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Abstract: In geometry and topology, a family of probability distributions can be analyzed as the
points on a manifold, known as statistical manifold, with intrinsic coordinates corresponding to the
parameters of the distribution. Consider the exponential family of distributions with progressive
Type-II censoring as the manifold of a statistical model, we use the information geometry methods to
investigate the geometric quantities such as the tangent space, the Fisher metric tensors, the affine
connection and the α-connection of the manifold. As an application of the geometric quantities, the
asymptotic expansions of the posterior density function and the posterior Bayesian predictive density
function of the manifold are discussed. The results show that the asymptotic expansions are related
to the coefficients of the α-connections and metric tensors, and the predictive density function is the
estimated density function in an asymptotic sense. The main results are illustrated by considering
the Rayleigh distribution.

Keywords: information geometry; exponential family of distributions; progressively type-II censoring
scheme; Bayesian prediction; asymptotic expansions

MSC: 62N05; 62C10; 62E20; 53B05

1. Introduction

From the geometrical viewpoint, a parametric statistical model can be considered a
differentiable manifold, and the parameter space can be regarded as a coordinate system
of the manifold [1,2]. Let F = { f (x; θ), θ ∈ Θ} be a parametric statistical model with
respect to some σ-finite reference measure µ, where θ is a real k-dimensional parameter
vector belonging to some open subset Θ of the k-dimensional real space Rk. For simplicity,
a random variable X and its observed value x are uniformly denoted by x in this paper.

When the density function f (x; θ) is sufficiently smooth in θ and it is differentiable
as a function of θ, it is natural to introduce the structure of an k-dimensional manifold in
the statistical model F , where θ plays the role of a coordinate system. The geometrical
quantities, such as connection, divergence, flatness, curvature and tangent space, play
a fundamental role in the statistical inference and asymptotic theory (see, for example,
Komaki [3,4] and Harsha and Moosath [5]).

In reliability engineering, a life testing experiment is one of the effective ways to
obtain reliability information of a product. To save time and reduce the cost of a life
testing experiment, censoring methodologies are often applied so that the experiment is
terminated before all the items on the life-testing experiment fail. Some commonly used
censoring schemes include the Type-I and Type-II censoring schemes, where the life-testing
experiment will be terminated at a prefixed time point and the life-testing experiment will
be terminated as soon as the m-th (m is prefixed) failure is observed, respectively. In other
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words, the experimental time is prefixed for Type-I censoring scheme and the number of
observed failures is prefixed for the Type-II censoring scheme (see, for example, Ng [6]).
The Type-I and Type-II censoring schemes have been generalized to a more complicated
and flexible censoring scheme such as progressive censoring schemes [7–9] and hybrid
censoring schemes [10,11]. For progressive Type-II censoring schemes, the conventional
Type-II censoring scheme is extended to situations wherein censoring occurs in multiple
stages. A progressive Type-II censored life-testing experiment will be carried out in the
following manner. Suppose n items are placed on a life-testing experiment and we assume
that these n items have lifetimes following distribution with density function f (x; θ). It is
planned that m failures will be observed and Rr items are randomly removed (i.e., censored)
from the experiment at the time of the r-th failure. More specifically, at the time of the first
failure (denoted by X1:m:n), R1 randomly selected items from the n− 1 surviving items are
removed from the life testing experiment; then, the experiment continues and at the time of
the second failure (denoted by X2:m:n), R2 randomly selected items from the (n− R1 − 2)
surviving items are removed from the experiment, and so on; finally, at the time of the
m-th item failure (denoted by Xm:m:n), the experiment terminates and all the remaining
Rm = n−m−∑m−1

r=1 Rr surviving items are censored. Here, R = (R1, R2, . . . , Rm) is the
progressive Type-II censoring scheme for the life testing experiment with ∑m

r=1 Rr = n−m.
Note that, when R1 = R2 = . . . = 0, Rm = n−m, the progressive Type-II censoring scheme
reduces to the conventional Type-II censoring scheme.

Since the comprehensive studies of information geometry by Amari [1], information
geometry has been productively used in different research fields including statistical learn-
ing, machine learning, neural networks, signal processing, information theory and so on
(see, for example, Amari et al. [2] and Amari [12].) The information geometry methods are
also widely used in statistics and reliability engineering. For example, Zhang et al. [13] dis-
cussed the Amari-Chentsov structure on the accelerated life test model with applications to
optimal designs with different optimal criteria. The methods of information geometry are
also employed to investigate the Bayesian prediction by taking α-divergences as loss func-
tions [14]. In degradation modeling, a robust parameter estimation method was proposed
in [15] by minimizing the f -divergence between the true model and suggested models.

In this paper, we investigate the tangent space, affine connection, α-connection, torsion
and Riemann-Christoffel curvature of the manifold of the exponential family of distribu-
tions with progressive Type-II censoring scheme. These geometric quantities can be applied
to different areas in statistics such as Bayesian analysis. Note that one of the challenges
of Bayesian analysis is to calculate the integrals for obtaining the posterior distribution,
especially when the number of parameters is large. Instead of using numerical methods to
approximate those integrals, the geometric quantities developed in this paper can provide
an efficient theoretical method to approximate those integrals involved in Bayesian predic-
tion. The main contributions and the organization of this paper are described as follows:

• Asymptotic theory plays an important role in statistical inference, which consider
the properties of statistical procedures as the sample size increases. Geometrically,
an approximation to a manifold is a local linearization by the tangent space. Thus,
the tangent space of the manifold of the exponential family of distributions with
progressively Type-II censored data is discussed in Section 2.

• The local linearization accounts only for local properties of a statistical model. It is
necessary to investigate the Fisher metric tensors, affine connection, and α-connection
of the manifold in order to study the global or large-scale properties of the model.
Therefore, these important geometric quantities are studied in Section 3.

• As an application of the geometric quantities, the asymptotic expansions of the poste-
rior density and the posterior Bayesian predictive density of the model are provided
in Section 4.

• To illustrate the results presented in this paper, the Rayleigh distribution is considered
as an example in Section 5. Moreover, Monte Carlo simulation results and a real data
analysis are presented in Section 6 to illustrate the main results.
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2. The Statistical Model and Tangent Space

In this paper, we adopt the Einstein summation convention, that is, if an index occurs
both as a superscript and as a subscript in a single expression, then the summation over
that index is implied. For a density function f (x; θ) ∈ F , let l(x; θ) = log f (x; θ), we
introduce the following definitions (see [1,2] for more details):

• gij
def
= E[∂il(x; θ)∂jl(x; θ)]: the Fisher metric tensors, the inverse of gij is denoted by

gij, where ∂i = ∂/∂θi;

• Tijk
def
= E[∂il(x; θ)∂jl(x; θ)∂kl(x; θ)]: the skewness tensor;

• Γijk
def
= E[∂i∂jl(x; θ)∂kl(x; θ)]: the affine connection;

• Γα
ijk

def
= Γijk +

1−α
2 Tijk: the α-connection.

The −1-connection and 1-connection are said to be the m-connection and e-connection,
denoted by Γm

ijk and Γe
ijk, respectively. We also abbreviate some geometric terms by multi-

plication the metric tensors, i.e., Ti = Tijkgjk, Γl
ij = Γijkgkl , Γα,l

ij = Γα
ijkgkl .

Suppose that F = { f (x, θ), θ ∈ Θ} is an exponential family of distributions (see,
for example, Barndorff-Nielsen [16]) with density function

f (x, θ) = exp

{
τ

∑
i=1

αi(θ)ci(x)− ψ(θ)

}
(1)

and reliability function

R(x, θ) = 1− F(x, θ) = exp

{
τ

∑
i=1

βi(θ)di(x)− φ(θ)

}
, (2)

where τ is the number of functions of the parameter vector θ, F(x, θ) is the cumulative
distribution function, and ψ(θ) is the cumulant generating function defined as

exp{ψ(θ)} =
∫

exp

{
τ

∑
i=1

αi(θ)ci(x)

}
µ(dx),

with αi(θ) and βi(θ) are smooth functions of the parameter vector θ, and ci and di are
smooth functions of the random variable x. Here are two examples, the exponential and
the Rayleigh distributions, of the members in the exponential family of distributions:

• Exponential distribution with density function

f (x; λ) = exp{−λx + ln λ}, x > 0, λ > 0,

and reliability function

R(x; λ) = exp{−λx}, x > 0, λ > 0,

we have τ = 1 and the functions α1(λ) = β1(λ) = −λ and c1(x) = d1(x) = x,
ψ(θ) = − ln λ and φ(θ) = 0. The dimension of the parameter vector θ is k = 1.

• Rayleigh distribution with density function

f (x; λ) = exp{−λx2 + ln x + ln 2λ}, x > 0, λ > 0, (3)

and reliability function

R(x; λ) = exp{−λx2}, x > 0, λ > 0,
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We have τ = 2 and the functions α1(λ) = β1(λ) = −λ, α2(λ) = 1, β2(λ) = 0,
c1(x) = d1(x) = x2, c2(x) = ln x, d2(x) = 0, ψ(θ) = − ln 2λ and φ(θ) = 0. The
dimension of the parameter vector θ is k = 1.

Consider the life-testing experiment with progressive Type-II censoring described in
Section 1 with n items placed on the life testing experiment and m failures are planned to
be observed, let the set of all admissible Type-II PCSs as

PC(m, n) =

{
R = (R1, . . . , Rm) ∈ Nm

0

∣∣∣∣ m

∑
i=1

Ri = n−m

}
,

where N0 is the set of the non-negative integers. Under a given censoring scheme R =
(R1, . . . , Rm) ∈ PC(m, n), the set of progressively Type-II censored order statistics is de-
noted as xRm:n = {xR1:m:n, . . . , xRm:m:n}. The PCSR = (R1, . . . , Rm) is prefixed prior to starting
the life testing experiment.

Suppose the lifetime distribution of the items in the life testing experiment follows a
distribution in the exponential family of distributions with density function in Equation (1),
the joint density function of the observed data, xRm:n, can be expressed as [8,10]

L(xRm:n; θ) = c(R)
m

∏
r=1

f (xRr:m:n, θ)
(

1− F(xRr:m:n, θ)
)Rr

= c(R)
m

∏
r=1

exp

{
τ

∑
i=1

αi(θ)ci(xRr:m:n) +
τ

∑
i=1

Rrβi(θ)di

(
xRr:m:n

)
− ψ(θ)− Rrφ(θ)

}
def
= c(R)

m

∏
r=1

exp

{
τ

∑
i=1

θiei

(
xRr:m:n

)
− ϕ(θ)

}

= c(R) exp

{
m

∑
r=1

τ

∑
i=1

θiei

(
xRr:m:n

)
−mϕ(θ)

}
, (4)

where θiei(xRr:m:n)
def
= αi(θ)ci(xRr:m:n) + Rrβi(θ)di(xRr:m:n), ϕ(θ)

def
= ψ(θ) + Rrφ(θ), and

c(R) = n(n− R1 − 1) . . . (n− R1 − R2 − · · · − Rm−1 −m + 1)

is the normalizing constant. By defining a new random variables

xRi;r:m:n = ei(xRr:m:n),

the joint density function in Equation (4) can be expressed as

L(xRm:n; θ) = c(R) exp

{
m

∑
r=1

τ

∑
i=1

θixRi;r:m:n −mϕ(θ)

}
.

The parameter θ of this form is called the natural parameter of the joint density function of
the exponential family of distributions with progressive Type-II censoring.

The tangent vector Tθ of the manifold of the function L(xRm:n; θ) is spanned by the
vectors ∂i = ∂/∂θi, and the set {∂i} is called the natural basis associated with the coordinate
system θ. Let

l(xRm:n; θ) = log
[

L(xRm:n; θ)
]
= log c(R) +

m

∑
r=1

τ

∑
i=1

θiei

(
xRr:m:n

)
−mϕ(θ),

and the set
T(1)

θ =
{

A(xRm:n)|A(xRm:n) = span
{

∂il(xRm:n; θ)
}}
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be the linear space of random variables spanned by ∂il(xRm:n; θ). The space T(1)
θ is called

the 1-representation of the tangent space with progressively Type-II censored data. Here,
the basis ∂il(xRm:n; θ) of the 1-representation is given by

∂il(xRm:n; θ) =
m

∑
r=1

ei

(
xRr:m:n

)
−m∂i ϕ(θ), (5)

and the second and the third order derivatives of l(xRm:n; θ) are given by

∂i∂jl(xRm:n; θ) = −m∂i∂j ϕ(θ), ∂i∂j∂kl(xRm:n; θ) = −m∂i∂j∂k ϕ(θ). (6)

3. The α-Connections of Manifold Model

In this section, we investigate the α-connection of the manifold of the statistical model
for the exponential family of distributions with progressively Type-II censored data. From
Equation (4), the normalization factor ϕ(θ) can be defined as

ϕ(θ) =
1
m

log
∫

c(R) exp

{
m

∑
r=1

τ

∑
i=1

θiei

(
xRr:m:n

)}
µ
(

dxRr:m:n

)
.

Since the function under the integral is assumed to be continuously differentiable, the order
of integration and differentiation can be switched, and hence, the first three derivatives of
the function ϕ(θ) with respect to the natural parameter θi are given by

∂i ϕ(θ) =
1
m

m

∑
r=1

EL

[
ei

(
xRr:m:n

)]
, (7)

∂i∂j ϕ(θ) =
1
m

EL

[(
m

∑
r=1

ei

(
xRr:m:n

)
−m∂i ϕ(θ)

)(
m

∑
r=1

ej

(
xRr:m:n

)
−m∂j ϕ(θ)

)]

=
1
m

EL

[
∂il(xRm:n; θ)∂jl(xRm:n; θ)

]
, (8)

∂i∂j∂k ϕ(θ) =
1
m

EL

[(
m

∑
r=1

ei

(
xRr:m:n

)
−m∂i ϕ(θ)

)(
m

∑
r=1

ej

(
xRr:m:n

)
−m∂j ϕ(θ)

)

×
(

m

∑
r=1

ek

(
xRr:m:n

)
−m∂k ϕ(θ)

)]

=
1
m

EL

[
∂il(xRm:n; θ)∂jl(xRm:n; θ)∂kl(xRm:n; θ)

]
, (9)

where the expectations EL[·] are taken with respect to the joint density function in Equa-
tion (4). The derivatives in Equations (7)–(9) can be considered as the expected value, the co-
variance and the third-order central moments of ∑m

r=1 ei
(

xRr:m:n
)
, respectively. The deriva-

tive in Equation (7) can also be obtained from the condition

EL[∂il(xRm:n; θ)] = 0,

that is

0 = ∂i

∫
L(xRm:n; θ)µ

(
dxRm:n

)
=
∫

∂iL(xRm:n; θ)µ
(

dxRm:n

)
= EL[∂il(xRm:n; θ)].

The derivatives in Equations (8) and (9) can be obtained by calculating, respectively,

EL[∂i∂jl(xRm:n; θ)] and EL[∂i∂j∂kl(xRm:n; θ)].

Equations (8) and (9) show that the (i, j) element of the metric tensors is given by

gij(θ) = EL

[
∂il(xRm:n; θ)∂jl(xRm:n; θ)

]
= m∂i∂j ϕ(θ),
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the (i, j, k) element of the skewness tensor is given by

Tijk(θ) = EL

[
∂il(xRm:n; θ)∂jl(xRm:n; θ)∂kl(xRm:n; θ)

]
= m∂i∂j∂k ϕ(θ),

and the (i, j, k) element of the affine connection is given by

Γijk(θ) = EL

[
∂i∂jl(xRm:n; θ)∂kl(xRm:n; θ)

]
= −m∂i∂j ϕ(θ)EL

[
∂kl(xRm:n; θ)

]
= 0.

Therefore, based on the joint density function L(xRm:n; θ), the α-connection of the manifold
of an exponential family of distributions is given by

Γα
ijk(θ) =

(1− α)m
2

∂i∂j∂k ϕ(θ),

which means that the natural parameter θ is 1-affine, i.e., Γijk = 0. Based on the information
carried by the joint density function in Equation (4), we can obtain the following results.

Theorem 1. The metric tensors and the α-connection of the exponential family of distributions are
given by

gij(θ) = m∂i∂j ϕ(θ)

and Γα
ijk(θ) =

(1− α)m
2

∂i∂j∂k ϕ(θ),

respectively.

From the α-connection, we can obtain the torsion and the Riemann-Christoffel curva-
ture of the manifold. The torsion is represented by the torsion tensor whose components
are given by [1,2]

Sijk(θ) = Γijk(θ)− Γjik(θ),

which is a tensor anti-symmetric with respect to indices i, j. Note that the coefficients Γα
ijk(θ)

of the α-connections are symmetric with respect to the first two indices i and j, then the
tensor Sijk(θ) vanishes for any α-connection. This shows that the manifold of the statistical
model of the exponential family of distributions with progressively Type-II censored data
is torsion-free.

The Riemann-Christoffel curvature of the manifold can be obtained as [1,2]

Rijkm = (∂iΓs
jk − ∂jΓs

ik)gsm + (ΓirmΓr
jk − ΓjrmΓr

ik),

where Γk
ij = gkmΓijm. The Riemann-Christoffel curvature based on the α-connection is

called the α-Riemann-Christoffel curvature and its tensor is given by

Rα
ijkm = (∂iΓ

α,s
jk − ∂jΓ

α,s
ik )gsm + (Γα

irmΓα,r
jk − Γα

jrmΓα,r
ik ),

where Γα,k
ij = gkmΓα

ijm. The tangent space of the manifold is said to be α-flat if the α-
Riemann-Christoffel curvature Rα

ijkm = 0. We can also obtain the α-covariant derivative
and the Laplace operator based on the α-connection and the metric tensors.

In the above process for obtaining those geometric quantities, we only use the informa-
tion from the joint density function L(xRm:n; θ). There is, in fact, another kind of information
in the progressively Type-II censored order statistics xRr:m:n (r = 1, . . . , m). We can consider
the marginal density function of the r-th progressively Type-II censored order statistic,
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xRr:m:n (see, for example, Kamps and Cramer [17], Balakrishnan [18], Balakrishnan and
Aggarwala [8], and Balakrishnan and Cramer [10])

fxRr:m:n
(x) = cr−1

r

∑
s=1

as,r f (x)(1− F(x))γs−1, x > 0, r = 1, . . . , m, (10)

where

γs = n− s + 1 +
s−1

∑
r=1

Rr for s = 1, . . . , m,

cr−1 =
r

∏
s=1

γs for r = 1, . . . , m,

as,r =
r

∏
k=1,k 6=s

1
γk − γs

for 1 ≤ s ≤ r ≤ m with a1,1 = 1.

Based on the marginal density in Equation (10), the expectations of the random
variables ei(xRr:m:n) (r = 1, . . . , m) in Equation (5) can be obtained as

hi,r(θ)
def
= E f [ei(xRr:m:n)] =

∫
ei(x) fxRr:m:n

(x)µ(dx)

= cr−1

r

∑
s=1

as,r

∫
ei(x) exp

{
τ

∑
i=1

θiei,γs(x)− ϕγs(θ)

}
µ(dx),

where θiei,γs(x)− ϕγs(θ) = αi(θ)ci(x) + (γs − 1)βi(θ)di(x)− ψ(θ)− (γs − 1)φ(θ), the ex-
pectation E f [·] is taken with respect to the density function in Equation (10). Suppose that
the random variables ei(x) (r = 1, . . . , m) are independent, and let

hi(θ) =
m

∑
r=1

hi,r(θ) =
m

∑
r=1

r

∑
s=1

cr−1as,r

∫
ei(x) exp

{
τ

∑
i=1

θiei,γs(x)− ϕγs(θ)

}
µ(dx),

we can obtain the following results.

Theorem 2. The Fisher metric tensors and the α-connection of the exponential family of distribution
with progressively Type-II censored data are given by

g̃ij(θ) = gij(θ) = m∂i∂j ϕ(θ),

Γ̃α
ijk(θ) = gij(θ)(m∂k ϕ(θ)− hk(θ)) +

1− α

2 ∏
l=i,j,k

(hl(θ)−m∂l ϕ(θ)),

respectively.

Proof. For the metric tensors, they can be obtained directly from the definition of gij(θ).
For the affine connection, from E[∂il(xRm:n; θ)] = ∑m

r=1 E f [ei(xRr:m:n)]−m∂i ϕ(θ) = hi(θ)−
m∂i ϕ(θ), Equations (7) and (8), we can obtain

Γ̃ijk(θ) = E[∂i∂jl(xRm:n; θ)∂kl(xRm:n; θ)]

= −m∂i∂j ϕ(θ)E[∂kl(xRm:n; θ)]

= gij(θ)(m∂k ϕ(θ)− hk(θ)).

Then, the third-order tensor Tijk(θ) can be specified as

T̃ijk(θ) = E[∂il(xRm:n; θ)∂jl(xRm:n; θ)∂kl(xRm:n; θ)] = ∏
l=i,j,k

(hl(θ)−m∂l ϕ(θ)).
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4. Applications in Bayesian Predictive Inference and Asymptotic Expansions

In Bayesian inference for the exponential family of distributions, the parameter vector
θ is considered as a random variable. Given a prior density function for θ, π(θ), the joint
posterior density function of the exponential family of distributions with progressively
Type-II censored data can be expressed as

fπ(θ|xRm:n) =
L(xRm:n; θ)π(θ)∫
L(xRm:n; θ)π(θ)dθ

, (11)

and the posterior Bayesian predictive distribution is given by

f̂π(x|xRm:n) =
∫

f (x; θ) fπ(θ|xRm:n)dθ, (12)

where x is an unobserved set of observations to be predicted and it is independently
distributed according to the same density f (x; θ) ∈ F . The predictive density f̂ (x|θ̂) is
called the plug-in density function or the estimative density function, where θ̂ = θ̂(xRm:n) is
an estimate of θ based on the observed progressively Type-II censored sample xRm:n (see,
for example, Geisser [19]). Consider the Kullback-Leibler divergence as the loss function,
the predictive distribution in Equation (12) is the best predictive distribution in the sense
that it minimizes the Bayes risk defined as [20]

∫
π(θ)

∫
f (xR

m:n; θ)
∫

f (x; θ) log

(
f (x; θ)

f̂ (x|xR
m:n)

)
µ(dx) µ(dxR

m:n) dθ.

The integral defined in the predictive density in Equation (12) can be difficult to
integrate or the form is too complicated to be used in practice. In these situations, asymp-
totic or large-sample theory (see, for example, Barndorff-Nielsen and Cox [21]) can be
considered. In this section, we adopt the metric tensors and the α-connection introduced
in Sections 2 and 3 to study the asymptotic expansions of the posterior joint density and
the Bayesian predictive density of the exponential family of distributions with progres-
sively Type-II censored data. A similar asymptotic expansion of Bayesian prediction based
on a full sample can be found in Zhang et al. [14]. For simplicity, we only consider the
information carried by the joint density function in Equation (4), a similar process can be
applied for the situation where the information obtained from the joint density function in
Equation (4) and the marginal density function in Equation (10) together.

Theorem 3. Given a prior distribution π(θ) for θ, the posterior distribution in Equation (11) can
be expressed asymptotically as

fπ(θ|xRm:n)

=
det(gij(θ))

(2π)k/2 exp
{
−1

2
gij(θ̂)θ̃

i θ̃ j
}(

1 +
1
6

Tijk(θ̂)θ̃
i θ̃ j θ̃k + (∂i log π(θ̂))θ̃i + o−1(n)

)
,

where θ̃i = θi − θ̂i and θ̂ is an estimator of parameter set θ.

Proof. Using the Laplace method suggested by Nielsen and Cox [21], the posterior distri-
bution can be expressed asymptotically as

fπ(θ|xRm:n) =
det
(
−∂i∂jl(xRm:n; θ̂)

)
(2π)k/2 exp

{
−1

2

(
−∂i∂jl(xRm:n; θ̂)

)
θ̃i θ̃ j

}
×
(

1 +
1
6

(
∂i∂j∂kl(xRm:n; θ̂)

)
θ̃i θ̃ j θ̃k + (∂i log π(θ̂))θ̃i + o−1(n)

)
.
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We have

−∂i∂jl(xRm:n; θ) = m∂i∂j ϕ(θ) = gij(θ), −∂i∂j∂kl(xRm:n; θ) = m∂i∂j∂k ϕ(θ) = Tijk(θ),

which implies that

fπ(θ|xRm:n)

=
det(gij(θ̂))

(2π)k/2 exp
{
−1

2
gij(θ̂)θ̃

i θ̃ j
}(

1− 1
6

Tijk(θ̂)θ̃
i θ̃ j θ̃k + (∂i log π(θ̂))θ̃i + o−1(n)

)
.

Based on the asymptotic expansion presented in Theorem 3, we can obtain the follow-
ing result.

Theorem 4. Given a prior distribution π(θ) for θ, the predictive distribution in Equation (12) can
be expressed asymptotically as

f̂π

(
x|xRm:n

)
= f (x; θ̂) +

1
2n

gij(θ̂)
{
−∂i∂jψ(θ̂) + Γm,l

ij (θ̂)(cl(x)− ∂lψ(θ̂))
}

+
1
n

(
∂i log π(θ̂)− Γe,j

ij (θ̂)
)

gil(θ̂)(cl(x)− ∂lψ(θ̂)) + o(n−1).

Proof. The proof is similar to the proof of Theorem 2 in Komaki [3]. The proof can be
completed by substituting ∂i∂j f (x; θ̂) and ∂i f (x; θ̂) with −∂i∂jψ(θ̂) and ci(x) − ∂iψ(θ̂),
respectively.

If the prior distribution π(θ) is the Jeffreys prior πJ(θ) ∝ |gij|
1
2 , then from the relation-

ship

∂i log π(θ) = ∂i log |gij(θ)|
1
2 =

1
2

∂igij(θ)gij(θ) = Γj
ij(θ) = Γe,j

ij (θ) +
1
2

Ti(θ),

we have
∂i log π(θ)− Γe,j

ij (θ) =
1
2

Ti(θ).

The following results can be immediately obtained.

Corollary 1. Given the Jeffreys prior πJ(θ) ∝ |gij(θ)|1/2, the posterior distribution in Equa-
tion (11) can be asymptotically expanded as

fπJ (θ|x
R
m:n) =

det(gij(θ̂))

(2π)k/2 exp
{
−1

2
gij(θ̂)θ̃

i θ̃ j
}(

1 +
1
6

Tijk(θ̂)θ̃
i θ̃ j θ̃k

+

(
Γe,j

ij (θ̂) +
1
2

Ti(θ̂)

)
θ̃i + o−1(n)

)
,

Corollary 2. Given the Jeffreys prior πJ(θ) ∝ |gij(θ)|1/2, the prediction (12) can be asymptotically
expanded as

f̂πJ

(
x|xRm:n

)
= f (x; θ̂)− 1

2n
gij(θ̂)

{
∂i∂jψ(θ̂) + Γm,l

ij (θ̂)(cl(x)− ∂lψ(θ̂))
}

+
1

2n
Ti(θ̂)gil(θ̂)(cl(x)− ∂lψ(θ̂)) + o(n−1).

These results show that the predictive density function, when the sample size n
approaches infinity, is the estimative density function in the asymptotic sense.
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5. Illustration Example

The illustration of the geometric quantities for exponential distribution has been
provided in the literature (see, for example, [12]). In this section, we use the Rayleigh
distribution, a member of the exponential family of distributions, presented in Section 2 as
an example to illustrate our results. Suppose that xRm:n is the progressively Type-II censored
order statistics form items with lifetimes follow the Rayleigh distribution with density
function in Equation (3), then the joint density function of xRm:n can be expressed as

L(xRm:n; θ) = c(R)
m

∏
r=1

f (xRr:m:n, θ)
[
1− F(xRr:m:n, θ)

]Rr

= c(R)2m exp

{
m

∑
r=1

τ

∑
i=1

θiei

(
xRr:m:n

)
−mϕ(θ)

}
,

where ` = 2. θ1 = λ, θ2 = 1, e1
(
xRr:m:n

)
= −(1 + Rr)

(
xRr:m:n

)2, e2
(

xRr:m:n
)
= ln

(
xRr:m:n

)
and

ϕ(θ) = ψ(θ) = − ln(λ). Let

l(xRm:n; θ) = log L(xRm:n; θ)

= log(c(R)2m) +
m

∑
r=1

τ

∑
i=1

θiei

(
xRr:m:n

)
−mϕ(θ).

Then, the first three derivatives of the function l(xRm:n; θ) can be obtained as

∂1l(xRm:n; θ) = −
m

∑
r=1

(1 + Rr)
(

xRr:m:n

)2
+

m
λ

,

∂1∂1l(xRm:n; θ) = − m
λ2 ,

∂1∂1∂1l(xRm:n; θ) =
2m
λ3 .

The maximum likelihood estimator (MLE) of the parameter λ can be derived as

λ̂ =
m

∑m
r=1(1 + Rr)(xRr:m:n)

2 .

We first consider the information carried by the joint density in Equation (4). The metric
tensors have one element, that is,

g11(θ) = m∂1∂1 ϕ(θ) =
m
λ2 . (13)

The skewness tensor can be written as

T111(θ) = m∂1∂1∂1 ϕ(θ) = −2m
λ3 . (14)

The affine connection and the α-connection can be obtained as

Γ111(θ) = −m∂1∂1 ϕ(θ)EL

[
∂1l(xRm:n; θ)

]
= 0,

Γα
111(θ) =

(1− α)m
2

∂1∂1∂1 ϕ(θ) =
(α− 1)m

λ3 ,

respectively. The coefficients of the m-connection and e-connection are

Gm,1
11 (θ) = Γm

111(θ)g11(θ) = −2/λ,

Ge,1
11 (θ) = Γe

111(θ)g11(θ) = 0,
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respectively. For Bayesian inference, we consider the Jeffreys prior for the parameter λ,
i.e.,

πJ(θ) ∝
√

m/λ,

then the posterior distribution of λ is

fπJ (θ|x
R
m:n) =

exp
{

∑m
r=1 ∑τ

i=1 θiei
(

xRr:m:n
)
− (m− 1)ϕ(θ)

}∫
exp

{
∑m

r=1 ∑τ
i=1 θiei(xRr:m:n)− (m− 1)ϕ(θ)

}
dθ

,

which can be written as

fπJ (θ|x
R
m:n)

=
det(gij(θ̂))

(2π)k/2 exp
{
−1

2
gij(θ̂)θ̃

i θ̃ j
}(

1− 1
6

Tijk(θ̂)θ̃
i θ̃ j θ̃k

+

(
Γe,j

ij (θ̂) +
1
2

Ti(θ̂)

)
θ̃i + o−1(n)

)
=

m
λ̂2(2π)1/2

exp
{
− m

2λ̂2
(λ− λ̂)2

}(
1 +

m
3λ̂3

(λ− λ̂)3 − 1
λ̂
(λ− λ̂) + o(n−1)

)
.

Here, the predictive distribution is

f̂πJ

(
x|xRm:n

)
= c(R)2m

∫
exp

{
m

∑
r=1

τ

∑
i=1

θiei

(
xRr:m:n

)
− θ1x2 + ln(x)− (m + 1)ϕ(θ)

}
dθ,

which can be expanded asymptotically as

f̂πJ

(
x|xRm:n

)
= f (x; θ̂)− 1

2n
gij(θ̂)

{
∂i∂jψ(θ̂) + Γm,l

ij (θ̂)(cl(x)− ∂lψ(θ̂))
}

+
1

2n
Ti(θ̂)gil(θ̂)(cl(x)− ∂lψ(θ̂)) + o(n−1)

= f (x, λ̂)− λ̂2

2nm

(
− 1

2λ̂2
− 2

λ̂

(
1

2λ̂
− x2

))
+

1
2n

(
−2m

λ̂3

)
λ̂2

m
λ̂2

m

(
1

2λ̂
− x2

)
+ o(n−1)

= f (x, λ̂) +
1

4mn
+ o(n−1).

In the following, we consider the information obtained from the marginal density
function in Equation (10) and the joint density function in Equation (4) together. Notice
that

fxRr:m:n
(x) = cr−1

r

∑
s=1

as,r f (x)(1− F(x))γs−1

= cr−1

r

∑
s=1

as,r2λx exp
{
−λγs

(
xRr:m:n

)2
}

, r = 1, . . . , m.

The n-order moment about the origin of the r-th progressively Type-II censored order
statistic is given by

E f

[(
xRr:m:n

)n]
=
∫

xn fxRr:m:n
(x)µ(dx) = cr−1

r

∑
s=1

as,rλ
Γ( n

2 + 1)

(λγs)
n
2 +1

,



Entropy 2021, 23, 687 12 of 15

which implies

E f

[
∂1l
(

xRm:n; θ
)]

= −
m

∑
r=1

r

∑
s=1

(1 + Rr)cr−1
as,r

λγ2
s
+

m
λ

.

Thus, the affine connection is specified as

Γ̃111(θ) = E f

[
∂1∂1l(xRm:n; θ)∂1l(xRm:n; θ)

]
=

m
λ3

m

∑
r=1

r

∑
s=1

(1 + Rr)cr−1
as,r

γ2
s
− m2

λ3 .

The metric tensor g̃11(θ) and the skewness tensor T̃111(θ) are the same as the expressions
in Equations (13) and (14). The α-connection is reduces to

Γ̃α
111(θ) =

m
λ3

m

∑
r=1

r

∑
s=1

(1 + Rr)cr−1
as,r

γ2
s
− m2

λ3 −
(1− α)m

λ3 .

The coefficients of the m-connection and the e-connection are

Γ̃m,1
11 (θ) =

1
λ

m

∑
r=1

r

∑
s=1

(1 + Rr)cr−1
as,r

γ2
s
− 2 + m

λ
,

and Γ̃e,1
11 (θ) =

1
λ

m

∑
r=1

r

∑
s=1

(1 + Rr)cr−1
as,r

γ2
s
− m

λ
,

respectively. Therefore, based on the Jeffreys prior πJ(θ) ∝
√

m/λ, the Bayesian predictive
density function of the Rayleigh distribution with progressively Type-II censored data can
be asymptotically expanded as

f̂πJ

(
x|xRm:n

)
= f (x; θ̂)− 1

2n
g̃ij(θ̂)

{
∂i∂jψ(θ̂) + Γ̃m,l

ij (θ̂)(cl(x)− ∂lψ(θ̂))
}

+
1

2n
T̃i(θ̂)gil(θ̂)(cl(x)− ∂lψ(θ̂)) + o(n−1)

= f (x, λ̂) +
1

4mn

(
1 +

(
2λ̂x2 − 1

)( m

∑
r=1

r

∑
s=1

(1 + Rr)
cr−1as,r

γ−2
s

−m

))
+o(n−1).

This shows that the predictive density function, with the increase of the sample size n and
the observed sample size m, is the estimative density function in the asymptotic sense.
The term

2λ̂x2 − 1
4mn

(
m

∑
r=1

r

∑
s=1

(1 + Rr)
cr−1as,r

γ−2
s

−m

)
can be considered the correction term due to the information carried by the density function
in Equation (10).

6. Monte Carlo Simulation Study and Real Data Analysis

In this section, we present a Monte Carlo simulation study of the Bayesian prediction
based on progressively Type-II censored data described in Section 4. We also present a real
data analysis based on the progressive Type-II censored data discussed in the literature.
In the Monte Carlo simulation study, we consider different sample sizes (n, m) = (10, 30),
(10, 35), (15, 40) and (20, 40) and three different censoring schemes:

R1: R1 = R2 = · · · = Rm−1 = 0, Rm = n−m;
R2: R1 = n−m, R2 = R3 = · · · = Rm = 0;
R3: R1 = · · · = Rm−1 = 1, Rm = n− 2m + 1.
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The progressively Type-II censored data, xRm:n, are generated based on the Rayleigh distribu-
tion in Equation (3) with parameter λ = 2 for different sample sizes and censoring schemes.
For the proposed Bayesian prediction (BP), we consider two different priors: (i) the Jeffreys
prior πJ(θ) ∝

√
m/λ; and (ii) the uniform prior πI on interval (0, 3). For comparative

purposes, we also consider the plug-in prediction (PP) approach in which the estimative
density function f̂ (x, λ̂) is also considered. For the plug-in approach, the parameter is
estimated by using the maximum likelihood method based on the simulated progressive
Type-II censored sample xRm:n. The estimated biases and mean square errors (MSEs) of
different prediction approaches for predicting the probability density at x = 2.5 based on
10,000 simulations are presented in Table 1.

From Table 1, we observe that the performances of all prediction methods improve
in terms of MSEs as the sample sizes m and n increase. In other words, the number of
items being removed during the progressively Type-II censored experiment affects the
performance of prediction. Moreover, we observe that the Bayesian prediction method with
the Jeffreys prior can provide smaller biases and smaller MSEs compared to the plug-in
prediction method in some cases.

Table 1. Simulated biases and mean square errors (MSEs) of different prediction methods based on
Rayleigh distribution with λ = 2.

(m, n) Schemes
PP f̂ (x; λ̂) BP f̂πJ

(
x|xRm:n

)
BP f̂πI

(
x|xRm:n

)
Bias MSE Bias MSE Bias MSE

R1 −0.045 0.032 −0.026 0.027 −0.038 0.035
(10, 30) R2 0.035 0.031 0.024 0.023 −0.021 0.034

R3 −0.034 0.032 −0.025 0.026 0.013 0.037
R1 −0.030 0.029 −0.031 0.023 −0.016 0.033

(10, 35) R2 0.025 0.027 −0.020 0.022 0.028 0.031
R3 −0.022 0.028 0.024 0.024 −0.027 0.032
R1 −0.023 0.019 0.021 0.022 0.022 0.025

(15, 40) R2 −0.017 0.020 −0.013 0.018 −0.013 0.027
R3 0.024 0.021 0.021 0.019 −0.023 0.023
R1 −0.023 0.019 0.021 0.010 −0.026 0.014

(20, 40) R2 0.018 0.014 0.015 0.008 0.024 0.015
R3 −0.013 0.017 −0.010 0.009 −0.017 0.012

To illustrate the practical applications of the approximate methods based on geometric
quantities proposed in this paper, we analyze a real data set which contains the times to
breakdown of an insulating fluid at 34 kV originally presented in Nelson [22] (Table 6.1).
A progressively Type-II censored sample of size m = 8 generated from the n = 19 observa-
tions by Balakrishnan et al. [9] is analyzed here. The progressively censored sample and
the progressive censoring scheme are presented in Table 2.

Table 2. Progressively Type-II censored sample of the times to breakdown data on insulating fluid
tested at 34 KV with n = 19 and m = 8 obtained from Balakrishnan et al. [9]

r 1 2 3 4 5 6 7 8

xr:n 0.19 0.78 0.96 1.31 2.78 4.85 6.50 7.35
Rr 0 0 3 0 3 0 0 5

Suppose that we assume the lifetimes of the insulating fluid tested at 34 kV follow a
Rayleigh distribution and we are interested in predicting the probability density, based on
the progressive Type-II censored data presented in Table 2, the predicted density curves
obtained from the plug-in prediction approach and the proposed Bayesian prediction
approach with two different priors are presented in Figure 1. From Figure 1, we observe
that the three prediction methods provide similar predicted density curves in this case.
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For instance, if we are interested in predicting density at x = 2.8, based on the progressive
Type-II censored data presented in Table 2, the predicted values of plug-in prediction
density f̂ (x, λ̂) is 0.230, and the Bayesian prediction densities f̂πJ

(
x|xRm:n

)
with Jeffreys

prior πJ and f̂πI

(
x|xRm:n

)
uniform prior πI are 0.229 and 0.232, respectively.
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Figure 1. The predicted density curves of Rayleigh distribution obtained from the Bayesian prediction
approach with Jeffreys prior (BPJ), with uniform prior to interval (0, 3) (BPU), and the plug-in
prediction (PP) approach based on the data presented in Table 2.

7. Conclusions

In this paper, we discussed the tangent space, affine connection, α-connection, torsion
and Riemann-Christoffel curvature of statistical manifold induced by the exponential family
of distributions. As applications of these geometric quantities, the asymptotic expansions
of the Bayesian posterior distribution and prediction function with progressively Type-II
censored data were discussed. The results showed that the asymptotic expansions are
related to the geometric quantities. We also illustrated the main results by studying the
Rayleigh distribution. Note that more theoretical results and applications of information
geometry in reliability in addition to the main results of this paper can be found in the
Ph.D. thesis [23].
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