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Abstract

Evidence from human genetic studies of several disorders suggests that interactions between alleles at multiple genes play
an important role in influencing phenotypic expression. Analytical methods for identifying Mendelian disease genes are not
appropriate when applied to common multigenic diseases, because such methods investigate association with the
phenotype only one genetic locus at a time. New strategies are needed that can capture the spectrum of genetic effects,
from Mendelian to multifactorial epistasis. Random Forests (RF) and Relief-F are two powerful machine-learning methods
that have been studied as filters for genetic case-control data due to their ability to account for the context of alleles at
multiple genes when scoring the relevance of individual genetic variants to the phenotype. However, when variants interact
strongly, the independence assumption of RF in the tree node-splitting criterion leads to diminished importance scores for
relevant variants. Relief-F, on the other hand, was designed to detect strong interactions but is sensitive to large
backgrounds of variants that are irrelevant to classification of the phenotype, which is an acute problem in genome-wide
association studies. To overcome the weaknesses of these data mining approaches, we develop Evaporative Cooling (EC)
feature selection, a flexible machine learning method that can integrate multiple importance scores while removing
irrelevant genetic variants. To characterize detailed interactions, we construct a genetic-association interaction network
(GAIN), whose edges quantify the synergy between variants with respect to the phenotype. We use simulation analysis to
show that EC is able to identify a wide range of interaction effects in genetic association data. We apply the EC filter to a
smallpox vaccine cohort study of single nucleotide polymorphisms (SNPs) and infer a GAIN for a collection of SNPs
associated with adverse events. Our results suggest an important role for hubs in SNP disease susceptibility networks. The
software is available at http://sites.google.com/site/McKinneyLab/software.
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Introduction

Human genetics studies have been successful at identifying

single-locus variants that have a large effect on Mendelian

disorders, such as cystic fibrosis or neurofibromatosis. However,

the analytical strategies appropriate for identifying Mendelian

disease genes have been met with limited success when applied to

common multigenic diseases [1,2]. Contributing to this limited

success is the fact that the Mendelian approach requires that each

susceptibility factor exert a large independent (main) effect on

disease risk because association with the phenotype is investigated

only one genetic locus at a time. The complexity of molecular

interactions necessary to regulate gene expression likely is reflected

at the DNA sequence level in the form of statistical interactions

between alleles, with many of the individual alleles having little or

no main effect on disease risk. The breakdown in the buffering

against complex disease-related changes in expression may only be

observable if properly investigated in terms of statistical interac-

tions between genetic variants like single nucleotide polymor-

phisms (SNPs) or copy number polymorphisms (CNPs). Thus,

analytical strategies for genetic association studies are needed that

identify conditionally-dependent (interacting) susceptibility factors

in addition to factors that exhibit an independent effect. Such

strategies must be able to capture the spectrum of Mendelian to

multifactor interaction effects.

Gene–gene interaction is widely accepted in the field of

statistical genetics as a significant challenge to understanding the

genetic architecture of complex diseases [3–9]. There is empirical

evidence from human studies and model organisms to suggest that

gene–gene interactions contribute to variation in complex diseases

[10–15]. In human studies, for example, interactions were

detected in Alzheimer disease between GAB2 and APOE [16],

and high-risk haplotypes displaying intralocus interactions were

detected in exfoliation glaucoma [17] and atrial fibrillation [18].

Another notable example of the importance of interactions in

human disease is Hirschsprung’s disease which was found to be

influenced by polymorphisms in RET and EDNRB in the Old

Order Amish [19]. This association was confirmed in a mouse

model and the synergistic effect of both variants greatly

outweighed the additive risk of each variant when considered
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independently. Like the examples above, susceptibility to common

diseases, such as cancer, diabetes, obesity, hypertension, and

premature cardiovascular disease, is likely influenced by the

interaction of SNPs in multiple genes. Moreover, Mendelian

disorders display a wide range of phenotypic variation that may be

explained by interactions of the primary mutation with genetic

modifier variants.

Our working definition of gene–gene interaction is the

conditional dependence between genetic variants that affects the

classification of the phenotype. This definition is equivalent to the

definition based on deviation from additivity in a multi-locus

model of phenotypic variation. These interactions may vary from

very weak, or nearly additive, to purely epistasic, where it is only

possible to detect a susceptibility locus when considered jointly

with one or more additional loci. An advantage of genome-wide

association (GWA) studies is that information about conditionally

dependent loci is more likely to be available for gene–gene

interaction analysis. Unfortunately, these useful genotypes are

embedded in a genome-wide sea of noise, or variants irrelevant to

classification of the phenotype. Thus, the focus of this paper is to

address these two challenges in GWA studies: 1) accounting for

gene–gene interactions and main effects and 2) removing noise

variants to obtain a subset of SNPs that are enriched for

association with the phenotype.

Random Forests (RF) [20] is a powerful nonparametric method

that has been successfully applied to genetic data [21]. An RF is a

collection of decision tree classifiers in which each tree in the forest

has been trained on a bootstrap sample of instances from the data

and each split attribute is chosen from among a random subset of

attributes. In data mining terminology, an attribute is a dataset

feature or variant such as a SNP, and an instance refers to a

sample or subject. Out-of-bag instances are used to estimate

prediction error and importance of each attribute via permutation

testing. If randomly permuting values of a particular attribute does

not affect the predictive ability of trees on out-of-bag samples, then

that attribute will be assigned a low importance score [5,21]. RF

has been targeted as a method for identifying interactions in

genetic data because it takes into account the context of other

attributes when scoring the relevance of individual genetic variants

and it does not require the specification of a model [22]. However,

when association of an attribute with the phenotype is caused by a

pure interaction with another attribute, the RF importance score

of the relevant attribute diminishes. This limited ability to identify

interacting attributes is due to the independence assumption used

during node splitting, which is determined by the Gini index. The

resulting trees are built on the assumed independence of the split

attribute conditional on the class because the Gini split selector

measures the impurity of the class value (case or control)

distribution before and after the split on the evaluated attribute

(e.g., SNP).

Recursive Elimination of Features-F (Relief-F) is a heuristic

attribute quality measure that can identify important variants in

data sets that include strong interactions. However, Relief-F is

sensitive to the presence of noise attributes, which when added to

the data set cause Relief-F scores of relevant variants to worsen

[23]. This limitation is exacerbated in GWA studies in which most

of the variants may be irrelevant to the given phenotype. To

overcome the bias caused by the context of noise attributes,

strategies are necessary that iteratively remove variables with the

worst Relief-F scores and update the scores of the remaining

variables [23,24]. The authors in Ref. [24] applied such a strategy,

called tuned Relief-F (TuRF), to simulated genetic association data

and demonstrated increased power to identify interacting SNPs

over Relief-F without backwards elimination. Recently, we used

evaporative cooling (EC) to create a composite score from Relief-F

and information gain (IG), thereby demonstrating greater power

than iterative Relief-F to detect pure interactions, with markedly

greater power observed when one of the interaction partners

demonstrated a marginal main effect. In real genome-wide

association data, one expects both interaction and main effects

to be present. Thus, the motivation of the EC filter is to optimize

the linear combination of complementary scores to detect the

continuum of independent and interaction effects. The EC

approach in the current study optimizes the coupling of the RF

and Relief-F scores based on classification accuracy and the

iterative removal of noise attributes to obtain a collection of SNPs

enriched for relevance to the phenotype.

The development of EC as a machine learning method was

motivated by information theory and the statistical thermody-

namics of cooling a gas of atoms by evaporation [26]. Just as a

balance is struck between low energy and high entropy to achieve

equilibrium in a collection of atoms, EC feature selection balances

independent and interaction effects to obtain a collection of

attributes enriched for association with the phenotype. Further,

EC of a physical gas increases the phase space density by the

iterative removal of the most energetic atoms while EC feature

selection increases the feature space density by iteratively

removing attributes that are least relevant to the phenotype. In a

physical system, energy (E) and entropy (S) are balanced through

the free energy F = E2TS, where T is the system temperature. In

EC feature selection we optimize an analogous quantity that we

call the information free energy, where E is the interaction

contribution (Relief-F) and S is the main effect contribution. These

two quantities are balanced by optimizing the coupling T. In our

previous construction of the information free energy score we used

IG, a quantity derived from information entropy, because the S

contribution represents entropy in the thermodynamic free energy

[26]. However, EC is not restricted to rely on an information

entropy-based correlation score and, in fact, EC has a flexibility

that allows it to couple any attribute quality scores. Thus, for the

current study we use Relief-F as the interaction score and a

transformation of the RF importance score as the independent

effect score.

Through simulation analysis we show that the EC filter is able

to identify genetic variants that confer risk through interaction

with other genetic factors. Such risk factors may go undetected in a

typical GWA analysis that reports a stringent list of the most

Author Summary

Susceptibility to many diseases and disorders is caused by
breakdown at multiple points in the genetic network. Each
of these points of breakdown by itself may have a very
modest effect on disease risk but the points may have a
much stronger effect through statistical interactions with
each other. Genome-wide association studies provide the
opportunity to identify alleles at multiple loci that interact
to influence phenotypic variation in common diseases and
disorders. However, if each SNP is tested for association as
though it were independent of the rest of the genome,
then the full advantage of the variation from markers
across the genome will be unfulfilled. In this study, we
illustrate the utility of a new approach to high-dimensional
genetic association analysis that treats the collection of
SNPs as interacting on a system level. This approach uses a
machine-learning filter followed by an information theo-
retic and graph theoretic approach to infer a phenotype-
specific network of interacting SNPs.
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significant SNPs where each SNP has been treated as independent.

We apply the EC interaction filter to a real data set, which we

analyzed previously for main effects using logistic regression (LR)

[27]. The data set consists of 1442 SNPs across 386 candidate

genes for subjects with and without systemic adverse events

following smallpox vaccination. In order to characterize the

interactions among the top EC-ranked SNPs, we infer what we call

a genetic-association interaction network (GAIN). GAIN is based

on interaction information (II), which was formulated by McGill

[28] to quantify higher-order interaction gains between attributes

and the class or phenotype. Jakulin and Bratko in Ref. [29]

proposed a number of novel diagrams to visualize these

interactions, some of which were incorporated by [30] into a

strategy to characterize epistasis in multifactor dimensionality

reduction (MDR) models. Positive connection strength between

SNPs in a GAIN represents synergy between the two SNPs whose

joint variation leads to improved classification of the phenotype. A

negative network connection indicates redundant information

between the two SNPs. In the terminology of genetics, ‘‘synergy’’

maps onto epistasis, and ‘‘redundancy’’ is most closely related to

linkage disequilibrium but conditional on the phenotype. The EC

filter, with its ability to select SNPs that may involve interactions or

main effects, combined with GAIN for visualization and

interpretation of the resulting network, provides an alternative

approach to analyzing genotypic data on a more global scale,

which will become increasingly important as GWA studies become

more prevalent.

Results

Simulation Analysis
Figure 1 depicts the two-locus interaction models simulated in

this study to compare the performance of EC, TuRF, RF, and

stepwise penalized LR (stepPLR) [31]. The models in Figure 1

include combinations of low heritabilities (h2 = .05 on the left and

.01 on the right) and a range of interaction strengths (from nearly

additive to completely epistatic). The 1% level represents a worst-

case scenario for heritability, and the purely epistatic XOR model

(Model 3) represents the worst-case scenario for gene–gene

interaction models. For each genetic model, 100 replicate datasets

were created with 1000 samples consisting of a balanced number

of cases and controls. The proportions of the susceptibility alleles A

and B in the population are assumed to be the same as the alleles a

and b, respectively. Replicate simulations were created using the

genomeSim software [32]. In addition to simulating the specified

interaction model, genomeSim also simulates linkage disequilib-

rium (LD) patterns, though LD is not the focus of the current

study. Each replicate dataset consists of a set of 1500 SNPs

containing the two susceptibility SNPs.

Figure 2 summarizes the comparison of the ability of EC,

TuRF, RF, and stepPLR to detect two-locus models described in

Figure 1. For the 100 replicates of each model in Figure 1, we

recorded the number of times that the two susceptibility SNPs

were detected among the top filtered SNPs for each analytical

method. The empirical detection power in Figure 2 is defined as

the fraction of times out of all 100 replicate data sets for a given

model that both of the simulated susceptibility SNPs occurred in

the top SNPs as ranked by the given method. The cutoff for how

many SNPs to include from the rank-list is varied in Figure 2 from

the top 2 to the top 100 SNPs. In a real data analysis one may

choose a filter cutoff that is larger than the top 2 because findings

that replicate in multistage study designs often are not the most

statistically significant associations in the initial scan [33,34]. And,

as we show below, a larger collection of SNPs permits a pathway-

level analysis in which SNPs in multiple genes contribute to disease

risk. Below we illustrate on a real data set a random permutation

approach for selecting a significant EC cutoff score. When

determining the top SNPs for EC, RF and TuRF, we sort by

importance score. Detection is counted for stepPLR if both causal

SNPs have a nonzero coefficient anywhere in the LR model. For

RF, we used 10,000 trees in a forest and the square root of the

total number of SNPs as the number of SNPs chosen randomly for

node splitting. We used 10 nearest neighbors in the Relief-F

calculations. For both RF and Relief-F, we used iterative removal

of irrelevant SNPs in order to compare with EC consistently.

The simulation results (Figure 2) show that EC does as well as,

or improves upon, RF for all interaction models. For the

interaction models with a small main effect (Models 1, 2, and 4),

EC and RF perform similarly. For the interaction Model 2 with a

small main effect and low (1%) heritability, EC and RF display

modest power in the 20–25% range, while the power of TuRF is

even lower at 7%. The weakness of RF at identifying purely

epistatic models is most evident for Model 3, which has a relatively

high (5%) heritability but is an XOR model with zero marginal

effect. When the final number of SNPs is two, RF has only a 14%

detection power for Model 3 whereas EC detects it with 91%

power. For the interaction Model 2 with a non-vanishing main

effect, all methods perform poorly due to the low (1%) heritability.

It is likely that any analytical method would need a larger sample

size to detect Model 2 with appreciable power. StepPLR shows a

constant power for all models because of the small regularization

parameter chosen by cross validation, which leads to models with

fewer variables. For Model 4, StepPLR has an advantage over

other methods when restricted to choosing the top two SNPs. EC

performs better than TuRF for all models tested. TuRF shows its

best performance for the XOR model, but performs worse than

StepPLR for Models 1 and 4, which have an additive effect. By

combining RF and Relief-F, the EC algorithm is able to detect

interaction models with slight main effects, for which RF is well

suited, and, leveraging the strength of Relief-F, EC is able to detect

pure interaction models that RF is too myopic to detect. To

illustrate the potential for detecting larger genetic models, Figure 3

shows the results of an analysis of 100 simulated replicates of an 8-

locus model that combines the two-locus models from Figure 1.

We compare the detection frequency for each of the eight

functional loci for EC with a cutoff of 50 and StepPLR. This

analysis shows the potential advantage of using EC as a filter for

genetic models involving greater than two loci.

Evaporative Cooling and Genetic-Association Interaction
Network Analysis of Smallpox Vaccine Adverse Event
Phenotype

To further validate and illustrate our approach, we apply the

EC filter and GAIN strategy to a smallpox vaccine study looking at

the association of a panel of SNPs with mild adverse events (AEs)

[27]. Of the 131 subjects in the study, 40 experienced a systemic

AE, which included fever, generalized rash and lymphadenopathy.

Table 1 shows the top 26 SNPs out of the 1442 ranked by the EC

filter for the vaccine AE phenotype. We arrived at this cutoff using

the random permutation approach described in the Methods

section. An EC score cutoff of 20.237 yields a .05 risk for a SNP

that is declared relevant to the phenotype in Table 1 is actually

irrelevant. As we dissect in more detail below, glycogen synthase

kinase 3 beta (GSK3B) and solute carrier family 6 (neurotrans-

mitter transporter, dopamine), member 3 (SLC6A3) in Table 1 are

likely information hubs in this phenotype network. In addition to

potential interaction effects, the EC relevance list also contains the

same SNPs found in our previous main effect analysis in the 5,10-

Capturing the Spectrum of Interaction Effects
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methylenetetrahydrofolate reductase (MTHFR) and interleuking-4

(IL4) genes.

To characterize the details of the interaction network of this

SNP-phenotype network, we draw upon the top 100 EC-ranked

SNPs (see Supplementary Table 1), which we reduce to 70 SNPs

by removing redundant markers. Specifically, if a pair of SNPs is

correlated by more than .8 by the symmetric mutual information

measure [26], then the least informative marker (lower EC score) is

removed. The purpose of removing correlated SNPs is to reduce

redundancy and make the network more interpretable. Another

way to simplify the network would be to use nodes corresponding

to constructed haplotypes. We also removed the least informative

marker between pairs that are redundant in the context of the

phenotype according to II. For example, GSK3B_01 and

GSK3B_27 are correlated by less than .8; however, in the context

of the phenotype they have nearly the same information content.

Another way we plan to deal with correlated features in the future

is to wrap an orthogonalization procedure into the EC method.

Figure 4 shows the GAIN inferred from this EC-filtered list of

SNPs.

The sample size of this vaccine trial is relatively small for

identifying high-order interactions; thus, our goal in Figure 4 is

simply to illustrate how the EC filter may be used in conjunction

with GAIN to add insight into the network of interactions among

SNPs that may influence the phenotype for a typical genetic

association study. Edges represent interaction information (II)

between SNPs, which does not simply represent correlation

between SNPs but rather quantifies the amount by which their

joint variation decreases our uncertainty about the phenotype over

what would be expected by their individual effects (see Methods).

For clarity of the graph, the number of connections displayed is

limited to pairs of SNPs with the largest II magnitudes and to pairs

involving nodes with the best EC scores. Specifically, we displayed

edges between pairs of SNPs with an II magnitude greater than

6%, which results in 160 edges. The 6% II cutoff yields a .03 risk

of obtaining a false connection, which was calculated by random

permutation of SNP pairs (see Methods). Pairs of SNPs with

positive II (synergy between the SNPs with respect to the

phenotype) have solid edges. Pairs of SNPs with negative II

(redundant information with respect to the phenotype) are

indicated by dashed edges.

We highlight three nodes and their connections in Figure 4: a

hub SNP in GSK3B (orange) and two main effect SNPs in

MTHFR (yellow) and IL4 (green), which displayed main effect

haplotypes in our primary analysis. GSK3B has a relatively large

IG (see Supplementary Table 2 for numeric details of the GAIN

interaction partners) but it may be more important in its influence

on other SNPs in the context of the AE phenotype. For example,

GSK3B has a direct connection with IL4 and a secondary

connection with MTHFR. In the top ranking interaction pair

(Suppl. Table 2), a SNP in GSK3B and lipase, hepatic (LIPC)

contribute the most total gain in information about the phenotype

despite the very small IG of LIPC. Supplementary Table 3 gives

the connectivity distribution for the GAIN nodes. A SNP in

SLC6A3 and GSK3B are hubs in the GAIN. Its synergy between

several interaction partners and its independent effect give GSK3B

one of the best EC scores (Table 1). The SNP in SLC6A3 has a

much smaller main effect than GSK3B but its synergy leads to its

Figure 1. Penetrance diagram for genetic models used to compare strategies for filtering SNPs from case-control data. All four
genetic models involve two interacting loci. Each point in a diagram is the probability of an individual being in the affected phenotype state for the
given genotype combination. Model 3 is the purely epistatic XOR model, which displays no independent effects. The other interaction models display
a small main effect through locus B. The models in the left column have .05 heritability and the models in the right column have .01 heritability.
Analysis results for these simulated models are given in Figure 2.
doi:10.1371/journal.pgen.1000432.g001
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having one of the better EC scores. Despite having a much smaller

main effect, the SLC6A3 hub SNP appears to have an influential,

though indirect, effect on the phenoytpe.

Discussion

As pointed out by [35] an important challenge facing statistical

genetics will be to balance the relative strengths and weaknesses of

new and existing analytical methods because of the multiple

challenges a single method must adequately address in a data set,

including heterogeneity, gene–gene/gene-environment interac-

tions, and genome-wide noise. The EC method attempts to

achieve this balance via a machine learning optimization

analogous to the way a system of particles achieves equilibrium

by balancing low energy and high entropy as expressed through

the thermodynamic free energy. The goal of EC is to address the

challenge of disease model heterogeneity, gene–gene interactions,

and noise by optimizing the coupling between two powerful

machine learning/data mining methods with complementary

strengths and weaknesses: Random Forest (RF) and Relief-F.

The iterative removal of attributes (evaporation) plays a dual role

by providing a mechanism for optimizing the coupling of RF and

Relief-F and by removing attributes that are irrelevant to the

phenotype (noise) from high-dimensional genotype data.

Relief-F was designed to account for interacting variants but

consequently is more sensitive to noise. RF is more limited in its

ability to identify interaction effects but is robust to noise,

overfitting, and missing data. In addition, tree-based methods

are suited to deal with certain types of genetic heterogeneity

because splits near the root node define separate population

subsets in the data. These methods exhibit complementary

strengths and weaknesses. Thus, properly integrating these two

scores and using backwards elimination allows EC to identify a

spectrum of interaction effects, from purely epistatic XOR models

to models displaying Mendelian effects. The selection from a

random sample of attributes allows RF to maintain a low

correlation between trees while the coupling with Relief-F by

EC enriches the population of attributes for interaction effects that

influence the phenotype.

Many SNPs in association studies have been shown to have

small individual effect sizes, but their combined effect may be

much larger. EC has high power to filter a large set of SNPs down

to a small subset that is enriched for interaction and independent

effects that influence association with the phenotype. The

advantage of EC over standard statistical analysis is greatest when

the genetic model contains no marginal main effect; however, EC

performs as well as or better than RF for the interaction models

that contain a main effect. EC also outperforms iterative Relief-F

procedures (e.g., TuRF) with the greatest improvement occurring

when one of the attributes demonstrates a small main effect. Thus,

by balancing independent and interaction effects, EC is able to

detect a spectrum of models in genetic association studies.

Currently EC is meant to be an attribute filter for dimensionality

reduction to be followed by more fine-grained modeling and/or a

Figure 2. Detection power comparison of forward stepwise penalized logistic regression (stepPLR), Random Forests (RF), tuned
Relief-F (TuRF) and Evaporative Cooling (EC) filter for 100 simulated replicates of each of the models defined in Figure 1 using 500
cases and 500 controls and 1500 total SNPs. Detection power is defined as the percentage of replicates for which both causal SNPs are found
above the cutoff in the filter’s rank list. The power is plotted as a function of the rank-list cutoff on a log scale, from the top 2 up to the top 100 final
SNPs. EC, RF and TuRF results are sorted by importance score. Detection was counted for stepPLR if both causal SNPs had nonzero coefficients in the
LR models.
doi:10.1371/journal.pgen.1000432.g002
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second stage of genotyping. However, in our simulation analysis

we often find that the two functional SNPs have the highest EC

rank, not just in a top percentile. In the application to real data we

used a permutation approach to estimate an appropriate critical

region of EC scores to reduce the number of false positive SNPs.

To characterize the genotype to phenotype map, we used the

EC filter to reduce the space of SNPs to a more computationally

manageable size for an exhaustive search for interactions by II,

and then we used a network approach to visualize the interactions

on a larger scale. Instead of using information theory to infer

specific gene–gene interactions, one may use an alternative like

pair-wise LR. The EC filter plus GAIN approach may prove to be

a valuable complement to other approaches for modeling complex

diseases because the inferred disease-specific network may better

approximate the interconnectivity of the true biological system. In

our second stage of analysis of the real data set, we inferred a

genetic association interaction network (GAIN) in Figure 4, by

taking advantage of the context dependence of all SNPs in the EC

filter score. We again used a permutation strategy to prune the

network by estimating the II cutoff appropriate for the given data.

GAIN provides a visualization tool to explore, more globally, the

statistical and biological relationships among the SNPs that are

relevant to a given phenotype. GAIN is meant to be a discovery

tool to suggest a SNP interaction network of the given phenotype.

It provides information about synergy between SNPs whose joint

effect increases information about the phenotype as well as

information about redundancy between SNPs whose joint effect

provides no additional information about the phenotype over their

independent contributions.

The SNP hubs GSK3B, LIPC, and SLC6A3 (Supplementary

Table 3) in Figure 4 have some of the highest EC scores and yield

the largest information gains when joined with SNPs in other

genes (Supplementary Table 2). Supplementary Table 2 only

shows pair-wise interactions; however, GAIN Figure 4 suggests

higher-order effects that can be decomposed into pair-wise

interactions that cascade from the hub. The cascading effect of

such hubs on disease susceptibility is an important area of

investigation as is the identification of sub-networks in the GAIN

that may suggest new pathways involving the given phenotype. As

EC and GAIN are further developed it will be important to

integrate gene ontology (GO) information with GAIN so that

significantly enriched GO terms can be highlighted in network

motifs. We used permutation to set the number of edges, but the

use of prior knowledge may also help to determine the appropriate

II cutoff magnitude for displaying GAIN edges, thereby reducing

the number of false positive interactions in an inferred network.

For speed of analysis for large numbers of simulated data sets,

this paper focused on candidate gene data sets on the order of 103

SNPs but not high-density, whole genome data, which are

typically on the order of 105 or 106 SNPs. To make whole-

genome filtering feasible, we have implemented a version of EC

that is parallelized (pEC). The freely available software for pEC

results in a decrease in CPU time by a factor approximately equal

to the number of processors used. Our strategy involves

parallelizing the attribute quality evaluations (RF and Relief-F)

in the evaporation loop since this is the most time consuming step

of EC. We use a parallelized version of RF in Fortran 90, parallel

RF (PARF) [36]. Using test data sets with a sample size of 1000

cases and 1000 controls, we estimate the computational speed of

the current version of EC is 1.5 seconds per marker. Based on this

rate, EC would be able to filter 1 million SNPs in 42 hours on 10

processors. The other computational advantage of EC over

exhaustive search strategies is that EC takes into account the

context of all SNPs when scoring a SNP, allowing for the inclusion

of higher-order effects at no additional computational cost. Despite

using a Naı̈ve Bayes classifier to determine the parameter, T, for

coupling importance score, EC shows very good power to identify

interactions. We have tested other classifiers, such as decision

trees, and have found little sensitivity to the choice of classifier.

However, the method for optimizing the importance score

coupling will be a focus of future research.

The genome-wide testing of DNA sequence variants for

association with complex diseases opens up the possibility of

identifying gene–gene interactions and even networks of interacting

susceptibility loci. However, this network or pathway level view of

SNPs affecting the expression of a phenotype will only be

meaningful if analytical methods can identify gene–gene interac-

tions. The EC filter is conducive to a pathway-level analysis because

it accounts for the context of all SNPs when computing the

relevance of a specific SNP to the phenotype. Furthermore, when

coupled with network analysis such as GAIN, the collection of SNPs

enriched for interactions may be modeled on a global/pathway

level. We demonstrated the ability of EC network analysis to identify

interactions between SNPs, the most common form of genetic

variant, but EC is also applicable to gene expression data and the

emerging CNP. By treating attributes as real-valued variables, gene

expression data can be analyzed for interactive associations with a

phenotype, and CNPs could be treated as discrete or real-valued to

avoid converting raw intensities to genotypes. EC can be used for

attribute selection in other domains of bioinformatics where

statistical interactions may be significant, such as identifying

biophysical properties of amino acids that predict protein binding.

Methods

Simulations
To compare the performance of each analytical method,

replicate data sets for the genetic models in Figure 1 were created

Figure 3. Detection power analysis of 100 simulated replicates
of an 8-locus model that combines all genetic models defined
in Figure 1. Each replicate has a population size of 500 cases and 500
controls and the eight functional loci are embedded in 1500 SNPs.
Detection frequency is shown for each of the eight functional loci for EC
with a cutoff of 50 SNPs compared with forward stepwise penalized
logistic regression (StepPLR). The first two simulated loci (X1 and X2)
follow the disease model defined in Interaction Model 1, the second
two simulated loci (X3 and X4) come from Interaction Model 2 and so
on.
doi:10.1371/journal.pgen.1000432.g003
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with the genomeSIM software package [32]. The genomeSIM

software was developed as a realistic, forward-time population

simulation algorithm that allows the user to specify many

evolutionary parameters and to control evolutionary processes.

In the simulation, an initial population of diploid individuals is

randomly created and individuals cross by contributing one

chromosome to the offspring. These crosses form the next

generation and the process repeats until the specified number of

generations has occurred. In the final generation, summing across

the binary chromosome pairs at each position produces genotypes

for the individual. Disease status is assigned by the probability of

disease for each genotype or genotype combination as defined in

the penetrance function.

Stepwise Penalized Logistic Regression
Because LR is able to fit additive and other low order effects as

well as interactions, we compare the filter methods in this paper

with an LR with L2-regularization to fit gene interaction models

[31]. As the number of markers in a genetic association data set

grows it becomes increasingly unlikely that an exhaustive set of

tests would be feasible, so a step-wise approach seems to be a

reasonable approach for comparison with other filter methods.

The authors in Ref. [31] implemented this method as an R

package called stepPLR, which uses forward selection followed by

backwards deletion for variable selection. In each forward step, a

factor or interaction of factors is added to the model. In the

backward step, factors are deleted beginning with the largest

model from the forward steps. In our application, we selected the

regularization parameter by cross-validation then built models

based on the Bayesian information criterion.

Relief-F
Relief-F is an extension of Relief, a heuristic machine learning

method for estimating the quality of variants according to their

ability to separate samples into classes. The following details of the

algorithm apply to both Relief and Relief-F, then below we point

out the differences. Consider a set of genetic variants (e.g., SNPs)

G, where each genetic variant gi in this set can be in one of the

genotype states from the set {0, 1, 2}, corresponding to the

homozygous for the common allele, heterozygous, and homozy-

gous for the minor allele. In Relief, the weight of each attribute gi

is initially set to zero (W[gi] = 0) and for randomly selected samples

(or for all samples if desired) the nearest hit and miss are computed

with the chosen distance function (metric) and W[gi] is recursively

updated according to how well the attribute can separate near hits

and misses. Given a sample from one class, the nearest hit is

Table 1. Top SNPs selected by Evaporative Cooling (EC) as most relevant to smallpox vaccine-associated adverse events.

SNP ID dbSNP ids Gene Name EC Score

ESR1-13 56525559 estrogen receptor 1 21.551

HSD17B4-19 21184487 hydroxysteroid (17-beta) dehydrogenase 4 21.422

GSK3B-01 26231979 glycogen synthase kinase 3 beta 21.174

GSK3B-27 26255314 glycogen synthase kinase 3 beta 21.167

CASR-06 28496245 calcium-sensing receptor 20.727

ALOX5-15 3320405 arachidonate 5-lipoxygenase 20.701

RXRA-03 208756 retinoid X receptor, alpha 20.633

AHR-17 16862729 aryl hydrocarbon receptor 20.627

CD4-03 6783008 CD4 molecule 20.605

SCUBE2-02 7859381 signal peptide, CUB domain, EGF-like 2 20.597

ARNT-23 1340390 aryl hydrocarbon receptor nuclear translocator 20.562

LIPC-08 29629829 lipase, hepatic 20.561

OPRD1-03 11986807 opioid receptor, delta 1 20.538

GSK3B-04 26074026 glycogen synthase kinase 3 beta 20.493

MTHFR-02 1801133 5,10-methylenetetrahydrofolate reductase (NADPH) 20.487

GSK3B-07 26090649 glycogen synthase kinase 3 beta 20.483

EXO1-02 6787940 exonuclease 1 20.480

MTHFR-02-2 6393745 5,10-methylenetetrahydrofolate reductase (NADPH) 20.478

SLC6A3-14 1419969 solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 20.476

CYBB-12 488277 cytochrome b-245, beta polypeptide 20.390

IL4-01 34424167 interleukin 4 20.366

NFKB1-14 28084004 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 20.321

IL4-03 34424723 interleukin 4 20.312

CBR3-01 23169639 carbonyl reductase 3 20.302

IL2-03 47925629 interleukin 2 20.288

IL4-10 34433182 interleukin 4 20.238

The EC score cutoff was selected by random permutation analysis, yielding a .05 risk that a SNP declared relevant on this list is actually irrelevant to the phenotype. SNPs
sorted from best to worst EC score; a lower score means more relevance to the phenotype. SNPs are named according to their SNP500Cancer id (http://snp500cancer.
nci.nih.gov/) in the first column and by dbSNP number (build 129) in the second column.
doi:10.1371/journal.pgen.1000432.t001
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defined as the nearest sample or individual from the same class as

the sample of interest, where nearness in the SNP space is defined

below. The nearest miss is the nearest sample from the opposite

class. The selection of the nearest hit/miss is crucial to the success of

Relief-F to find strong attribute dependencies because nearness is

defined in the space of all SNPs as opposed to a single SNP at a

time. For a given sample S (or individual) with nearest hit H and

nearest miss M, the following equation is used to update the weight

of each SNP gi:

W gi½ �~W gi½ �{diff gi,S,Hð Þ=mzdiff gi,S,Mð Þ=m: ð2Þ

This is repeated for m samples selected randomly or exhaus-

tively. Division by m in Eq. (2) ensures that the weight of each

attribute lies between 21 and 1. For SNP gi, the difference

function between samples Sj and Sk is

diff gi,Sj ,Sk

� �
~

0, if genotype gi,Sj

� �
~genotype gi,Skð Þ

1, otherwise

(
,ð3Þ

where genotype(g,S) means the genotype of SNP g for sample S.

Eq. (3) is used also for calculating the distance between samples to

find the nearest neighbors. The total distance is the Manhattan

distance, or the sum of distances over all SNPs.

The importance score W of a genetic variant gi is recursively

updated for each individual, or sample S, in the population.

Equation (2) rewards attributes that yield a large separation

between the given sample and the nearest sample from the other

class (misses, M) and penalizes attributes that give large separations

between the given sample and the nearest sample from the same

class (hits, H). For example, if the separation of a sample from its

nearest hit is the same as its separation from its nearest miss then

the contribution to the weight of the attribute is zero because it

does not contribute to the classification of the sample. In our

algorithm, we use Relief-F, an extension of Relief that enables it to

handle noisy and incomplete data sets and to deal with multi-class

problems. The main difference from Relief is that Relief-F

searches for the K nearest hits and misses instead of the single

nearest hit and miss, which gives greater robustness with respect to

noise. We used K = 10 nearest neighbors and exhaustive selection

of samples. For more details on Relief-F, see [37]. We use the

Relief-F feature-weighting algorithm in our EC objective function

(discussed below) because of its demonstrated ability to handle

attribute interactions in genetic data [24,26]. The iterative

removal of the worst attributes in the evaporative formalism is

the key to countering the devaluation of Relief-F importance

scores of relevant SNPs due to the context of noise variants. As a

control in the Results section, we compare EC with an iterative

Relief-F called tuned Relief-F (TuRF) [24].

Random Forests
In our original construction of EC, we used Information Gain

(IG) as the main-effect contribution (the entropy term S) to the

information free energy score [24,26]. This was a natural choice

Figure 4. Genetic association interaction network (GAIN) for the top 70 SNPs selected by Evaporative Cooling (EC) as most relevant
to smallpox vaccine-associated adverse events. Three nodes and their connections are highlighted: the hub glycogen synthase kinase 3 beta
(GSK3B, orange) and the two main effect genes, 5,10-methylenetetrahydrofolate reductase (MTHFR, yellow) and interleukin-4 (IL4, green). Solid edges
indicate synergy (positive interaction information (II)) between incident SNPs that results in an increase in information about the phenotype when the
two SNPs are considered jointly. Dashed edges between incident SNPs indicate redundancy (negative II) with respect to information about the
phenotype.
doi:10.1371/journal.pgen.1000432.g004
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for the evaporation formalism because of the basis of IG in

information entropy. Although we show that Random Forest (RF)

is not particularly good at identifying purely epistatic interactions

(see Results), it performs very well when identifying main effect

variants that elude many standard methods (e.g., IG, chi-square,

LR). Thus, we integrate the Random Forest importance ranking

as the main-effect component (S) to the EC score (discussed below).

We use a version of RF known as PARF (parallel RF) that has

been parallelized in Fortran 90 [36]. RF is a collection of decision

tree classifiers, where each tree in the forest has been trained using

a bootstrap sample of individuals from the data and each split

attribute in the tree is chosen from among a random subset of

attributes. Classification of individuals is based upon aggregate

voting over all trees in the forest. Each tree in the forest is

constructed as follows from data having N individuals and M

explanatory attributes:

1. The method chooses a training sample by selecting N

individuals with replacement from the entire dataset.

2. At each node in the tree, m attributes are selected randomly

from the entire set of M attributes in the data. The absolute

magnitude of m is a function of the number of attributes in the

dataset and remains constant throughout the forest building

process.

3. The method chooses the best split at the current node from

among the subset of m attributes selected above.

4. The second and third steps are iterated until the tree is fully

grown (no pruning).

Repetition of this algorithm yields a forest of trees, each of

which has been trained on bootstrap samples of individuals. Thus,

for a given tree, certain individuals were left out during training

(on average for a large number of samples, the fraction 1-1/e).

Prediction error and attribute importance was estimated from

these ‘‘out-of-bag’’ individuals.

In RF the out-of-bag (unseen) individuals are used to estimate

the importance of particular attributes according to the following

logic: If randomly permuting values of a particular attribute does

not affect the predictive ability of trees on out-of-bag samples, that

attribute is assigned a low importance score. If, however,

randomly permuting the values of a particular attribute drastically

impairs the ability of trees to correctly predict the class of out-of-

bag samples, then the importance score of that attribute is high.

Tree methods are suited to dealing with certain types of genetic

heterogeneity because splits near the root node define separate

population subsets in the data. RF capitalizes on the established

benefits of decision trees and has demonstrated excellent predictive

performance when the forest is diverse (i.e., trees are not highly

correlated with each other) and composed of individually strong

classifier trees [20,21].

By running out-of-bag samples down entire trees during the

permutation procedure, weak attribute interactions are taken into

account when calculating importance scores, since class was

assigned in the context of other attribute nodes in the tree.

However, RF has limited ability to identify strong interaction (pure

epistatic) effects (see Results section). An approach for improving

the ability of RF to identify interactions can be found in Ref. [25].

The author found a slight increase in the performance of RF when

several attribute evaluation measures, including Relief-F, were

used as the split selectors for building the trees instead of only the

Gini index. Ref. [25] used classification accuracy as the

performance measure, but in the current paper we are more

interested in the power to identify specific genetic variants that

predict the phenotype variable. Rather than integrate Relief-F into

RF as the split selector, the EC approach used in the current study

computes the RF importance score (with the Gini index) and

computes the Relief-F score outside of RF then couples them into

a composite importance score.

Evaporative Cooling
We introduced Evaporative Cooling (EC) as a machine learning

method for feature selection in Ref. [26]. As illustrated in Figure 5,

the heuristic used in our new EC machine-learning algorithm is

the evaporation of a collection of atoms to reach equilibrium by

balancing low energy (E) and high entropy (S) via the temperature

(T) to minimize the free energy, F = E-TS. The physical process of

evaporative cooling was first proposed as an experimental

technique for cooling a small gas of atoms by [38]. The

experimental method consists of the selective removal of atoms

in the high-energy tail of the thermal distribution and the

collisional equilibration of the remaining atoms. The combination

of atom selection and collisions increases the phase-space density

and can greatly reduce the temperature of a gas. In the EC

machine learning analogy, each atom represents a variant with

genotype states whereby each variant contributes quantities

analogous to energy and entropy to the relevance to the

phenotype. The orange highlighted SNP in Step 0 of Figure 5

has genotype states corresponding to homozygous for the C allele

(CC), homozygous for the T allele (TT) and heterozygous (CT).

Each SNP makes a contribution to the ‘‘information free energy,’’

F = E-TS, which quantifies the relevance of a collection of SNPs to

the phenotypic variable. It is the goal of EC to minimize this

quantity. The contributions to F of SNPs that are less relevant to

the phenotype are positioned higher in the trap (parabola), and

these SNPs are allowed to escape the trap as the top of the trap is

lowered. The key mechanism of EC is the balance of statistical

interactions (E) and independent effects (S) via the ‘‘information

temperature’’ T as noisy variants (SNPs unrelated to the

phenotype) are evaporated (iteratively filtered) from the full

collection of SNPs in the trap, leaving behind a subset of SNPs

enriched for relevance to the phenotype. An important advantage

of the EC formalism is the ability to assimilate alternative SNP

relevance scores through the coupling constant T. In the present

study we couple RF and Relief-F to boost the performance over

each attribute importance score alone.

Figure 5 gives an overview of the EC feature selection

algorithm. At top left (Step 0), all N SNPs in the data set are

represented as a gas of atoms in a fictitious trap, where more

energetic SNPs (red, top) are poorly associated with the phenotype

and ‘‘colder’’ SNPs (blue, bottom) are more closely associated with

the phenotype. Relevance is determined by the attribute

importance score F = E-TS, where E is the Relief-F score and S

is the RF score, both transformed to be on the same scale with a

range between 0 and 1. Relief-F is further transformed so that a

SNP with a low Relief-F score is more important. The information

temperature is initialized to T = 1 (least biased assumption) so that

the main effect and interaction terms of the attribute quality score

are equally coupled. In Step 1, an ensemble of gases is created

from the initial set of SNPs by variation D of the information

temperature T around the initial value [we use the range D = 22].

Since each collection in the ensemble uses a different coupling

T+D, the rank order of the SNPs will differ in general. Thus, each

collection of SNPs in the ensemble will have a different set of worst

SNPs removed, indicated by an X in Step 1, corresponding to

different perturbations D of the information temperature T. In

Step 2 the new value of the temperature and the particular SNPs

removed are determined by the collection of remaining SNPs

generated in Step 1 that yield the highest classification accuracy.

Capturing the Spectrum of Interaction Effects

PLoS Genetics | www.plosgenetics.org 9 March 2009 | Volume 5 | Issue 3 | e1000432



We use a naı̈ve Bayes classifier as we have found little sensitivity

to the type of classifier. The goal of Step 1 is to locally search for

the information temperature that removes the worst attributes,

and in Step 2 the worst SNPs are evaporated, or permanently

removed.

In Step 3 the stopping criterion is checked. If the target number

of SNPs (Ntarget) has not been reached (‘‘If No’’), the evaporation

procedure is repeated. In the example shown in Figure 5, the new

temperature would become T = T+D2 from Step 2. Then iteration

would continue with Step 1 with the SNPs ranked according to the

new attribute importance score calculated by perturbing about this

new temperature. The recalculation of F after the removal of noise

attributes at each evaporation step is primarily motivated by the

context dependence of Relief-F, which can lead to sensitivity to

noise variants. However, we also find that RF benefits from the

recalculation of importance scores. If on the other hand in Step 3

the number of SNPs is equal to or less than the target number of

SNPs specified by the user (‘‘If Yes’’), then the stopping criterion

has been met and the remaining SNPs become the final collection

of ‘‘cooled’’ SNPs that are most relevant to the phenotype. This

final collection of SNPs is depicted as a frozen network of

interacting attributes, which is inferred as a genetic-association

interaction network (GAIN) of the phenotype (discussed below).

Just as evaporative cooling of an atomic gas increases the phase

space density of the gas by repeatedly removing the most energetic

atoms, the goal of EC feature selection is to alleviate the curse of

dimensionality [39] by increasing the feature space density

through the iterative removal of the genetic variants with the

most noise. Relief-F makes the detection of interactions of order m

computationally efficient because the complexity with respect to

the number of SNPs, n, is O(n), versus O(nm) for an exhaustive

search. The final number of SNPs, Ntarget, is chosen based on a

permutation strategy discussed below.

Genetic-Association Interaction Network
The SNPs selected by EC are enriched for interactions as well as

main effects, but EC does not predict which specific SNPs may be

interacting. In order to characterize specific interactions among

Figure 5. Evaporative Cooling (EC) feature selection algorithm. Each locus is conceptualized as a discrete-state particle with available states
corresponding to its genotypes (e.g., CC, CT, TT) in a fictitious potential well, which controls the number of SNPs filtered. The information free energy
F of each SNP is determined by its relevance to the phenotype. SNPs less relevant to the phenotype have higher free energy (more noise) and are
positioned near the top of the potential well. Interaction (Relief-F, represented by E) and independent (Random Forest, represented by S) effect scores
are coupled by the optimization parameter T, analogous to temperature in the free energy F. Initially, the information free energy F is calculated for
all SNPs in the data set with the coupling constant T = 1 (step 0). The coupling constant is varied about unity so that the set of SNPs is removed that
gives the largest increase in classification accuracy over the previous iteration (step 1). This defines the updated coupling T and yields the new
collection of SNPs with the SNPs evaporated with the most noise (least relevance to the phenotype) (step 2). If the target number of SNPs is reached
(step 3), then a genetic-association interaction network (GAIN) is generated from the collection of SNPs that have been enriched for interactions and
relevance to the phenotype by EC. Otherwise, if the target number of SNPs has not been reached yet, the coupling parameter again is varied about
the previous coupling and the evaporation process is repeated. Permutation is used to select the target number of SNPs.
doi:10.1371/journal.pgen.1000432.g005
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the top EC-ranked SNPs, we infer a genetic association interaction

network (GAIN). GAIN is based on II [28] between three

attributes (in this case, between two regular attributes A and B and

the class attribute C):

I A; B; Cð Þ~I AB; Cð Þ{I A; Cð Þ{I B; Cð Þ ð4Þ

where I(A;C) and I(B;C) are the information gained about the

phenotype (C) when locus A and locus B, respectively, are

measured. The quantity AB is a joint attribute constructed from

attributes A and B with states given by the Cartesian product of

the states of A and B. II is then the gain in class information

obtained by considering A and B jointly beyond the class

information that would be gained by considering variables A

and B independently. We use the II (Eq. 4) as the connection

strength of each edge in the GAIN (Figure 4). Thus, each edge

represents the increase in information about the phenotype

achieved by considering the two SNPs jointly compared to the

expected increase in information with the assumption of

independence between the SNPs. We emphasize that a connection

between SNPs in a GAIN is specific to the given phenotype

because it measures the correlation between two SNPs that

influences association with the phenotype. We have made the Java

software freely available for generating the GAIN results. We built

network visualization into the software tool, but to create Figure 4

we used the export option in the GAIN software for subsequent

visualization in Cytoscape [40], a freely distributed software tool

for network visualization and annotation.

Determining Statistical Thresholds by Random
Permutation

A challenge for non-parametric methods like EC is assessing the

statistical significance of a relevant SNP or, in the case of GAIN, a

significant interaction between SNPs. We use a random

permutation approach to determine a statistically significant

threshold or cutoff for selecting the top EC SNPs and the top

interaction pairs for GAIN. For EC we generate a distribution of

irrelevant SNPs by randomly selecting SNPs with replacement and

then calculating their EC score after randomly permuting the

genotypes of the chosen SNP. From the resulting distribution of

irrelevant SNPs, we determine the EC threshold by selecting the

EC score such that only a fraction a of the irrelevant scores are

more extreme. To select the interaction strength threshold for

displaying GAIN edges, we calculate the II for randomly permuted

pairs of SNPs. From the resulting non-interaction distribution of II

scores, we use the same process to choose the threshold as we used

for selecting the EC score threshold.

Supporting Information

Table S1 Top 100 SNPs selected by Evaporative Cooling (EC)

as most relevant to smallpox vaccine-associated adverse events.

SNPs sorted from best to worst EC score. SNPs are named

according to their SNP500Cancer id (http://snp500cancer.nci.

nih.gov/) in the first column and by dbSNP number (build 129) in

the second column.

Found at: doi:10.1371/journal.pgen.1000432.s001 (0.14 MB

DOC)

Table S2 Pairs of SNPs ranked by their total joint information

gain (last column), which is the sum of IG1, IG2, and pair-wise

interaction information (II). IG1 (respectively, IG2) is the

information gained about the phenotype variable when SNP

interaction partner 1 (respectively, 2) is measured by itself. II

(column 5) is the information gained about the phenotype when

considering the SNP partners 1 and 2 jointly over what would be

expected by their independent information gains. II is used to

specify edge properties in Figure 3. Information gains are given as

percentages, where perfect correlation with the phenotype is

100%. SNPs are named according to their SNP500Cancer id

(http://snp500cancer.nci.nih.gov/).

Found at: doi:10.1371/journal.pgen.1000432.s002 (0.25 MB

DOC)

Table S3 Degree distribution of nodes in the genetic-association

interaction network (GAIN) in Figure 3 for the smallpox vaccine-

associated adverse event phenotype. SNPs are sorted by the degree

(number of connections) of each SNP node in the network. SNPs

are named according to their SNP500Cancer id (http://

snp500cancer.nci.nih.gov/). dbSNP numbers can be found in

Table S1.

Found at: doi:10.1371/journal.pgen.1000432.s003 (0.07 MB

DOC)
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