are processed for recognition and annotation. Annotation can be performed through the web server that offers the miRNA and
miRNA-precursor databases or through a stand-alone version using any custom database. The processed and annotated data are stored in a MySQL
database. The web interface permits the analysis of the data using several R-based packages. The output of every analysis is visualized through a
Dynamic HTML format and stored in the server or downloaded to the local machine. (B) Scheme of the main menu at SeqBuster home page. The
different choices offered by each option in the menu are highlighted in light yellow boxes.
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sequence, map sequences to different databases and
annotate sequences with basic information. The adapter
recognition and removal is performed using the SeqBuster
stand-alone version, supporting raw data from Illumina/
Solexa and FLX454 technologies (see tutorial 1 for a
detailed procedure). The algorithm implemented for
adapter recognition generates all possible candidate
adapters for each sequence, considering that the adapter
starts at position 15 to position �10 of the end of the
sequence. For instance, for a read of 35 nucleotides, 11
candidate adapters would be generated, starting at 11 dif-
ferent positions (positions 15–25). This strategy ensures
that at least the first 10 nucleotides of the adapter are
being recognized. The starting and final positions to
generate all candidate adapters can be modified according
to the user criteria. For each read, these candidate
adapters are aligned to the adapter sequence using a mod-
ification of the Needleman–Wunsch algorithm (30) that
does not allow gaps, therefore increasing the speed of
the process. Then the alignment with the best score is
selected. In addition, we have established a default value
of three mismatches in the alignment process, since these
conditions ensure at least 85% of identity in the adapter
alignment; however, this threshold can be varied
according to the user requirements. For each read, the
recognized adapter sequence is removed and a table is
generated containing all unique sequences and the corre-
sponding counts. Overall, this strategy resulted in an
increased number of recognized sequences compared
with the original analysis performed by Morin et al. (12)
(SeqBuster application on a biological example).

After recognition and removal of the adapter, the
sequences need to be annotated against different
databases. The individual steps for the computational
annotation are as follows: (i) load all the databases
against which the sequences are going to be annotated if
using the stand-alone version; (ii) chose a database; (iii)
map to the chosen database using Mega BLAST; (iv)
upload the annotated file to the SeqBuster web server if
using the stand-alone version and (v) repeat steps ii—iv
with other databases. SeqBuster has implemented the
Mega BLAST algorithm of the BLAST repository

instead of BLASTN (www.ncbi.nlm.nih.gov/blast/
megablast.shtm) because an increased number of
sequences were annotated, using the data of Morin et al.
(12) (Table 1). This is the consequence of the application
of two consecutive alignment strategies that consider dif-
ferent reward and penalty parameters for matches and
mismatches, respectively (see Mega BLAST at www.
ncbi.nlm.nih.gov/BLAST for further information). In
one of the procedures, default reward and penalty param-
eters were considered. In the other method, a reward
parameter of 3 and a penalty parameter of �2 were used
in order to force the alignment at the beginning of the
sequences. In both procedures a word size of seven was
used. This resulted in an increased number of sequences
being annotated with a mismatch at the beginning and the
end of the sequence (Figure 2).
For annotation, SeqBuster differentiates two types of

databases: the parental and child databases (tutorials
2 and 3). This permits the identification of sequences in
the child database that vary in their extremes but match
perfectly with the parental database. For instance,
miRNA is a child database and the precursor-miRNA is
the corresponding parental database. Using the child
and parental databases, the isomiRs resulting from
variations in the cleavage positions in the pre-miRNA
during miRNA biogenesis are annotated as 50- or
30-trimming variants. The number of positions up-stream
(50-trimming) or down-stream (30-trimming) of the refer-
ence sequence to be considered in the trimming variants
can be custom set.

Figure 2. Percentage of reads with a mismatch at different positions of the reference miRNA detected by SeqBuster, considering two different
annotation strategies. Penalty and reward parameters of �3 and 1 (black bars) or �2 and 3 (grey bars) were used. In both strategies a word size of 7
was considered.

Table 1. Benchmarking for the alignment of hESC reads against

miRNA data set, using BlastN or megablast

Parameters BlastN megablast

word size=7, penalty=�3, reward=1 20 790 23 444
word size=7, penalty=�2, reward=3 23 644 25 152

The table shows the number of sequences successfully annotated
depending on the parameters selected.
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For annotation using a parental database (for instance
precursor-miRNAs or genome) or a child database (for
instance miRNA), the parameters offered by SeqBuster
web-server or stand-alone version are (i) the ‘word size’
parameter that is the size of the initial word that must be
matched between the database and the query sequence
(Blast manual at www.ncbi.nlm.nih.gov/BLAST); (ii) the
‘Mismatch’ parameter meaning the number of mismatches
allowed in the alignment; (iii) the ‘Priority’ parameter that
provides a priority degree to the database in each experi-
ment (for instance a priority of 1 for ‘miRNA’ and 2 for
‘genome’ databases means that all sequences annotated as
miRNA and genome are going to be labeled as miRNA)
and (iv) the ‘Addition’ parameter that refers to the
number of nucleotides that will be considered as a result
of the nucleotide addition process that results in an
extended sequence in the 30-terminus.

Analysis module

Once the raw data have been processed and annotated,
several analyses can be easily performed through the
‘Analysis’ option in the SeqBuster web-server home page
(tutorial 4). Each analysis module contains several
packages, which in turn, hold multiple options and
filters both for the analysis and for the visualization of
the results. The output is presented in the form of
downloadable figures and tables.

Basic analysis: general characterization of small
RNA datasets

The basic analysis includes several packages. The ‘General
information’ package offers the analysis of the distribution
of the sequences in different lengths or classes. The
‘Frequency distribution’ package provides an analysis of
the frequency distribution of different types of sequences.
The ‘Adapter quality’ package is used to visualize the
quality of the adapter (the 10 first nucleotides) in selective
sequences. This may provide an idea of the quality of the
adapter-attached sequence. The ‘Experiment capacity’
package explores the sequencing performance or
sequencing capacity in multiple sequencing experiments.
To this aim, all sequences are ordered by decreasing fre-
quency. The resulting distribution should be similar in
experiments that need to be compared in differential
expression analysis. The algorithm applies the Willcoxon
test to determine statistically significant differences in the
frequency distribution between samples. If the distribution
is significantly different, several normalization strategies
can be applied to make the samples comparable. To this
aim, SeqBuster includes a basic equation to scale the
frequencies according to the following equation: scaled
freq n=(freq n/sum [freq all seqs])� scale-value. In
addition, it may happen that two samples show a different
sequencing capacity due to extreme values, for instance
few sequences in one of the samples presenting an
extreme number of counts or many sequences showing
scarce counts. These extreme values can be removed
from the analysis, through the selection of an upper and
lower frequency cutoff in the ‘discard upper quantile’ or
‘discard lower quantile options. Finally, different types of

metric centers (mean, median, min, max, etc.) may be
applied to normalize the frequency distributions. In all
the packages several parameters can be specified for the
analysis including the sequences length and frequency and
the type of database to be considered. In addition, the
sequence frequency values can be expressed at different
logarithmic scales or represented as a percentage or as
absolute values. Finally, for some graphic representations
of the analysis output, the user can also choose between
pie and bar charts.

IsomiR analysis: characterization of the miRNA
variability

One of the more innovative advantages of deep
sequencing is the detection of sequence variability.
SeqBuster offers the selective analysis of the 50-trimming,
30-trimming, nt-substitution and/or 30-addition isomiRs
using different packages. The ‘IsomiR distribution’
package shows the percentage of miRNAs presenting the
different types of variability (or IsomiRs) (Figure 3). In
the output analysis, a histogram displays the proportion
of miRNAs with different types of isomiRs in all the
selected samples. Statistical differences in the abundance
of the different types of variability are determined, using
the Fisher test.

In thinking about the possible physiological importance
of the isomiRs, a reasonable possibility exists that the
IsomiRs target new mRNAs; however, since the variant
and the reference miRNA sequences are very similar it is
likely that both small RNAs compete for a number of
target mRNAs. Therefore, to approach the issue of the
possible relevance of each variant, the ‘IsomiR distribu-
tion’ output graph illustrates the frequency of the isomiRs
with respect to that of reference miRNAs, in a mirror
histogram showing a brown color scale. For each
isomiR, a ratio is calculated following the equation: fv/
(fr+ fv) � 100, where fr is the frequency of the reference
miRNA sequence and fv is the frequency of the isomiR.
Values vary between 100 and 0. The closer the value is to
100 the higher the frequency of the isomiR is with respect
to the reference sequence (dark brown). On the contrary,
values close to 0 indicate that the frequency of the isomiR
is negligible compared with that of the reference sequence
(light brown). In addition, in the output analysis, a table
appears below the histogram that groups the miRNAs
according to the number of variants (one variant in
white; two variants in gray; or more than two variants,
in black), the type of isomiR and the relative abundance of
the isomiR with respect the corresponding reference
miRNA (brown color scale). All the miRNA appear
listed when clicking inside any part of the table, showing
the frequencies of the variant in each sample.

The ‘IsomiR by nucleotide position’ package shows the
percentage of miRNAs with a specific type of variant
according to the nucleotide type and position involved
(Figure 4A). In the analysis output, a histogram displays
the percentage of miRNAs with a selected type of variabil-
ity, at specific positions. The color pattern in the upper
bars indicates the proportion of each type of nucleotide
present in the isomiR, at every desired position. To study
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a possible significant enrichment of a nucleotide variant in
a certain position (indicated with an asterisk), a P-value is
assigned using the bootstrapping method (1000 permuta-
tions). The nucleotide contribution at every position of the
reference-miRNA collection is considered as the popula-
tion for the permutations. The proportion of the isomiRs
with respect to the reference miRNA is presented in a
mirror histogram (brown color scale). In the output
graph resulting from the analysis of the nt-substitution
variants, the upper histogram shows the nucleotides
present in the reference-miRNA and the mirror histogram
those present in the isomiR. A table below the histogram
shows the different nucleotides involved in every position
of the variant. By clicking on the nucleotides, a list of the
miRNAs and the corresponding frequency appears for
every sample.

The ‘isomiR full description’ package provides a
detailed visualization of all the isomiRs (one or several
types of variability may be chosen) in a selected sample
(Figure 4B). In the output analysis, a table shows a list of
the miRNAs presenting the variants specified in the
analysis. In this table, the type of nucleotide, the
position and the frequency with respect to the reference
miRNA are highlighted.
The ‘Nt-substitution pattern’ package offers a visualiza-

tion of the number of miRNAs showing a specific type of
nucleotide substitution at different positions of the refer-
ence miRNA (Figure 4C). This is presented in the form of
a table in the analysis output. Nucleotides in the rows
correspond to those found in the reference miRNAs and
nucleotides in the columns are those found in the isomiRs.
The identification of the types of nucleotide substitutions

Figure 3. The ‘IsomiR distribution’ package scheme. (A) Within the ‘IsomiR analysis’ several packages appear in a general menu. After selecting the
‘isomiR distribution’ package the samples for the analysis should be chosen. Up to four samples can be loaded to the analysis. Different options and
parameters may be configured in order to customize the study (tutorial 4). (B) In the output analysis, a histogram displays the proportion of
miRNAs with different types of isomiRs in all the selected samples. For every type of variability, the upper part of the graph shows the proportion of
miRNAs presenting one (white), two (grey) or more than two (black) isomiRs. The abundance of the isomiR with respect to the corresponding
reference miRNA is mirrored in the lower graph in a brown color scale. The five brown color intensities from dark to light indicate the frequency of
the isomiR with respect to that of the reference miRNA: 1, > 80%; 2, 60–80%; 3, 40–60%; 4, 20–40% and 5, < 20%. Below the graph, a table helps
to obtain the complete information of the analysis. All the miRNAs contained in the histogram can be listed by clicking on the corresponding link.
Those miRNAs highlighted in pink are commonly detected in all the samples examined.
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affected in a significant number of miRNAs is established
with a P-value. This P-value is assigned using the
bootstrapping method above described. To study in the
population of modified nucleotides present in the isomiR,
each nucleotide is assigned the same probability (1/4) in
the statistical method. Finally, the ‘Invariable miRNAs’
package provides a list of the miRNAs that do not present
variability.
For deep characterization of miRNA variants

SeqBuster offers several filters in the different packages.
Sequences to be considered in the analysis can be filtered
according to specific length and/or frequency cutoff. The
type of isomiRs and the specific positions and number of

nucleotides for characterization can also be specified. In
addition SeqBuster permits the selection of isomiRs
contributing in more than a specific percentage, to the
total number of variants annotated in the same miRNA
locus (‘Contribution cutoff’ parameter). Finally, a
probabilistic Z-score option can be selected to exclude
sequencing errors as the possible cause of the nucleotide
changes observed in some variants. This model is based on
previous determinations of Illumina sequencing error rates
that have been calculated for every position of the
sequence and every type of nucleotide change, in
genomic libraries (25). The Z-score is calculated according
to Equation 1 that considers the frequency of the variants

Figure 4. Summary of the main packages available in SeqBuster IsomiR analysis module. For the three packages, the parameters that can be
configured (tutorial 4) and the analysis output are shown. (A) ‘IsomiRs by nucleotide position’ package. This example shows 50-trimming variants
involving three positions upstream and three positions downstream of the reference-miRNAs. The output shows the proportion of miRNAs with a
trimming variant in a specific position. In the upper bars, the color pattern indicates the proportion of miRNAs showing a specific nucleotide being
involved in the trimming variants. The lower bars show the proportion of the isomiRs with respect to the corresponding reference miRNA in a
brown color scale, as described in Figure 3. A list of miRNAs involved in each type of variant is displayed when clicking inside the table. (B) ‘IsomiR
full description’ package. The output analysis of this example shows a list of some of the miRNAs presenting 50-trimming variants involving three
positions upstream and three positions downstream of the reference-miRNAs. Every cell represents a position. The color pattern on the left half of
the cell indicates the type of nucleotide present in the isomiR, and that of the right side the proportion of the isomiR with respect the reference
miRNA. (C) ‘Nt-substitution pattern’ package. The output analysis of this example shows a table with the number of miRNAs presenting any of
the 12 possible nt-substitution events in positions 2–5 of the reference miRNA. A summary table showing the number of miRNA with any of the
12 possible nt-changes significant changes is also represented. The overall nt-substitution pattern occurring in a statistically significant number of
miRNAs is shown in another table. The list of miRNAs for each class of nt-substitution can be retrieved by clicking on the summary table.
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(po), the expected frequency error (pe) and the sum of the
frequencies of all the sequences mapping in the same
miRNA locus (total).

Z ¼
pe þ poffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pe 1� peð Þ=total
p 1

Since the Z-score follows a standard normal distribu-
tion, a P-value can be established for each variant, being
considered as true variants, those presenting a P< 0.05.
In conditions in which the Z-score cannot be applied:
pe� total< 5 (Equation 1), the P-value is calculated as
the sum of the binomial distribution tail (Equation 2),
where N is the number of sequences in a locus, p is
expected frequency and v is the frequency of the
observed variant.

p ¼
XN

n¼v

Binomialðn, N, pÞ 2

The P-value obtained by any of these two strategies is
transformed into a q-value using the false discovery rate
correction. If the Z-score option is selected, the variants
considered as sequencing errors are not included in subse-
quent analyses.

Comparative expression analysis

One of the main goals of small-RNA high-throughput
sequencing is to characterize the expression across
tissues or states and to understand the changes that take
place in different physiological and pathological condi-
tions. In sequencing experiments, we can detect and
quantify the changes in the relative frequencies of
small-RNAs within samples. For differential expression,
SeqBuster includes a sample cluster analysis and
small-RNA differential expression analysis modules. In
both modules, SeqBuster offers two types of packages:
(i) a general comparative analysis in which all the
sequences or a specific type of database can be chosen
and (ii) a package to specifically study the miRNAs, pro-
viding the selective analysis of the different types of
miRNA-variants. If all sequences mapping in the same
miRNA locus are considered collectively, the frequency
is expressed as the sum of the frequencies of all sequences
(reference miRNAs and variants) mapping onto the same
locus. If a type of isomiR is selected, for instance
50-trimming variants, the output analysis shows for every
miRNA locus, the frequency of all the sequences present-
ing 50-trimming variants and the frequency of the rest of
the sequences collapsed into another group. The frequency
of all the sequences mapping in a specific miRNA locus
will be distributed in as many groups as different types of
variants are selected. Furthermore, different parameters
permit to direct the analysis to a selective region of the
miRNA. For instance, SeqBuster allows the selective char-
acterization of nucleotide-substitution variants consider-
ing only the seed region (nucleotides 2–8 of the reference
miRNA). In addition the 50- and 30-trimming size as well
as the number of added nucleotides in the 30-addition
variants can be chosen. Through the selective specification

of the kind of isomiRs, SeqBuster permits the dissection of
a complex miRNA expression landscape.
To perform comparative expression analysis, SeqBuster

provides several options to express and normalize the fre-
quency of the sequences (see ‘Sequencing capacity’ in the
‘Basic analysis’ option of the SeqBuster web-server). As in
the isomiR analysis module, the contribution cutoff
parameter and the Z-score to discard sequencing errors
as the possible cause of the nucleotide changes may be
applied.
In the hierarchical sample, clustering analysis SeqBuster

offers two algorithms based on the overall expression
profile of the small-RNAs/miRNAs. One of the algo-
rithms is a standard cluster analysis that uses two basic
R functions: (i) cor is used to calculate the correlation
coefficients used to make the distance matrix and (ii)
hclust is used to group the samples with the complete
method (see R tutorials for detailed description). The
alternative algorithm is based on the Dirichlet
probabilistic model to calculate the overall similarity
between the miRNA/small-RNA expression profiles of
two samples as described in (21). This analysis uses a
Bayesian probabilistic framework that considers fre-
quency distributions in which most small-RNAs occur at
low frequency and only a few display high counts.
In the small-RNA differential expression module, differ-

ent tests can be applied to show statistical significance in
the differential expression: the Z-test (26), binomial model
(31), Bayesian model (32) and Fisher-test (33).
Furthermore, SeqBuster offers the possibility to control
the false discovery rate by applying the Hochberg and
Benjamini method (27) that corrects the P-value
assigned by the statistical test.

Target prediction

Several programs have been developed to predict miRNA
targets. SeqBuster contains an analysis module to explore
the miRNA targets using the miRBase (34), PicTar (35)
and/or TargetScan (28) algorithms. This analysis requires
a file with a list of the miRNAs for which the targets are
going to be identified. The user can select the targets pre-
dicted by one of the algorithms or only those commonly
predicted by two or three algorithms. In addition, genes
being targeted by a minimum number of miRNAs can be
selected.

Other packages

Additional packages are available in SeqBuster to be run
locally in the user machine since the proposed analyses are
high time and memory consuming to be processed on the
web-server (‘SeqBusterPackage’ in the ‘Download’ section
in the web server). Furthermore, any user can upload a
custom package on this section to share with the commu-
nity allowing a continue evolving platform dedicated
to the small-RNA analysis. At present, the website
provides R and Perl-based programs that implement the
algorithms for human miRNA prediction, single
nucleotide polymorphism (SNP) analysis and transcrip-
tion factor enrichment analysis (see the corresponding
tutorials for a detailed explanation). The ‘human
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miRNA prediction’ package uses the algorithm described
in the microPred pipeline (36) that is based on a
non-comparative computational method for the effective
identification of pre-miRNAs among the hairpin second-
ary structures predicted from the human genome. A test
input file is requested containing all sequences for which
the analysis is going to be performed. The package
provides an output list of the candidate miRNAs. The
‘SNP analysis’ package contains genomic coordinates
for available SNPs (http://hgdownload.cse.ucsc.edu/
downloads.html). The algorithm produces a table
showing all the sequences that have a nucleotide substitu-
tion event at the same position where a SNP has been
detected. Furthermore, allele SNP description can be
added to the output table. The ‘Transcription factor
enrichment’ package addresses the problem of comparing
and characterizing the promoter regions of miRNAs with
similar expression patterns, using the algorithm described
by Blanco et al. (37). The package requires a test file con-
taining a list of the co-regulated miRNAs and a list with
all the expressed miRNAs. To identify a possible signifi-
cant enrichment of cis-regulatory elements in co-regulated
miRNAs, the algorithm assigns a P-value using the
permutation-based simulation.

SeqBuster test case: human stem cells sequencing data

Using SeqBuster we have computationally analyzed the
data of Illumina deep sequencing of short RNAs in
undifferentiated (hESC) and differentiated human embry-
onic (EB) stem cells (12)]. First, we recognized and
removed adapters from the reads, and second, we
annotated against precursor miRNA and mature
miRNA databases downloaded from the miRbase repos-
itory. Of the total number of reads, 55% was classified as
miRNA and 5% as pre-miRNA in both libraries,
improving by 10% the previous annotation procedure
(12). Our analysis detected 442 different miRNAs genes,
109 more than the previous analysis (Supplementary
Table S1), indicating that our pre-analysis strategy was
more efficient for the detection of miRNAs. The counts
for the miRNAs detected by SeqBuster that included the
reference miRNAs and the corresponding isomiRs
correlated in 99% with the counts found in the original
analysis. However, our strategy resulted in the recognition
of an increased number of different sequences (2-fold)
being annotated as miRNAs (most of them were identified
as 30-trimming isomiRs).
In the hSCE and EB libraries the majority of the

miRNAs displayed isomiRs and only 17% remained
invariable, 19 miRNAs being common between the two
libraries (Supplementary Table S2). A total of 3566 differ-
ent isomiRs were detected, most of them being the
result of variations in the cleavage position at the 30-end
of the pri-miRNA (30-trimming) (Figure S1). In this case,
a considerable proportion of miRNAs showed two or
more 30-trimming variants. However, the majority of the
50-trimming variants (50-trimming), presented isomiRs
with only one change. The majority of the variants
resulting from single nucleotide substitutions with
respect to the reference sequence (nt-substitution) or

50-trimming variants showed a low frequency compared
to that of the reference miRNAs. However, variants
affecting the 30-terminus of miRNAs, especially the
30-trimming variants, showed a variable proportion with
respect to reference miRNAs.

We analyzed the positions and nucleotides involved in
the different types of variants (Supplementary Figure S2).
Most 30-trimming variants involved positions �1 (one
nucleotide upstream) and +1 (one nucleotide down-
stream) of the 30-end of the reference miRNA, while the
majority of the 50-trimming variants involved the position
�1 of the 50-terminus of the reference miRNA, matching
the miRNA precursor. Furthermore, the nucleotide
preferentially involved in the most abundant 30- and
50-trimming variants was a U, which suggests a preference
of the dicing machinery for this nucleotide. In analyzing
the 30-addition variants (data not shown), the vast
majority consisted in a single A or U addition in the
30-end of the mature miRNA, in accordance with
previous reports (12,13).

SeqBuster revealed that 50% of the miRNAs detected
in each library presented nt-substitution variants
(Supplementary Figure S1). Given the putative relevance
of these sequences, we analyzed the nt-substitutions at dif-
ferent positions of the mature miRNA (Supplementary
Figure S3). In the SeqBuster analysis, we only considered
nt-substitutions significantly different from these error
rates applying the Z-score probabilistic model. In line
with previous observations (13), variability of miRNAs
was low in positions 1–8 containing the seed region
(Supplementary Figure S3A), which agrees with the
importance of these sites in selective gene expression
regulation. Several nt-substitution variants were identified
in both libraries, involving the same type of nucleotide
change (Supplementary Table S3). For instance,
miR-30a and miR-30d presented nt-substitutions at
position 3 of the miRNA involving in all cases a U to G
modification. Since this substitution affects the seed
region, new targets may be recognized by these isomiRs.

To contrast small RNA expression between biologically
comparable samples, similar sequencing efficiencies should
be considered. The sample processing for Illumina deep
sequencing involves different steps that may influence the
sequencing output, including a PCR-amplification of
the cDNA obtained by retrotranscription of the small
RNAs ligated to specific adaptors. To evaluate the
sequencing efficiencies in the samples to be compared we
used the ‘Sequencing capacity’ package of SeqBuster. The
analysis revealed an identical frequency distribution in
both samples (Supplementary Figure S4), making them
comparable for differential expression profiles.

We performed two types of comparative expression
analyses using the ‘Differential expression analysis’
module. In a first approach, we used only sequences
annotated as the reference miRNAs. We chose the Z-test
to show significance in differential expression, since it is the
most restrictive test used for evaluation of differently
expressed sequences in high-throughput sequencing
methodologies (26). A total of 61 upregulated miRNAs
(ratio> 1.5; P< 0.05; frequency (hESC+EB) > 50) and
39 downregulated miRNAs (ratio< 0.5 and P< 0.05;
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frequency (hESC+EB) > 50) were detected in the hESC
library (Supplementary Table S4). A similar number of
deregulated miRNAs was found in the original analysis.
Furthermore, 95% of miRNAs showed the same pattern of
deregulation (12). When studying the correlation between
the expression pattern of all reference miRNAs and the
corresponding isomiRs [frequency (hESC+EB) > 2],
our analysis showed that the majority (>80%) of
up-regulated miRNAs displayed an up-regulation of the
corresponding 30- or 50-isomiRs. A similar result was
obtained when considering the downregulated reference
miRNAs (Supplementary Table S5).

In the second approach we considered isomiRs affecting
the seed region of the reference miRNA, as the seed region
is essential in recognition and expression modulation of
target mRNAs. These included 50-trimming variants that
involved dicing at positions �2 to +2 with respect to the
mature reference miRNA, and nt-substitution variants
involving any nucleotide change in positions 2–8 of the
reference miRNA. A total of 21 upregulated isomiRs
(ratio� 1.5; P< 0.05; frequency (hESC+EB) >50) and
12 downregulated isomiRs [ratio� 0.5; P< 0.05; fre-
quency (hESC+EB) >50] were found in the
non-differentiated stem cell library (Supplementary Table
S6). To gain insights into the biological pathways affected
by the isomiRs targets, we compared the biological func-
tions most likely affected by the genes exclusively targeted
by the isomiRs with those affected by genes targeted by
the corresponding reference-miRNAs. The results high-
lighted that some of the top significantly enriched biolog-
ical functions were specific of the targets of hESC- or
EB-enriched isomiRs. These results underline the potential
contribution of isomiRs in the modulation of new biolog-
ical pathways.

DISCUSSION

In this work, we present SeqBuster, a web-based
bioinformatic tool offering a custom analysis of deep
sequencing data at different levels, with special emphasis
on the analysis of miRNA variants or isomiRs. While the
currently existing pipelines address specific questions such
as differential expression or miRNA prediction (21–24),
SeqBuster integrates these and other types of analyses in
a single user-friendly platform. Furthermore, SeqBuster is
the first tool providing an automatized pre-analysis for
sequence annotation. Several features point out
SeqBuster as a unique tool for the characterization of
large-scale sequencing data of small RNAs. First,
SeqBuster includes a stand-alone version that permits
the annotation against any custom database installed in
the local machine independently of the web server. This
offers a pre-analysis that is not restricted to the databases
stored in the web server, overcoming the limitations
in the storage capacities detected in other web-based
bioinformatic tools. Second, the R environment, in
which the different analysis packages have been
developed, permits the incorporation and/or modification
of different types of analysis, which may be focused not
only on small non-coding RNAs but also on any type of

sequence generated in large-scale sequencing strategies.
This provides a continuous evolving platform, where
future analysis packages may be easily added to the repos-
itory. Third, SeqBuster is highly versatile offering a wide
range of options both in the pre-analysis for annotation
purposes and in the different module analysis for data
manipulation. An example of this flexibility is illustrated
by the pre-analysis strategy applied to the hSCE and EB
raw data. The high number of recognized miRNAs, 109
more than in the previous analysis, corresponds mostly to
newly discovered miRNAs. However, 15% of these
miRNAs were already known at the time of the original
analysis (Supplementary Figure S2B) and were only
detected in our study as a consequence of the algorithm
used for the adapter recognition/removal and the align-
ment parameters. For the adapter recognition, we
integrated a modified version of the Needleman–Wunsch
algorithm that resulted in the adapter detection in a
greater number of sequences compared with the original
analysis. For the annotation step, we implemented a
novel strategy using Mega BLAST instead of BLASTTN
to achieve an increased number of annotated sequences.
Although the time of the process is shorter using newer
algorithms like SOAP (38), the number of sequences
annotated is significantly lower compared to more tradi-
tional algorithms like BLAST or Mega BLAST
(http://www.ncbi.nlm.nih.gov/blast). SeqBuster flexibility
is extensive to the analysis modules, where the user can
choose different statistical approaches, normalization
strategies and the type of visualization of the miRNA
variability, therefore providing a deep control of the
analysis process. These features allow a wide plasticity
that is essential in the highly evolving field of high-
throughput sequencing data analysis and the non-coding
RNA field.
One of the distinctive packages offered by SeqBuster is

the analysis of the variability with respect to the reference
mature miRNA that has been recently highlighted in a
number of studies (11,12,18,39). The analysis of the
small RNAs in hESC and EB revealed different types of
variability for the major part of miRNAs, confirming
that the miRNA transcriptome is more complex than
previously suggested. SeqBuster revealed that most
miRNAs displayed 30 trimming and 30-addition events
that showed a variable proportion with respect to the ref-
erence miRNA. This agrees with the concept that
30-variants are more permissive, having moderate conse-
quences in gene expression regulation, as previously sug-
gested in animal and plants miRNAs (40–42).
The ‘IsomiR analysis’ packages highlighted significant

nucleotide modifications along the mature miRNA.
Several lines of evidence argue against RT–PCR and
sequencing errors as contributors to sequence dis-
crepancies with respect to the reference miRNA. First,
the frequencies of the nucleotide modifications were
remarkably higher compared to the estimates attributable
to Illumina sequencing errors (25). Second, the positional
non-randomness of nucleotide changes along the length of
the miRNA seen in both libraries. Third, analogous
nucleotide modifications were found in two independent
libraries. Finally, nucleotide changes, insertions and
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deletions have been reported in previous studies using dif-
ferent sequencing strategies. These nucleotide substitu-
tions have been described in few miRNAs as pri-miR
precursor editing changes from A to G attributed in part
to A to I deaminations, which lead to a repression in the
maturation of the miRNA (11,16–20,43). Other types of
nucleotide substitutions have been reported in a
meta-analysis of small-sequencing data in plants (10,11)
and in the let family of miRNAs in different mouse cells
lines (13). SeqBuster revealed that the nucleotide substitu-
tions for the majority of the miRNAs were distinct from
the classical A to I editing, suggesting that alternative
changes are not limited to the let-7 family of miRNAs in
animals. These modifications may result in alternative
base pairing between the variant and the target mRNA,
possibly affecting the efficiency of gene regulation, as
previously described (13,40).
The ‘IsomiR analysis’ packages showed a decreased

proportion of miRNAs presenting length and sequence
heterogeneity at the 50-end of the miRNA, with the abun-
dance of most of these variants negligible, compared with
that of the reference sequence. This suggests that the
50-terminus of the miRNAs is specially protected from
variations, which agrees with the crucial role of Watson–
Crick base pairing of the 50-seed region of the miRNA
with the 30UTR of the mRNA, for gene targeting.
In line with this, scarce miRNAs presented nucleotide
substitutions at positions 1-11 of the miRNA, contain-
ing the 50-seed (nt 2–8) and the cleavage (nt 10–12) sites
(44) that are typically base paired in the miR:mRNA
duplex.
The ‘miRNA differential expression’ package revealed

miRNA and isomiR expression modiffications linked to
stem cell differentiation processess. Our analysis showed
that the expression pattern of the isomiRs correlated with
that of the corresponding miRNAs, suggesting that the
mechanisms modulating the degree of expression of the
isomiRs and the corresponding miRNAs are parallel in
most cases. Given the essential role of the seed region
for mRNA target recognition and silencing (45), we
applied SeqBuster to analyze the differential expression
of isomiRs affecting nucelotides 2–8 in hESC and EB.
SeqBuster identified 50 trimming and nt-substitution seed
region variants that were differently expressed between
hESC and EB. The new putative targets identified by
these differently expressed isomiRs highlighted novel
enriched biological functions.
Overall, the present analysis strongly suggests a biolog-

ical function for this sequence plasticity in miRNAs, which
may have broad implications in mRNA targeting, stability
and/or gene expression regulation mechanism. The exhaus-
tive description of the different types of miRNA variabil-
ity provided by SeqBuster is extremely useful to uncover
tissue-specific isomiR distributions relevant in develop-
ment, physiology and disease conditions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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