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Aim. To investigate the effects of acute and chronic exercise on glucose and lipid metabolism in liver of rats with type 2 diabetes
caused by a high fat diet and low dose streptozotocin (STZ).Methods. Animals were classified into control (CON), diabetes (DC),
diabetic chronic exercise (DCE), and diabetic acute exercise (DAE) groups. Results. Compared to CON, the leptin levels in serum
and liver and ACC phosphorylation were significantly higher in DC, but the levels of liver leptin receptor, AMPK𝛼1/2, AMPK𝛼1,
and ACC proteins expression and phosphorylation were significantly lower in DC. In addition, the levels of liver glycogen reduced
significantly, and the levels of TG and FFA increased significantly in DC compared to CON. Compared to DC, the levels of liver
AMPK𝛼1/2, AMPK𝛼2, AMPK𝛼1, andACCphosphorylation significantly increased inDCE andDAE.However, significant increase
of the level of liver leptin receptor and glycogen as well as significant decrease of the level of TG and FFAwere observed only inDEC.
Conclusion. Our study demonstrated that both acute and chronic exercise indirectly activated the leptin-AMPK-ACC signaling
pathway and increased insulin sensitivity in the liver of type 2 diabetic rats. However, only chronic and long-term exercise improved
glucose and lipid metabolism of the liver.

1. Introduction

Leptin deficiency or dysfunction is one of the main causes
for insulin resistance (IR) and lipid metabolism disorders
[1, 2]. However, patients with type 2 diabetes rarely have
a leptin deficiency. It has been found that the majority of
type 2 diabetes patients have higher levels of body fat, but
normal or increased leptin in the plasma [3–6], indicating
leptin resistance (LR). Certain levels of leptin effectively
could stimulate AMP-activated protein kinase (AMPK) to
phosphorylate acetyl-coA carboxylase (ACC), which in turn
reduces the ACC activity, decreases fatty acid synthesis [7],
and increases the oxidation of fatty acid (FA) [8], conse-
quently, maintaining the balance of lipid metabolism in the
body. Studies have shown that even one week of a high
fat diet can cause leptin to increase rapidly, leading to fat

accumulation in peripheral tissue IR [9]. Obese persons with
high serum leptin levels tend to experience a downregulation
of leptin receptor in hypothalamus, adipose tissue, and
liver [10], which causes peripheral tissues to become LR
and promotes lipid accumulation [11–13]. Excessive lipid
deposition in nonfat tissue has been known to have a toxic
effect on cells and to reduce sensitivity to insulin, eventually
leading to diabetes and metabolic syndrome [14]. Liver plays
an important role in the regulation of glucosemetabolism and
lipidmetabolism.Moreover, type 2 diabetes and liver steatosis
often coexist [15–17], but the causal mechanism is unclear.
The possible trigger for type 2 diabetes might be related to
leptin resistance, which further inhibits the liver AMPK-ACC
signaling pathway and causes liver and systemic metabolic
disorders.
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Exercise can reduce body fat by increasing energy con-
sumption and improve the leptin resistance [18, 19]. How-
ever, how the leptin resistance is improved remains unclear.
Previous studies have shown that exercise could upregulate
the expression of leptin receptor and induce changes of
the JAK-STAT3 signaling pathway in the hypothalamus
and peripheral tissues in leptin-resistant rats [20, 21]. After
exercise, normal rats experienced increased skeletal muscle
growth, increased activity of the liver AMPK and Malonyl-
CoA decarboxylase (MCD) pathways, and decreased activity
of ACC, which further increased fatty acid oxidation and
reduced glyceride synthesis [22]. Our previous study sug-
gested that chronic and acute exercise could both reduce
obesity and decrease blood sugar level in type 2 diabetic rats
as well as improve the phosphorylation and gene expression
related to improved skeletal muscle; AMPK𝛼1/2 and its sub-
units (AMPK𝛼1, AMPK𝛼2) reduced ACC phosphorylation
[23].

It is unknown, however, whether exercise affects the liver
leptin-AMPK signaling pathway or whether it can improve
liver lipid metabolism. In our present study, a type 2 diabetic
rat model, given a high fat diet and a low dose of STZ, was
used to address this question. Acute and chronic exercise
variables were chosen to study whether exercise could affect
protein expression and protein phosphorylation involved in
the liver leptin-AMPK-ACC signaling pathway. The relation-
ship between the liver leptin-AMPK-ACC signaling pathway
and lipidmetabolism, aswell as the effect of acute and chronic
exercise on that pathway, was investigated.

2. Material and Methods

2.1. Animals. 15-month-old male SD rats (450–470 g) were
provided by the Animal Center of the Academy of Military
Medical Sciences of the Chinese People’s Liberation Army
(certification number SCXK (army) 2007-004). Animals were
housed under standard conditions (22 ± 2∘C, humidity 50 ±
10%, cycles of 12 h light/12 h dark). Experimental procedures
were performed in accordance with the Guidance Sugges-
tions for the Care andUse of Laboratory Animals, formulated
by the Ministry of Science and Technology of the People’s
Republic of China in 1998, and were approved by the Animal
Ethics Committee of China Medical University.

2.2. Animal Models. Rats were randomly divided into a con-
trol diet group (CON) and a high fat diet group (HFD). The
control diet contained 57.3% carbohydrates, 18.1% protein,
18.8% cellulose, and 4.5% fat and the high fat diet consisted of
23% soy protein, 19.8% pork fat, 19.8% corn oil, 24.5% sucrose,
and 5% cellulose and was supplemented with a 1.4% vitamin
mixture, 6.7% mineral mixture, and 0.2% choline bitartrate.
After 8 weeks, HFD rats were administered 30mg/kg STZ
(citrated buffer, pH 4.4, Sigma) by intraperitoneal injection,
while CON rats were injected with the same volume of
citrate buffer (1mL/kg). Four weeks after injection with
STZ, all animals with fasting blood above 7.8mmol/L and
postprandial glucose above 11.1mmol/L were considered to
be diabetic [24, 25]. Diabetic rats were then divided into

a diabetic control group (DC), diabetic chronic exercise
group (DCE), and diabetic acute exercise (DAE). Body
weight, water, and food intake were examined every week.

2.3. Chronic Exercise. Rats were trained to swim 10–20min
per session for more than 2 days to reduce water-induced
stress. Two or three rats per group were placed in a plastic
cylindrical pool of 45 cm in diameter and 60 cm of deep, with
a water temperature of 34-35∘C. After the initial training, the
rats underwent chronic exercise for 1 hour/day, 5 days/week,
for 8 weeks. The exercise program was conducted in accor-
dance with the Luciano E program with some modifications
[26].

2.4. Acute Exercise. Acute exercise was conducted in two
90-minute sessions with a 45-minute interval between each
session. The exercise program was performed in accordance
with the Chibalin AV program with some modification
[27]. Animal model preparation and exercise sessions were
conducted in the Shenyang Institute of Physical Education
Laboratory.

2.5. Blood Samples Collection and Blood Biochemistry. 24–
36 hours after the final session of chronic exercise or 8–16
hours after acute exercise, all rats were anesthetized by single
dose intraperitoneal injection of amobarbital (15mg/kg).
Blood samples were collected from tail veins and serum
was separated by centrifugation at 1100×g for 10min. Serum
glucose, triglyceride, total cholesterol, free fatty acid, HDL-
C, LDL-C, and serum leptin levels were measured using
an AutoAnalyzer (RT-1904C; Rayto, China). Serum insulin
concentration was determined using a radioimmunoassay
described by Laemmli [28].

2.6. Insulin Tolerance Test (ITT) and Serum Insulin Quan-
tification. Insulin tolerance tests were performed after blood
sample collection. The rats fasted for 12 hours were anes-
thetized and given 1.5 IU/kg of synthetic insulin (Sigma).
Blood samples were collected at 0, 5, 10, 15, 20, 25, and 30min
after injection, centrifuged at 1100×g for 15min at 4∘C, and
stored at −20∘C to determine glucose concentrations. The
plasma glucose (𝑡

1/2
) was calculated from the slope of the

last square fit of the plasma glucose concentration during the
linear phase of decline [26]. Serum insulinwas alsomeasured.

2.7. Liver Sampling. After ITT, the animals were sacrificed
under anesthesia by intraperitoneal injection of sodium
thiopental (200mg/kg, following the recommendations of
the US National Institutes of Health). The liver was isolated
and placed in liquid nitrogen and then immediately trans-
ferred to −80∘C. Western blotting analysis and the detection
of liver glycogen, FAA, and TG were performed later.

2.8. Liver Glycogen Content. The frozen livers were weighed,
digested with 1mol/L NaOH (1 : 9 wt/vol) at 80∘C for 10min,
neutralized with 1mol/LHCl, andmixedwith 6mol/LHCl to
a final concentration of 2mol/L HCl. The resulting solution
was incubated at 85∘C for 2 hours and neutralized again with
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Table 1: Body weight and biochemical parameters of different groups.

CON DC DCE DAE
Weight (g) 520.7 ± 12.00 502.8 ± 10.51 527.3 ± 10.77 507.3 ± 13.16

Epididymal fat (g) 8.83 ± 0.43 7.86 ± 0.34 8.61 ± 0.44 8.12 ± 0.45

Insulin (pmol/L) 66.14 ± 2.80 76.29 ± 4.17 70.86 ± 3.61 68.70 ± 3.34

FBG (mmol/L) 5.35 ± 0.23 13.18 ± 0.52
∗∗

11.57 ± 0.42
#

11.51 ± 0.41
#

Kitt (%/min) 3.19 ± 0.19 1.95 ± 0.30
∗∗

2.87 ± 0.22
#

2.61 ± 0.15
#

TG (mmol/L) 1.68 ± 0.09 2.06 ± 0.11
∗∗

1.79 ± 0.10
#

2.12 ± 0.07
$

TC (mmol/L) 4.15 ± 0.26 5.78 ± 0.39
∗∗

4.69 ± 0.21
#

5.67 ± 0.35
$

FFA (mmol/L) 0.39 ± 0.01 0.63 ± 0.05
∗∗

0.49 ± 0.04
#

0.60 ± 0.04

HDL-C (mmol/L) 1.730 ± 0.33 1.029 ± 0.10
∗∗

1.358 ± 0.16
#

0.94 ± 0.29

LDL-C (mmol/L) 0.27 ± 0.12 1.21 ± 0.24
∗∗

0.51 ± 0.19
##

1.25 ± 0.35
$$

Leptin (ng/mL) 3.25 ± 0.38 5.39 ± 0.64
∗∗

4.41 ± 0.61
#

5.28 ± 0.49

Results were expressed as mean ± standard error (𝑛 = 7-8). Differences between groups were compared by one-way analysis of variance (ANOVA).
Note: in comparison with the control group: ∗∗𝑃 < 0.01, ∗𝑃 < 0.05; in comparison with the diabetes group: ##𝑃 < 0.01, #𝑃 < 0.05; in comparison with the
chronic exercise group: $$𝑃 < 0.01, $𝑃 < 0.05.

5mol/L NaOH [29]. A glucose hexokinase assay kit (Sigma)
was used to determine the concentration of hydrolyzed
glucose and glucose content was determined as micromolar
per gram of tissue. Liver FFA was determined with fatty acid
kit (Sigma) following the manufacturer’s instructions. The
liver TG was determined with triglyceride determination kit
(Sigma) following the manufacturer’s instructions [28].

2.9. Tissue Extraction and Western Blotting. The frozen
liver was thawed, weighed, roughly cut, placed in protein
extraction solution (1% Triton X-100, 100mM Tris, pH 7.4,
containing 100mM sodium pyrophosphate, 100mM sodium
fluoride, 10mM ethylenediaminetetraacetic acid, 10mM
sodium vanadate, 2mM phenylmethyl sulfonylfluoride, and
0.1mg/mL aprotinin), and ultrasonicated at maximum speed
at 4∘C for 30 s (JY92-IIN; Scientz, Ningbo, China). The
homogenate was centrifuged at 9 000×g at 4∘C for 40min
(HC-3618R; Zonkia, Hefei, China). Nonsoluble material was
discarded. The protein concentration in the supernatant was
quantified using Bradford’s method. Then, 100 𝜇g of tissue
extract was mixed with an equal volume of 3× sample
buffer solution (6.86M urea, 4.29% SDS, 300mM DTT, and
43mM Tris⋅HCl, pH 6.8) at room temperature for 30min,
subjected to sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE, 10% polyacrylamide gels), and
transferred to a polyvinylidene difluoride membrane at 4∘C
for 2 h. The membrane was blocked using trihydroxymethyl
aminomethane buffer salt + Tween-20 (TBST) containing
5% bovine serum albumin (Sigma) and washed with TBST
(pH 7.4). The antibody was dissolved in TBST containing
1% bovine serum albumin overnight at 4∘C. The used anti-
bodies include leptin, leptin receptors, phosphorylated (p)-
AMPK𝛼1 (Thr172), AMPK𝛼1, p-AMPK𝛼2 (Thr172), AMPK𝛼2,
p-AMPK𝛼1/2 (Thr172), AMPK𝛼1/2, acetyl-CoA carboxylase
(ACC), and p-ACC (Ser79) (Cell Signaling Technology, Bev-
erly, MA, USA; 1 : 1 000 dilution). Bands of interest were
visualized by enhanced chemiluminescence and absorbance
was determined using FluorChem V2.0 gel imaging analysis
software (Alpha Innotech, San Leandro, CA, USA).

2.10. Statistical Analysis. Results were presented as mean
± standard error (SE). Differences between groups were
compared by one-way analysis of variance (ANOVA). Values
of𝑃 < 0.05were considered statistically significant. Statistical
analyses were performed using JMP software (SAS Institute,
Cary, NC).

3. Results

Table 1 reports the body weights and biochemical parameters
of different groups of rats. When comparing with the control
group, the DC group shows a significant increase of the
concentrations of blood glucose, leptin, triglyceride, total
cholesterol, free fatty, acid and LDL-C. The DC group also
shows the decreased insulin sensitivity and HDL-C level,
respectively. On the other hand, the body weight, epididymal
fat mass, and blood insulin concentration exhibit small
variations. All these changes are the typical metabolism char-
acteristics of type II diabetes, proving that the animal model
prepared using high fat diet plus STZ-induced disorders is
suitable for the current study.

Data inTable 1 also illustrates the effect of chronic exercise
on the DC rats. Chronic exercise could significantly reduce
the blood glucose, leptin, triglycerides, total cholesterol,
free fatty acids, and LDL-C. In contrast, chronic exercise
could also increase insulin sensitivity and HDL-C levels. The
acute exercise reduces blood glucose but increases the blood
glucose disappearance rate and there were no significant
effects on dyslipidemia and plasma leptin concentrations.

Compared to the CON group, liver glycogen of the DC
group significantly decreased, but TG and FFA levels were
significantly elevated (Table 2). This indicates a disorder of
the liver glycolipid reserves and FAA. As shown in Table 2,
chronic exercise effectively increased glycogen content and
reduced liver TG and FAA, whereas acute exercise seemed to
have no effect on the liver glucose and lipid reserves.

To understand the underlying mechanisms of the differ-
ent exercises on the type 2 diabetes rats, the protein expres-
sion and protein phosphorylation profiles were examined
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Table 2: The effects of exercise on liver glycolipid storage in type 2 diabetes rats.

CON DC DCE DAE
Hepatic G (mg/g) 42.31 ± 5.80 19.86 ± 2.32

∗

38.45 ± 6.34
#

17.64 ± 4.67

Hepatic TG (𝜇mol/g) 35.2 ± 20.1 144.1 ± 50.4
∗∗

51.0 ± 15.3
##

138.4 ± 33.4

Hepatic FAA (𝜇mol/g) 103.4 ± 35.8 179.4 ± 36.2
∗∗

116.9 ± 27.5
#

163.9 ± 43.9

Results were expressed as mean ± standard error (𝑛 = 7-8). Differences between the groups were compared by one-way analysis of variance (ANOVA).
Note: compared with normal control group: ∗∗𝑃 < 0.01, ∗𝑃 < 0.05; compared with the diabetes control group: ##𝑃 < 0.01, #𝑃 < 0.05.

using western blotting (Figure 2) and these image data
were quantified with gel analysis software and presented
in histograph (Figure 1). The DC group had a significantly
increased expression of leptin with respect to that of the
control group. The leptin expression returned to the basal
level after either chronic or acute exercise (Figure 1(a)). How-
ever, the expression of leptin receptor showed an opposite
change: a relatively low level of leptin receptor for the DC
group and a restored level for the chronic exercise (DCE)
and acute exercise (DAE) groups, respectively (Figure 1(a)).
Interestingly, the ACC expression exhibited a similar trend
to that of leptin, and the phosphorylated ACC exhibited a
similar trend to that of leptin receptor (Figure 1(e)).

AMP-activated protein kinase (AMPK) is a kinase
responsible for the downstreamprotein phosphorylation. It is
composed of two subunits, AMPK𝛼1 and AMPK𝛼2. Previous
studies have identified several phosphorylation positions on
each subunit, and the phosphorylation could occur separately
or simultaneously.Themost frequently observed phosphory-
lation position is Thr172.

As shown, protein expression and the phosphorylation
levels of AMPK𝛼1/2, AMPK𝛼1, and AMPK𝛼2 were greatly
reduced in the DC group (Figures 2(b), 2(c), and 2(d)).
After chronic exercise, the protein expression and the protein
phosphorylation of AMPK𝛼1/2, AMPK𝛼1, and AMPK𝛼2
were elevated back to the normal level in both DCE and DAE
groups.

The ACC phosphorylation was reduced in the DC group
compared to the control group, which is consistent with
the increased liver TG and FFA levels shown in Table 2. It
suggests that the disruption of the leptin-AMPK-ACC signal-
ing pathway might be associated with liver lipid deposition.
Both chronic and acute exercises could increase the ACC
phosphorylation. Chronic exercise can effectively repair the
damage of the liver leptin-AMPK-ACC signaling pathway.
Therefore, in the DCE group, liver glycogen and the leptin
and insulin sensitivity were significantly increased.Moreover,
TG and FFA decreased, which helped lowering both blood
lipids and blood glucose.

In the DAE group, the leptin-AMPK-ACC signaling
pathway was still active 8–16 hours after acute exercise, which
increased insulin sensitivity, but had no significant effect on
liver glycolipid storage.

4. Discussion

Our results indicate that a long-term high fat diet plus low
dose of STZ could induce disorders of the whole system and
of liver lipids in middle-aged rats, which are associated with

both insulin and leptin resistance.These phenomena are sim-
ilar to the onset, progression, and metabolic characteristics
of type 2 diabetes in humans [3–6]. The interruption of the
liver leptin-AMPK-ACC signaling pathway might be one of
the glucose and lipid metabolism disorders found in type 2
diabetes. Eight weeks of chronic exercise not only effectively
improved the leptin-AMPK-ACC signaling pathway, but also
alleviated the liver and whole system lipid disorders and
partially reversed leptin and insulin resistance. Acute exercise
could activate the leptin-AMPK-ACC signaling pathway and
reduce the blood glucose level for at least 8–16 hours but has
no significant effect on hepatic glucose and lipid metabolism.

It has been widely accepted that excessive fat accumu-
lation is strongly correlated with the insulin resistance and
leptin resistance in peripheral tissues (muscle and liver) [14,
30–35]. Excessive nutritional and lipid deposition could lead
to an increase in the number of fat cells and further stimulates
the leptin secretion. Once leptin binds its receptor, triglyc-
eride synthesis will be inhibited, which further promotes the
oxidation of free fatty acids in order to avoid excessive lipid
deposition [36] and maintain lean body mass [37]. Some
studies have suggested that skeletal muscle leptin can activate
the AMPK pathway in two ways. In the first activation, leptin
acts directly with skeletal muscle to induce the rapid and
transient activation of AMPK, and in the second activation
mechanism, one is the 𝛼 adrenal system activating AMPK
through the hypothalamus sympathetic skeletal muscle and
inducing ACC phosphorylation, which further reduces the
synthesis of fatty acids [7]. This activated Malonyl-CoA
decarboxylase pathway reduces the level of Malonyl-CoA
(MA), inhibits the synthesis of fat, eliminates the inhibition
of carnitine palmitoyltransferase 1 (CTP1) [38], promotes
long-chain fatty acids in the mitochondrial inner membrane,
and increases fat oxidation and decomposition [8, 39, 40].
Lacking leptin or the leptin receptor in diabetic rats (fa/fa and
ZDF) reduces the AMPK activity in skeletal muscle and in
liver, and promotes fat storage. Administration of leptin or
AMPK activators can effectively prevent the development of
diabetes [41]. However, the effects on the liver leptin-AMPK-
ACC pathway of diabetic rats induced by high fat diet plus
low dose of STZ are unclear.

Our results indicate that in the DC group, expression of
liver leptin significantly increased, but expression of leptin
receptor decreased. Moreover, expression and phosphoryla-
tion of AMPK𝛼1/2, AMPK𝛼1, and AMPK𝛼2 were effectively
inhibited. The ACC phosphorylation was also inhibited,
which was associated with a decline of glycogen and an
increase of TG and FFA. This data suggests that the liver
leptin-AMPK-ACC signaling pathway is related to hepatic
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Figure 1: Histograph showing the effects of exercise on the leptin-AMPK-ACC pathway in type 2 diabetes rats. The relative levels of protein
phosphorylation and protein expression related to the leptin-AMPK-ACC signaling pathway on different groups were shown. (a) Leptin and
its receptor. (b) AMPK1/2 and p-AMPK1/2 (Thr172). (c) AMPK𝛼1 and p-AMPK𝛼1 (Thr172). (d) AMPK𝛼2 and p-AMPK𝛼2 (Thr172). (e) ACC
and p-ACC (Ser79). Note: in comparison with the control group: ∗∗𝑃 < 0.01, ∗𝑃 < 0.05; in comparison with the diabetes group: ##𝑃 < 0.01,
#
𝑃 < 0.05 (𝑛 = 8).
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Figure 2: Western blotting images of protein expression and protein phosphorylation related to the leptin-AMPK-ACC signaling pathway
of different groups of type 2 diabetes rats. (a) Leptin and its receptor. (b) AMPK𝛼1/2 and p-AMPK𝛼1/2. (c) AMPK𝛼1 and p-AMPK𝛼1.
(d) AMPK𝛼2 and p-AMPK𝛼2. (e) ACC and p-ACC. (f) GADPH as an internal standard.

glucose and lipid metabolic disorder and might explain the
etiology of fatty liver incidence in patients with diabetes.

Changes in body weight may play a role in the prevention
of hyperglycemia caused by regular physical activity, although
it is not likely to be the only explanation. In our study, diabetic
trained animals showed a slight increase in weight, which
puts in doubt whether improvements in insulin sensitivity
are consequences of weight gain effects. For this purpose,
blood triglyceride, total cholesterol, and free fatty acid con-
centrations were also examined and found to be remark-
ably reduced by exercise training. This relative decrease in
biochemical parameters in diabetic trained animals may
have contributed, at least in part, to their improved insulin
sensitivity. Furthermore, diabetic animals were submitted to
acute exercise, which had no effect on body weight.While the
impact of chronic exercise on leptin was related to physical
condition, chronic exercise does not have any effect on the
blood leptin levels of athletes but reduces the leptin levels of
nonathletes with normal weight [42, 43], obese individuals,
and obese rats and also reduces body fat and accumulation
of skeletal muscle lipids, which can prevent or mitigate
leptin resistance [44]. Appropriate exercise can effectively
reduce serum leptin of diabetic rats and humans [45], ease
leptin resistance, and inhibit the development of diabetes.
The impact of chronic exercise on the leptin receptor is also

controversial. Research indicates that chronic exercise could
downregulate leptin receptor gene expression in the hypotha-
lamus [46] and improve the insulin resistance of aging rats.
Another study suggested that chronic exercise could reduce
the expression of the liver leptin receptor gene and decrease
plasma leptin levels in rats with a high fat diet [47]. In our
previous study, we found that chronic exercise could reduce
body fat and blood leptin levels but elevate gene expression of
the leptin receptor in the adipose tissue of obese rats as well
as improve leptin resistance. In agreement with our previous
study, decreased leptin expression and increased expression
of the leptin receptor were also found in the high fat diet
plus low dose STZ-induced type 2 diabetic rats, 24–36 hours
after chronic exercise. In agreement with published data,
endurance exercise could also increase gene expression of
the hypothalamic leptin receptor and activation of the JAK2-
STAT3 signaling pathway, reducing leptin and insulin levels
[48]. Increased expression of the leptin receptor was found in
hypertrophied triceps of professional tennis players [49].

The impact of chronic exercise on the AMPK pathway
was mostly studied in skeletal muscle. Chronic exercise can
effectively reduce ceramide levels in the skeletal muscle of
the high fat diet rats and restore insulin-stimulated glucose
transport in skeletal muscle. Moreover, leptin stimulated
phosphorylation in the skeletal muscle AMPK-ACCpathway,
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and promoted the oxidative decomposition of the FA [44, 50].
In Zucker and OLETF rats, where both lines have metabolic
abnormalities, chronic exercise induced increased phospho-
rylation of ACC, and fat decomposition, as well as reduced
fat synthesis in skeletal muscle. The impact of chronic exer-
cise on the liver leptin-AMPK-ACC pathway has not been
reported, although increase of liver ACC phosphorylation
and AMPK 𝛼1-𝛼2-subunit mRNA/protein expression has
been found [51]. In our present study, we found that not
only was liver AMPK𝛼1/2, AMPK𝛼1, and AMPK𝛼2 protein
expression increased, but increased phosphorylation levels
were also seen, which further inducedACC phosphorylation,
inhibited TG synthesis, promoted FFA oxidation, reduced
lipid storage in the liver, and abolished insulin and leptin
resistance. The impact of acute exercise on leptin could
be influenced by many factors such as exercise stress and
intensity, as well as the physical condition of the individual.
Bouassida reported that the effects of one-time exercise on
leptin levels were related to energy consumption and exercise
time. Energy consumption less than 800 kcal or <60min
of active movement does not change the level of serum
leptin; however, energy consumption greater than 800 kcal
or ≥60min could stimulate the lipolysis and reduce serum
leptin level [13]. 8–16 hours after acute exercise (90min
× 2), leptin expression was significantly decreased and its
receptor expression was significantly increased in the liver
of diabetic rats. Moreover, AMPK𝛼1/2, AMPK𝛼1, AMPK𝛼2
and ACC phosphorylation levels increase, but no significant
effects are noticeable on liver lipid and glycogen storage.
Our data suggested that acute exercise could activate the
liver leptin-AMPK-ACC signaling pathway, promote lipid
mobilization, and inhibit lipid synthesis. This result has also
been shown in other tissues. In agreement with our previous
studies, AMPK𝛼Thr172 and the ACC phosphorylation levels
were increased in skeletal muscle after 3 hours of acute
exercise [23]. Enhanced skeletal muscle AMPK𝛼2 activity,
AMPK𝛼2, and ACC phosphorylation levels were also found
in similar human studies [52, 53]. Moreover, Koh et al.
further confirmed that acute treadmill exercise reduces ACC
adipocyte activity in rats [54].

5. Summary

Impaired liver leptin-AMPK-ACC signaling pathways were
closely related to glucose and lipid metabolism disorders in
high fat diet plus lowdose of STZ-induced type 2 diabetic rats.
We further confirmed that chronic exercise could indirectly
repair the leptin-AMPK-ACC signaling pathway in these rats,
alleviate liver and body lipid disorders, and improve the IR
and LR. Acute exercise could also indirectly activate the liver
leptin-AMPK-ACC signaling pathway and increase insulin
sensitivity, but it should be noted that irreversible liver lipid
disorders are induced by a high fat diet.
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