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Abstract

The amygdala is a brain area involved in emotional regulation and pain. Over the course of

the last 20 years, multiple researchers have studied sensory and motor connections within

the amygdala in trying to understand the ultimate role of this structure in pain perception and

descending control of pain. A number of investigators have been using cell-type specific

manipulations to probe the underlying circuitry of the amygdala. As data have accumulated

in this research space, we recognized a critical need for a single framework to integrate

these data and evaluate emergent system-level responses. In this manuscript, we present

an agent-based computational model of two distinct inhibitory neuron populations in the

amygdala, those that express protein kinase C delta (PKCδ) and those that express somato-

statin (SOM). We utilized a network of neural links to simulate connectivity and the transmis-

sion of inhibitory signals between neurons. Type-specific parameters describing the

response of these neurons to noxious stimuli were estimated from published physiological

and immunological data as well as our own wet-lab experiments. The model outputs an

abstract measure of pain, which is calculated in terms of the cumulative pro-nociceptive and

anti-nociceptive activity across neurons in both hemispheres of the amygdala. Results dem-

onstrate the ability of the model to produce changes in pain that are consistent with pub-

lished studies and highlight the importance of several model parameters. In particular, we

found that the relative proportion of PKCδ and SOM neurons within each hemisphere is a

key parameter in predicting pain and we explored model predictions for three possible val-

ues of this parameter. We compared model predictions of pain to data from our earlier

behavioral studies and found areas of similarity as well as distinctions between the data

sets. These differences, in particular, suggest a number of wet-lab experiments that could

be done in the future.
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Author summary

In this manuscript, we present a computational modeling approach to understand and

predict pain output from a part of the brain, the amygdala, involved in stress adaptation,

emotional regulation, and pain. Over the last several years, a variety of groups have begun

to dissect the specific cells that are responsible for the impact of amygdala activation on

pain, which can include both increases and decreases in pain and pain-like output in ani-

mal models. It is helpful and necessary to use computational models to develop a frame-

work to understand the amygdala as these wet lab techniques add to the complexity of our

understanding of the brain structure. The model presented here was based on our recent

published physiology experiments along with multiple examples of expression data. This

model can be used to design future wet-lab experiments and can continue to be refined to

help us evaluate the impact of the amygdala and similar limbic system structures in pain

and other disease. Here we present the first computational model for amygdala signaling

that includes physiological and histological properties of neurons and allows dynamic

simulation of nociceptive signal propagation through the network.

Introduction

Pain serves as a critical survival signal for organisms to avoid tissue damage and to prevent

exacerbating existing injuries. In the context of chronic pain, the adaptative nature of pain is

absent as the pain persists beyond healing and/or occurs in the absence of an identifiable

injury. While the peripheral nervous system no doubt plays a critical role in pain chronifica-

tion and maintenance of chronic pain, the central nervous system from the spinal cord to the

brainstem and brain likely contribute heavily to the cognitive and emotional toll of disease in

patients. As such, there has been intense interest in identifying the brainstem and brain areas

that are engaged during both acute and chronic pain states.

Brain areas related to pain can be roughly split into those contributing to sensory-discrimi-

native, cognitive, and emotional/adaptive responses to noxious sensory cues. The main sensory

pathway for spinal nociceptive information is the spinothalamic tract which ends in the thala-

mus, whereby information is sent to areas such as the somatosensory cortex, anterior cingulate

cortex, and prefrontal cortical areas. Other pathways, such as the spinoparabrachial tract, relay

nociceptive signals more directly to sub-cortical structures such as the amygdala through the

parabrachial nucleus (PBN) in the brainstem. Finally, multiple brain areas contribute to

descending control of pain through brainstem areas such as the periaqueductal gray (PAG)

and rostral ventral medulla (RVM).

To understand the emotional and motivational aspects of pain and injury, many researchers

have focused on the amygdala, an area involved in stress adaptation and fear conditioning.

The classical view of the amygdala posits that highly processed information comes in from cor-

tical structures to the lateral and basolateral amygdala (BLA) before final integration and effer-

ent output from the central nucleus of the amygdala (CeA). In fact, bi-directional connections

between the BLA and the prefrontal cortex appear to play a central role in emotional decision-

making that is disrupted after injury[1]. However, the CeA also receives nociceptive informa-

tion from the PBN to a subnucleus (the lateral capsular division or CeC). This “pain nucleus”

of the amygdala then sends signals to the descending pain modulatory system.

Over 15 years ago, we discovered that the right and left CeA had differential impact in the

context of peripheral inflammatory pain in mice[2,3,4]. The right CeA seemed to be activated
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to a greater degree after peripheral injection of formalin compared to the left CeA. Further-

more, inhibition of this activation (or artificial activation in the absence of injury) in the right

CeA only influenced pain-like behavior. These findings were replicated in rats[5], found to be

related to metabotropic glutamate receptor signaling[4,6], and were relevant in the context of

neuropathic pain. Interestingly, after neuropathic injury the left amygdala was initially hyper-

active, but eventually the right amygdala picked up the dominant role as seen in acute models

[7]. Overall, these results fit into a larger data set including data from human chronic pain con-

ditions that shows hemispheric differences in the amygdala in pain[8]. We have found that in

the context of visceral bladder stimulation, the left amygdala appeared to have a tonic analgesic

activity at baseline while the right amygdala had little role in uninjured animals[9]. Nonethe-

less, optogenetic activation of the right amygdala could drive bladder-pain-like physiological

changes and optogenetic activation of the left amygdala after bladder injury could reduce

pain-like changes. Expanding on these data, we published a preliminary agent-based model

(ABM) of the CeA that was calibrated using pilot extracellular recordings from the left and

right CeA after bladder injury[10]. Although only preliminary, this ABM reproduced changes

in pain similar to those observed in wet-lab experiments during optogenetic inhibition of the

left and right amygdala.

As technology has improved, there has been a strong push in the last 10+ years to further

dissect the internal circuitry of the CeA[11,12,13,14]. Although most cells in the CeA are

GABAergic inhibitory neurons, the nucleus is heterogeneous and sub-type specificity plays a

critical role in the ultimate output and impact of CeA activity on behavior[15]. Most recently,

we found opposing roles of two largely non-overlapping populations of right CeA neurons in

the cuff model of neuropathic pain where a small piece of tubing is placed along the left sciatic

nerve[16]. We found that neurons expressing protein kinase C-delta (PKCδ) had a pro-noci-

ceptive role in amygdala pain output. These PKCδ neurons could be driven in naïve mice to

induce peripheral mechanical hypersensitivity, and inhibition of these neurons after injury

reduced pain-like behavior. In contrast, somatostatin (SOM) positive CeA neurons had an

opposing impact on pain such that inhibition of these neurons in naïve animals increased

pain. Overall, these opposing roles of PKCδ and SOM in the right amygdala suggest that the

left/right lateralization data may be more complicated than initially thought. For example, one

could imagine that different proportions of PKCδ and SOM neurons in the right and left

might lead to an overall pronociceptive role for the right amygdala and an overall antinocicep-

tive role for the left amygdala. There is currently controversy in the literature regarding pro-

portions of PKCδ:SOM neurons and the potential for left and right differences[17,18]. In this

manuscript, we present a computational model to explore this controversy and, more broadly,

to be used by neuroscientists as a tool to quickly perform experiments prior to committing

years of effort in the laboratory.

We describe here an agent-based approach to modeling the PKCδ and SOM neurons in the

left and right amygdala and their activity before, during, and after injury. Agent-based models

(ABMs) are used increasingly in all disciplines to study emergent features of complex systems

governed by the actions and interactions of individual agents[19,20,21,22]. In the field of neu-

roscience, ABMs have been used to describe the dynamics and connectedness of individual

neurons (or regions of the brain) and to evaluate emergent system-level behavior that could

not have been determined using the individual components alone[23,24]. In our ABM, each

PKCδ and SOM neuron is represented by an individual agent and assigned type-specific prop-

erties based on data obtained from wet-laboratory experiments. Neural connectivity is estab-

lished using a network of directed links through which agents send inhibitory signals to one

another. During a simulation of the ABM, individual-level neuron properties are updated each

time step in response to a noxious stimulus and a system-level measure of pain is outputted.
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Whenever possible, we used data from laboratory experiments to parameterize and validate

our computational model. In the Methods section below, we start with a summary of the labo-

ratory experiments that informed the design and analysis of the model. Subsequently, we pro-

vide a detailed description of the model using a standard protocol for describing ABMs. All

files and code needed to simulate the model are available via a public repository (see Section

2.8). Step-by-step instructions for running the model, as well as images of the model’s graphi-

cal user interface (GUI), are provided in the Supporting Information (S1 Text and S1 Fig). In

the Results section, we demonstrate the model’s ability to predict pain for a variety of scenarios

and parameter values and highlight a current controversy in the literature surrounding a key

model parameter, the expression of PKCδ:SOM.

Methods

Ethics statement

Data from unpublished experiments were performed in accordance with the guidelines of the

National Institutes of Health (NIH) and were approved by the Animal Care and Use Commit-

tee of the National Institute of Neurological Disorders and Stroke (NINDS) and the National

Institute on Deafness and other Communication Disorders (NIDCD). All steps were taken to

reduce animal suffering in experimentation including careful monitoring of animal weights

and signs of distress. All animals were humanely euthanized. Ethics statements from published

data can be found in original citations.

1 Laboratory experiments

There are four primary experiments that were used to build our CeA ABM. These experiments

include published and unpublished data and are indicated as such in subheadings below.

When data are unpublished, the methods are presented below in detail and data are described

in the Results section.

1.1 Electrophysiological Measurement of PKCδ and SOM Neurons in the

CeA

1.1.1 Electrophysiological data of PKCδ vs SOM neurons in brain slices from control

and injured mice (published data). We performed ex-vivo slice physiology of amygdala

brain slices from sham, naïve, and Sciatic cuff implantation (“cuff model”) mice 1–2 weeks

after surgery. For the purpose of calibrating the ABM, we combined published data from the

sham and naïve mice to a single “control” group. The cuff model was completed as described

[16,25]. Briefly, a 2mm-long-piece of PE-20 tubing is split along its length and wrapped around

the left sciatic nerve of male mice. To identify PKCδ vs SOM neurons, we utilized two reporter

lines of mice. For PKCδ studies, Prkcd-cre mice (GENSAT-founder line 011559-UCD) were

mated with Ai9(RCL-tdT) reporter mice (Jackson Labs, 007909) to visualize and record from

PKCδ neurons. For SOM studies, heterozygous Sst-Cre mice (Jackson Labs, 018973) were bred

with Ai9 reporter mice. Whole cell current-clamp recordings were obtained from slices. Single

and repetitive action potential firings were elicited from resting membrane potentials in

response to brief (5 ms) and prolonged (500 ms) depolarizing current injections of variable

amplitudes, respectively. Spontaneously active neurons were recorded for 5 minutes, gap-free,

in the cell-attached configuration, and 1-minute gap-free after break-in. Neurons were found

to be spontaneously active or were regular spiking (RS) or late firing (LF). Data showing the

firing rates of RS and LF neurons are presented in Fig 1. The firing rates of spontaneous SOM

neurons were statistically significantly higher compared to spontaneous PKCδ neurons as
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recently reported[26]. We found spontaneous neurons to fire at a constant rate of 2.838 Hz

(PKCδ) or 4.887 Hz (SOM).

1.1.2 Electrophysiological measurement of PKCδ and SOM neurons in the CeA (unpub-

lished data extrapolation). At higher current injections in the above published data[16], we

observed depolarization block in both PKCδ and SOM RS neurons. Therefore, in order to use

the full data set of neuronal firing in the ABM, we extrapolated the firing rates at higher cur-

rents as depicted in the triangles seen in Fig 1. Extrapolated values were obtained by fitting a

linear model to the positive firing rates at lower currents.

Fig 1. Slice physiology recorded PKCδ and SOM positive neurons in control and injured mice. The firing rate at high current injection of

PKCδ positive neurons is higher after injury for both (A) late firing and (B) regular spiking neurons compared to control slices. In contrast,

the firing rate at high current injection of SOM positive neurons is lower after injury for both (C) late firing and (D) regular spiking neurons.

Triangles represent extrapolated data in B and D for post-injury regular spiking neurons. Boxed values represent firing rates used in model

simulations. Some of these raw data have been previously reported[16,26].

https://doi.org/10.1371/journal.pcbi.1009097.g001
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1.1.3 Proportion of spontaneously active, RS, or LF PKCδ and SOM neurons in the CeA

(published and unpublished data). We evaluated the proportions of both PKCδ and SOM

neurons that were of differing firing types. Proportions of firing type in control conditions

were recently published in Adke et al, 2020[26] (Fig 2A and 2C). New analyses of electrophysi-

ological data from Wilson et al, 2019[16] are presented here for neurons following injury (Fig

2B and 2D) where we show the number of cell-type specific neurons that fall into the three

classes of firing rates as described above.

1.2 Evaluation of the Connections of PKCδ and SOM Positive Neurons in

the CeA

1.2.1 Networking of CeA neurons (published data). The CeA contains GABAergic inter-

neurons and projection neurons. To account for networking between neurons, we utilized spe-

cific published data to approximate the proportion of connections that would exist between

different types of cells (i.e. PKCδ and SOM). The axons of neurons can make synapses at thou-

sands of locations on a dendrite[27]. A biophysically realistic computational model of this sys-

tem would be challenging to create. Therefore it is common for models to simulate

Fig 2. Proportions of PKCδ and SOM late firing, regular spiking, and spontaneous neurons after injury. In PKCδ
neurons, the proportions of late firing (LF), regular spiking (RS), and spontaneous cells do not change from control

(A) to injury (B). In SOM neurons, the proportions do appear to change. In control slices, there are more spontaneous

cells (C) compared to slices from injured mice which exhibit less spontaneous cells and more RS cells (D). Data in (A)

and (C) have been previously published[26].

https://doi.org/10.1371/journal.pcbi.1009097.g002

PLOS COMPUTATIONAL BIOLOGY Computational model of amygdala and pain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009097 June 8, 2021 6 / 34

https://doi.org/10.1371/journal.pcbi.1009097.g002
https://doi.org/10.1371/journal.pcbi.1009097


connectivity by making each cell behave as an integrate-and-fire neuron[28]. By focusing only

on primary dendrites, the complexity of the connections is reduced. Morphological data of CeC

neurons show that they have on average 3.5 primary dendrites that each branch multiple times

as reported by others[29] [30] [31] and consistent with our recent work[26]. Limiting our num-

ber of connections to these primary dendrites and axons simplifies our model while also allow-

ing for interpretations of how connections change the network properties. An important

concern given this decision is whether cell type determines the level of connectivity of a cell.

Previous studies have found that firing types of cells showed differing averages of primary den-

drites, meaning that our assumption to use the same number of connections for all cells may

not be accurate[32]. However, we recently directly compared PKCδ and SOM morphology and

found no statistically significant difference between the number of primary dendrites in the

CeC[26]. In our simulations, we explored model output for four different networks of primary

connections (e.g. primary dendrites or primary axonal branches): (1) no connectivity, (2)

exactly 1 input and 1 output per neuron, (3) at most 3 inputs and 3 outputs per neuron, and (4)

at most 5 inputs and 5 outputs per neuron regardless of whether the cell was PKCδ or SOM.

1.2.2 Cell-Type connections between CeA neurons (published data). Beyond the num-

ber of connections between cells, we were also interested in modeling the signature of the con-

nections. Since both PKCδ and SOM in the CeA can make intra-CeA connections and

projections from the CeA, it is important to consider the various types of connections made.

For this part of the model, we utilized a published data set from Hunt et al 2017[17]. In those

experiments, the authors utilized a combination of transgenic expression markers and immu-

nohistochemistry to determine the frequency of PKCδ-to-PKCδ, PKCδ-to-SOM, PKCδ-to-

other, SOM-to-SOM, SOM-to-PKCδ, and SOM-to-other. To extract these data from the

paper, we identified all classified connected neurons from the manuscript (n = 20). Of these

connections, 55% were SOM-to-SOM, 20% were PKCδ-to-PKCδ, 10% were PKCδ-to-SOM,

and 15% SOM-to-PKCδ.

1.3 Evaluation of the number of PKCδ and SOM positive neurons in the

left and right CeA

As mentioned in the introduction, a major factor in the relationship between pronociceptive

PKCδ neurons and antinociceptive SOM neurons could be the relative quantity of these neu-

rons in the amygdala on both the right and left sides. To estimate values for these critical

model parameters, we used one published data set, completed our own experiment, and con-

sidered a default scenario in which the two cell types exist in equal proportions.

1.3.1 Number of CeA PKCδ and SOM neurons (published data). This published data

came once again from Hunt et al 2017[17] described above. In that publication, immunohis-

tochemistry was utilized to label CeA neurons in adult male mice as being PKCδ or SOM posi-

tive. The proportion of PKCδ compared to SOM cells was reported to not be significantly

different between the right and left CeA so reported numbers were pooled. They found that of

the neurons counted 48% ± 5% were PKCδ and 38% ± 3% were SOM. A small pool of neurons

showing overlap (1.5 ± 0.5%) were ignored in our analysis as were those neurons not express-

ing either marker. Therefore, for the purpose of simulating our model based on these data, we

assumed 56% were PKCδ positive and 44% were SOM positive. This model is referred to as the

“60:40” model in the results section.

1.3.2 Number of CeA PKCδ and SOM neurons (unpublished data). In contrast, to the

data from Hunt et al 2017, another published data set[18] has shown almost double the num-

ber of SOM neurons compared to PKCδ in the amygdala (side of brain was not specified). To

clarify this discrepancy in the literature and further evaluate the potential for differential
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expression of PKCδ or SOM neurons in the right and left CeA, we performed our own expres-

sion study using heterozygous Sst-Cre mice bred with Ai9 tdTomato reporter mice to visualize

and count SOM neurons. At the end of each experiment, mice were deeply anesthetized with

1.25% Avertin anesthesia (2,2,2-tribromoethanol and tert-amyl alcohol in 0.9% NaCl; 0.025

ml/g body weight), then perfused transcardially with 0.9% NaCl (37˚C), followed by 100 mL of

ice-cold 4% paraformaldehyde (PFA). The brain was dissected, cut in half to separate the right

and left hemispheres, and postfixed in 4% PFA overnight at 4˚C. After cryoprotection in 30%

sucrose for 48 h, coronal sections (30 μm) were obtained using a freezing sliding microtome

and stored in 0.1 M Phosphate Buffered Saline (PBS), pH 7.4 containing 0.01% sodium azide

(Sigma) at 4˚C until immunostaining. Sections were rinsed in PBS, incubated in 0.1% Triton

X-100 in PBS for 10 minutes at room temperature and blocked in 5% normal goat serum

(NGS) (Vector Labs, Burlingame, CA) with 0.1% Triton X-100, 0.05% Tween-20 and 1%

bovine serum albumin (BSA) for 30 minutes at room temperature. Sections were then incu-

bated for 72 h at 4˚C in mouse anti-PKCδ primary antibody (1:1000, BD Biosciences, 610397).

Sections were then rinsed in PBS and incubated in Alexa Fluor 647-conjugated goat anti-

mouse (1:100, Invitrogen, A21235) in 1.5% NGS blocking solution with 0.1% Triton X-100,

0.05% Tween 20 and 1% BSA, protected from light, for 2 h at room temperature. Sections were

then rinsed in PBS, mounted on positively charged glass slides, air-dried and coverslips were

placed using Fluoromount-G (SouthernBiotech). High magnification z-stack images were col-

lected at 0.9 μm steps with a 20x objective using a Nikon A1R laser scanning confocal micro-

scope. The anatomical limits of the CeA were delineated using the mouse brain atlas[33]. An

experimenter blind to the side of hemisphere counted the cells positive for PKCδ and SOM

(i.e. tdTomato) using the Nikon Elements software. 5–8 sections from each animal (a total of 4

animals) were mounted anterior to posterior covering -0.58 to -1.94 mm Bregma. The total

number of cells on each section was counted and averaged across the anterior to posterior

extent of the CeA separating the left and right amygdala. Note that we recently published[26]

the anterior to posterior cell numbers for the right CeA only data.

1.4 Behavioral evaluation of PKCδ and SOM neurons in the CeA in a model

of neuropathic injury (published data)

Finally, we utilized our previously published behavioral data showing the impact of manipulat-

ing PKCδ neurons and SOM neurons in control and neuropathic injured male mice using the

cuff model described above (Methods Section 1.1.1)[16]. Following one week recovery from

surgery, mice were tested for thermal and mechanical sensitivity. Most relevant to the present

manuscript, cuffed mice exhibit long-lasting mechanical hypersensitivity. Cuff mice were com-

pared to sham operated animals as well as naïve animals. To manipulate PKCδ and SOM neu-

rons, we previously utilized inhibitory and excitatory Designer Receptors Exclusively

Activated by Designer Drugs (DREADDs). Viral-based cre-recombinase dependent DREADD

vectors were injected into the right CeAs of male mice from either Prkcd-cre (founder line

011559-UCD) or Sst-Cre (Jackson Labs, 018973) transgenic strains. As described in the intro-

duction above and previously reported, we found that PKCδ was largely nociceptive and SOM

was largely antinociceptive in uninjured and injured mice. For PKCδ, this corresponded to

“Fig 4G” (right graph) for inhibition of PKCδ and “Fig 4H” (right graph) for activation of

PKCδ from Wilson et al 2019[16]. For SOM, this corresponded to “Fig 5G” (right graph) for

inhibition of SOM and “Fig 5H” (right graph) for activation of SOM from Wilson et al 2019

[16]. These data were used to validate system-level output generated from our ABM. For com-

parisons between experimental data and model output, we utilized a standardized mean effect

calculation (see Methods Section 2.9.2 below).
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1.5 Statistics for laboratory experiments

For laboratory experiments, most data was pulled directly from Hunt et al, 2017[17] or Wilson

et al, 2019[16]. New statistical analyses were completed with GraphPad Prism (v 8.0) on the

expression of PKCδ and SOM in the left and right amygdala. 2-way repeated measures

ANOVA with Sidak multiple comparisons were used with P<0.05 considered statistically sig-

nificant for expression analysis.

2 Model description

Next we present a summary of the ABM. This section is written in accordance to the Overview,

Design concepts, and Details (ODD) protocol[34,35], which is a standard format for describ-

ing ABMs.

2.1 Purpose and basic principles

The purpose of this ABM is to synthesize individual-level properties of PKCδ and SOM neu-

rons observed in different laboratory experiments into a single framework and to assess emer-

gent system-level properties within the CeA. The following basic principles guided the

development of the ABM. Details and equations for all model procedures can be found in Sec-

tion 2.7 Submodels.

Individual-level neuron properties. Model agents represent individual neurons and are

assigned type-specific properties and behaviors based on data collected from the laboratory

experiments described above. Specifically, experimental results from Hunt et al 2017[17], Wil-

son et al 2019[16] and new experiments were used to estimate the proportion of PKCδ and

SOM neurons in each hemisphere of the CeA. As mentioned above in Methods Section 1.1.3,

the proportions of PKCδ and SOM neurons, respectively, that are LF, RS, and spontaneous

replicate those observed in our publication Adke et al 2020[26] and with new analysis of data

from Wilson et al 2019[16] (Fig 2). The firing rate of each PKCδ and SOM neurons in the

ABM is updated at each time step using probability distributions estimated from data in Wil-

son et al 2019[16]. These firing rates depend on the stimulation current (pA) and the damage

that is accumulated by the neuron in the model.

Neural Connectivity. Local connectivity and inhibition of neurons within the CeA plays an

important role in pain modulation. Neural connectivity in the ABM is established using a net-

work of directed links through which agents send inhibitory signal to one another. A stochastic

algorithm creates a network of unidirectional links at the start of each model simulation using

the connectivity rates (i.e. proportion of PKCδ-to-PKCδ, PKCδ-to-SOM, SOM-to-SOM, and

SOM-to-PKCδ connections) from Hunt et al 2017[17] (Methods Section 1.2.2 above). At each

time step, if the sum of all incoming signals for a neuron exceeds a threshold value, the neuron

is silenced.

Damage Accumulation. Damage accumulation models (also known as damage-repair

models) are used to describe the effects of stressors over time on the health of biological sys-

tems[36,37,38]. Previously, a pilot damage accumulation model was used to simulate the

impact of noxious, external stimulations on the sensitization of excited and inhibited neurons

in the CeA[10]. A similar damage accumulation model is used in the present ABM. During

periods of noxious stimulation (i.e. injury), neurons accrue “damage” which over time leads to

sensitization and behavioral changes consistent with those observed in the laboratory experi-

ments. All PKCδ and SOM neurons are assigned a damage level equal to zero at initialization

and accrue damage at a randomly assigned rate during periods of stimulation. The amount of

damage accrued by a neuron is then used to determine the neuron’s level of sensitization due

to injury. For both PKCδ and SOM neurons, sensitization impacts the neuron’s firing rate.
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Additionally, for SOM neurons only, sensitization can cause some spontaneous neurons to

convert to the RS firing type.

Emergence. The primary emergent feature of the model is a measure of pain that evolves

over time and in response to external stimulation. In the model, pain is measured as the differ-

ence between the cumulative firing rates of all pro-nociceptive PKCδ neurons and the cumula-

tive firing rates of all anti-nociceptive SOM neurons across the left and right hemispheres of

the CeA. During each time step in an ABM simulation, individual neuron properties are

updated and a system level measure of pain is outputted.

2.2 Entities, state variables, and scale

The model consists of 1640 agents representing neurons within the CeA. Of these, 1600 agents

represent individual neurons that express either PKCδ or SOM and are responsive to neuro-

pathic injury in animal models, while the remaining 40 agents represent an arbitrary number

of “other” neurons within the CeA. The spatial domain is a 40x41 grid with 1640 patches, each

marking the location of one agent. The spatial domain is divided into halves representing the

left and right hemispheres of the CeA. Directed links between agents represent unidirectional,

inhibitory connections between neurons. Each model tick represents one time-step.

Each of the 1600 agents representing individual PKCδ or SOM neurons has ten variables

(Table 1) defining its properties and behavior. During initialization, each neuron (i.e. agent) is

assigned a location (Loc) indicating whether it is within the left or the right hemisphere of the

CeA and a protein-expression type (Type) equal to either PKCδ or SOM. A neuron’s location and

protein-expression type remain constant throughout a simulation. Each neuron has a firing fre-

quency pattern (Freq) equal to regular spiking (RS), late firing (LF), or spontaneous (Spont). Each

neuron has three variables (d, tL, tS) related to its “damage.” The damage variable (d) represents

the percentage of total damage accumulated by a neuron in response to external stimulation. The

rate at which a neuron accumulates damage during stimulation depends on its damage latency

Table 1. Overview of variables assigned to agents representing individual neurons in the ABM. In the instances where the parameter values were estimated from labo-

ratory data, the appropriate reference is provided.

Variable Description Value Frequency of updates Reference

Loc Neuron location within

CeA

Left or Right Assigned at initialization

Type Protein expression type PKCδ or SOM Assigned at initialization 50% PKCδ /50% SOM

(default setting)

40% PKCδ /60% SOM [17]

30% PKCδ /70% SOM (Fig 6)

Freq Firing frequency Late Firing (LF), Regular Spiking (RS), or

Spontaneous (Spont)

Updated each time step Figs 1 and 2; [16,26]

tL Length of damage latency

period

integer in [40,80] Assigned at initialization

tS Length of sensitizing

period

integer in [50,150] Assigned at initialization

d Damage (percent of total

damage)

real number in [0,100] Updated each time step

Num-In-
Link

Number of inputs integer in [0,5] Assigned and updated at initialization

Num-Out-
Link

Number of outputs integer in [0,5] Assigned and updated at initialization

Inhibited Inhibition status Yes or No Assigned at initialization and updated

each time step

Fr Firing Rate non-negative real number Updated each time step Fig 1; [16]

https://doi.org/10.1371/journal.pcbi.1009097.t001
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period (tL) and sensitivity (tS). Additionally, each neuron has three variables related to its connec-

tivity with other neurons within the CeA. Two of these variables are the neuron’s number of

incoming connections (Num-In-Link) and number outgoing connections (Num-Out-Link). The

third variable is the neuron’s inhibition status (Inhibited), which is a binary variable indicating

whether the neuron is inhibited or not. Lastly, each neuron has a firing rate (Fr) describing the

frequency in hertz (spikes per second) of the neuron’s action potentials.

The remaining 40 agents labeled as “Other” represent an arbitrary number of neurons in

the CeA that do not express either PKCδ or SOM. Inclusion of these neurons is consistent

with previous studies that have shown that while SOM and PKCδ neurons comprise most of

the CeA, there is a small percentage of neurons that do not express either PKCδ or SOM

[17,39]. These “Other” agents are necessary for the creation of the neural network in which

some connections transmit signals from either PKCδ or SOM neurons to other neurons in the

CeA. The “Other” neurons do not send inhibitory signals to PKCδ or SOM neurons and do

not contribute to pain-related model output. Therefore, the “Other” neurons are not assigned

the additional variables in Table 1.

Each connection (i.e., directed link) in the neural network has three variables (Table 2)

describing how inhibitory signals are transmitted between its endpoints. Each connection has

a transmitting endpoint (end1) equal to the ID of the agent that is the source of the signal and

a receiving endpoint (end2) equal to the ID of the agent that is the destination of the signal.

Each connection has a signal strength (str) equal to the firing rate of neuron associated with its

transmitting endpoint. When used, the neural network is established during the model’s ini-

tialization and does not change during a simulation.

2.3 Global variables and input data

Global variables Maxin and Maxout control the maximum number of incoming connections

and maximum number of outgoing connections, respectively, an individual neuron can pos-

sess. Both Maxin and Maxout are non-negative integer values that must be set by the user prior

to the model’s initialization.

The timing, duration, and magnitude of external stimulation (measured in pA) must be input

as a file consisting of integer values, ranging from 0 to 220. During initialization, the values in the

file are read one at a time and stored as a global vector, S, where Si represents the stimulation

(pA) applied during the ith time step. In our simulations, the stimulation current ranges from 120

pA to 220 pA. We consider 120 pA to be a “baseline” stimulation or background response of the

neurons given that (1) there is little to no firing of either PKCδ or SOM neurons below this fre-

quency (Fig 1) and (2) there are only minor differences in electrophysiology experiments between

either PKCδ or SOM neurons comparing control and injured cells at this current level. It is possi-

ble to simulate the model at lower current values (<120 pA), but injury does not occur in these

scenarios due to the fact that neurons do not accrue damage at current less than 120 pA.

Lastly, the global variable CumS tracks the cumulative number of time steps during which

stimulation is greater than or equal to 120 pA. During initialization, this variable is set to 0,

and is increased by 1 during times steps in which Si�120.

Table 2. Overview of variables assigned to each connection between neurons.

Variable Description Value Frequency of updates

end1 ID of agent that is sending the inhibitory signal positive integer Assigned at initialization

end2 ID of agent that is receiving the inhibitory signal positive integer Assigned at initialization

str Strength of inhibitory signal transmitted non-negative real number Updated each time step

https://doi.org/10.1371/journal.pcbi.1009097.t002
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2.4 Process overview and scheduling

The following processes occur in the order listed during each simulation of the ABM.

1. Input data is provided by user.

2. Initialization of model:

i. Create 1640 agents representing neurons in the CeA.

ii. Assign attributes to all neurons.

iii. Create network of directed links within each hemisphere, if network is turned on.

iv. Create vector specifying stimulation history.

3. During each time step:

i. Update the cumulative stimulation variable, CumS.

ii. Update the damage level of each PKCδ and SOM neuron.

iii. SOM spontaneous neurons with maximum damage (d = 100) are converted to regular

spiking as needed based on distribution from wet lab experiments (Fig 2).

iv. Update the firing rate of each PKCδ and SOM neuron using probability distributions

based on neuron type, firing frequency (based on Fig 1), damage level, and the current

stimulation value.

v. Use network to send inhibitory signals between neurons. The firing rate of each inhib-

ited neuron is set to zero.

vi. Update all system-level observations.

2.5 Design concepts

Adaptation. Individual neurons adapt to a sensitized state over time and during external

stimulations measuring 120 pA or higher. This is achieved in the ABM through use of a dam-

age accumulation model in which neurons accrue damage at individual rates and only during

time steps in which Si�120. As a neuron’s damage increases, the neuron transitions towards a

sensitized state and its firing rate is adjusted accordingly. A neuron is considered fully sensi-

tized when its damage variable has reached maximum value (d = 100).

The firing frequency of some SOM neurons changes with injury. Experimental results show

the quantity of RS SOM neurons increases from 27% pre-injury to 48% post-injury, while the

quantity of spontaneous SOM neurons decreases from 55% pre-injury to 34% post-injury (Fig

2C and 2D). We reasoned that this change in distribution may be through the actual conver-

sion of spontaneous neurons to RS neurons. Thus, in the ABM, individual spontaneous SOM

neurons that have accumulated maximum damage (d = 100) are converted to RS one at a time

until the quantity of regular spiking SOM neurons has reached 48%.

Interaction. Interaction occurs in the model when a neuron is inhibited by one or more

other neurons. If the sum of the inhibitory signals transmitted to a neuron during a time step

exceeds 15 Hz, the neuron is inhibited (i.e., Fr = 0) during that time step. We chose 15 Hz as a

threshold so that it is possible for a single neuron to inhibit another neuron (as reported in

Hunt et al[17]). A higher threshold (e.g. 30 Hz) would be too high for any individual neuron

to inhibit another neuron. A 15 Hz threshold also allows for multiple neurons with low firing

rates to inhibit a target cell through their cumulative input.
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Stochasticity. During initialization, values of damage parameters tS and tL are randomly

determined for each neuron using a uniform probability distribution with ranges displayed in

Table 1. Neural connectivity is achieved by creating a network of directed links between neu-

rons using a stochastic algorithm (see Methods Section 2.7.1). During each time step, a neu-

ron’s firing rate is stochastically updated using a weighted sum of values selected from

truncated normal distributions (see Methods Section 2.7.2). Due to the stochastic nature of the

model, each simulation is repeated 100 times to determine the mean, standard deviation, and

confidence bounds for each output.

2.6 Initialization

During initialization, all 1640 agents are created. Half of all agents are assigned to the left hemi-

sphere of the CeA; the other half are assigned to the right hemisphere. The 1600 agents repre-

senting individual neurons are assigned a protein expression type (PKCδ or SOM) and a firing

frequency (RS, LF, or spontaneous). In our simulations, the quantities of PKCδ and SOM neu-

rons within each hemisphere varied; however the proportion of RS, LF, and spontaneous neu-

rons remained consistent across all simulations at initialization. PKCδ neurons are assigned

firing frequencies so that 25% are LF, 48% are RS, and 27% are spontaneous consistent with

our wet-lab observations (Fig 2A). Similarly, SOM neurons are assigned firing frequencies so

that 18% are LF, 27% are RS, and 55% are spontaneous at initialization (Fig 2C). Additionally,

individual neurons are assigned values for damage variables tL and tS within the ranges speci-

fied in Table 1. Each neuron’s damage level (d), number of inputs (Num–In–Links), and num-

ber of outputs (Num–Out–Links) are set to zero and all neurons are assumed to be uninhibited

(Inhibited = No) during initialization. Additionally, the remaining 40 agents are each labeled

as “Other.”

Once all agents have been created, a network of directed links connecting neurons to one

another is established using the algorithm specified in Methods Section 2.7.1. Each directed

link connects exactly two agents within the same hemisphere. Links are created during initiali-

zation only.

Lastly, during initialization, the input file specifying the stimulation history is read and the

global variable S is created. S is a vector in which the ith value indicates the stimulation current

at time step i.

2.7 Submodels

2.7.1 Creation of network. The stochastic algorithm described below is used to create a

network of directed links between PKCδ, SOM, and other neurons within each hemisphere for

the purpose of sending inhibitory signals. All network links are created during initialization

using the probabilities displayed in Table 3 and do not change during simulation.

Table 3. Probabilities associated with the creation of neural connections (e.g., directed links) transmitting signals

from a PKCδ or SOM neuron to another neuron in the model. These probabilities were estimated from previously

published data[17].

Transmitting neuron type Receiving neuron type Probability of Connection

PKCδ PKCδ 0.20

PKCδ SOM 0.10

PKCδ Other 0.70

SOM PKCδ 0.15

SOM SOM 0.55

SOM Other 0.30

https://doi.org/10.1371/journal.pcbi.1009097.t003
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The following algorithm describes the creation of the neural network within the left hemi-

sphere; the same processes are repeated in the right hemisphere. The algorithm begins by ran-

domly selecting individual neurons located in the left hemisphere until a PKCδ or SOM

neuron with Num-Out-Link<Maxout is found. This neuron is identified as the transmitting

neuron in a directed link. The type of agent (PKCδ, SOM, or other) on the receiving end of the

link is randomly determined using the probabilities in Table 3. If the type of neuron on the

receiving end of the link is either PKCδ or SOM, the algorithm randomly selects neurons of

this type within the left hemisphere until a neuron with Num-In-Link<Maxin is identified. A

directed link is then created from the transmitting neuron to the receiving neuron and connec-

tivity variables (Num-Out-Link, Num-In-Link) for these two agents are updated. If the type of

neuron on the receiving end of the link is “other”, a link is created from the transmitting neu-

ron to any one of the 20 agents representing other neurons in the hemisphere and the connec-

tivity variable (Num-Out-Link) of the transmitting neuron is updated. The algorithm

continues to create links until all individual neurons of the same type (PKCδ or SOM) have

achieved the maximum number of outgoing links (Maxout) or the maximum number of

incoming links (Maxout).
2.7.2 Update of damage variable for individual neurons. A damage accumulation

model is used to track a neuron’s progress towards sensitization caused by noxious stimula-

tion. During initialization, each neuron’s damage level (d) is set equal to 0, indicating the neu-

ron has not accumulated any damage and is unsensitized. This is the equivalent of a naïve

control animal prior to injury. A neuron accrues damage only when the cumulative amount of

time under stimulation exceeds the neuron’s latency period (CumS>tL) and the current level

of stimulation is greater than or equal to 120 pA. Damage stops accumulating when it reaches

its maximum value (d = 100), indicating the neuron is sensitized. For each individual neuron,

damage at time step i is updated as

di ¼
min di� 1 þ

100

ts
; 100

� �

if CUMS > tL and Si � 120

di� 1 if CUMS � tL or Si < 120

ð1Þ

8
><

>:

where di is the value of the damage variable at time step i, tS is the length of the neuron’s sensi-

tization period, and tL is the length of the neuron’s latency period.

2.7.3 Update of firing rates for individual neurons. During each time step, the firing

rates of all late firing and regular spiking neurons are stochastically updated using the equation

Fri ¼
100 � di

100
� X þ

di

100
� Y ð2Þ

where di is the neuron’s damage level at time step i, and X and Y are random variables repre-

senting the firing rates of the neuron in an unsensitized state and a sensitized state, respec-

tively. Both X and Y have truncated normal distributions defined by a mean, standard

deviation, minimum value, and maximum value. Parameters depend on the neuron’s type

(PKCδ or SOM) and firing frequency (LF or RS) as well as the stimulation level (Si). All param-

eter values were estimated using the data collected in the laboratory experiments outlined

above (Methods Section 1.1.1) and are summarized in S1 Table. Eq (2) is linear combination

of X and Y such that when the neuron has no damage (d = 0), the firing rate of the unsensitized

neuron is updated using the X variable only. When damage reaches its maximum value

(d = 100), the firing rate of the sensitized neuron is updated using the Y variable only.

Spontaneous neurons fire at a constant rate of 2.838 Hz (PKCδ) and 4.887 Hz (SOM)

throughout each simulation (see Adke et al[26] and Methods Section 1.1.1 above).
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2.7.3 Application of network to inhibit neurons. After the firing rates of all PKCδ and

SOM neurons are updated, the neural network is used to transmit inhibitory signals between

neurons in the ABM. The strength of an inhibitory signal transmitted through a directed link

is equal the firing rate of the neuron on the transmitting end. All PKCδ and SOM neurons are

evaluated one at a time and in a random order. For each neuron, if the total strength of all

incoming signals is greater than or equal to 15 Hz, the neuron is inhibited (i.e., firing rate set

to zero). If the total strength is less than 15 Hz, the neuron’s firing rate does not change.

2.7.4 Pain calculation. At the end of each time step, a system-level measure of pain (Pi) is

calculated as

Pi ¼
X

Type ¼ PKC

Freq ¼ LF or RS

di

100
� Fri �

X

Type ¼ SOM

Freq ¼ LF or RS

Fri ð3Þ

where di is a neuron’s damage and Fri is a neuron’s firing rate during time step i. The first sum-

mation in Eq (3) represents the weighted sum of firing rates over all PKCδ neurons that are

either LF or RS. Each firing rate is weighted by the damage level of the corresponding neuron.

As such, PKCδ neurons do not contribute pain when damage is zero (i.e. pre-injury), but grad-

ually contribute to pain as sensitization occurs. When all PKCδ neurons have become sensi-

tized (i.e., di = 100), each LF and RS PKCδ neuron contributes its firing rate to the pain

calculation. The second summation in Eq (3) represents the sum of firing rates over all SOM

neurons that are either late firing or regular spiking. It is assumed that SOM neurons contrib-

ute to the pain calculation at all time steps regardless of damage. Due to their anti-nociceptive

properties, SOM neurons are assumed to have a negative impact on the value of pain.

2.8 Implementation

The model was coded in NetLogo (Version 6.0)[40]. This software has a unique programming

language and customizable interface that is designed specifically for ABM development and

implementation. We designed a GUI for our ABM that allows a user to easily modify parame-

ters values, network settings, and the stimulation history. The Netlogo code and input files for

simulating the ABM can be found in an Open Science Framework public repository (https://

osf.io/nw5kx/, doi: 10.0.68.197/OSF.IO/NW5KX). Step-by-step instructions for downloading

and simulating the model are provided in the Supporting Information (S1 Text). For the results

presented here, we used BehaviorSpace within NetLogo to automate batches of 100 replicate

simulations for each scenario. All graphical and statistical analyses of model output were con-

ducted in R[41].

2.9 Statistics for model output

2.9.1 Distributions of PKCδ and SOM firing rates. Distributions of firing rates aggre-

gated by neuron type (PKCδ or SOM) resulting from model simulations were compared using

a two-sided, unpaired Mann-Whitney U-Test with P<0.05 considered statistically significant.

Comparisons were made between corresponding pre-injury and post-injury distributions and

between corresponding left hemisphere and right hemisphere distributions. Additionally,

comparisons were made between corresponding distributions resulting from model simula-

tions with different proportions of PKCδ and SOM neurons.

2.9.2 Standardized mean effect analysis. Standardized mean effect size analysis was com-

pleted to directly compare predicted outcomes from the three models and our wet-lab experi-

ments. For our wet-lab experiments, we used data from published behavioral experiments
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designed to look at the impact of PKCδ and SOM inhibition with inhibitory DREADDs on

mechanical sensitivity in sham (“control”) or cuff-injured mice (Methods Section 1.4 above).

We replicated these wet-lab experiments using our ABM by silencing the appropriate neurons

(PKCδ or SOM) from the model and recording pain output at times t = 10 (before injury) and

t = 240 (after injury) from 5 replicate simulations. We chose to use 5 replicate model simula-

tions to match the average n (sample size) from all wet-lab comparisons (mean = 4.75 ± 1.5

SD). In all simulations, we assumed a constant 120 pA current (see Table 4 for results of these

simulations; see S3 Table for in vivo data). The y-axis is different in our wet-lab experiments

(mechanical sensitivity in grams) compared to the model output (arbitrary “pain” units). To

normalize these axes, we calculated standardized mean effect sizes. Standardized mean effect

sizes were calculated using a Hedges’ g value and 95% confidence intervals allowing for com-

parison between model outputs with constant number of replicates (n = 5) and wet-lab data

with a variable number of samples per group (see S4 Table for Hedges’ g data). The Hedges’ g

value was calculated as

Hedges0g ¼ Cohen0s d � 1 �
3

4ðn1 þ n2 � 2Þ � 1

� �

; ð4Þ

where

Cohen0s d ¼
�x1 � �x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1 � 1ÞSD2
1
þðn2 � 1ÞSD2

2

n1þn2 � 2

q : ð5Þ

In the above equations, �xi is the mean, ni is the sample size, and SDi is the sample size for

each group (i = 1, 2).

Table 4. Pain output from wet lab experiment (Wilson et al) and three models. Cells are shaded to indicate relative change of that individual cell from the “Intact”

value found with intact PKCδ and SOM signaling (i.e. no inhibition). Dark green is an analgesic effect compared to intact condition and light green is a small analgesic

effect compared to intact. Dark orange is a hyperalgesic effect compared to intact. No shading represents a lack of significant change from the intact value. Intact values

from Wilson et al[16] are reported from two separate experiments labeled as “PKCδ exp” and “SOM exp”.

Wilson et al mean (SD)

units = grams�
30:70 Model mean (SD)

units = arbitrary

50:50 Model mean (SD)

units = arbitrary

60:40 Model mean (SD)

units = arbitrary

Uninjured

Intact PKCδ and

SOM

0.81 (0.22)–PKCδ exp
0.41 (0.05)–SOM exp

-2758.38 (49.91) -2032.10 (100.92) -1789.40 (107.83)

PKCδ inhibited 0.77 (0.05) -2904.73 (55.39) -2110.80 (63.73) -1868.24 (34.03)

SOM inhibited 0.03 (0.01) 0.0 (0.0)�� 0.0 (0.0)�� 0.0 (0.0)��

Injured

Intact PKCδ and

SOM

0.04 (0.03)–PKCδ exp
0.04 (0.01)–SOM exp

-1309.55 (114.22) 670.24 (154.31) 1295.61 (184.10)

PKCδ inhibited 0.66 (0.11) -3248.85 (151.07) -2437.36 (126.22) -2114.26 (58.15)

SOM inhibited 0.04 (0.01) 2030.44 (74.97) 3047.86 (51.42) 3461.17 (93.37)

�Data from Wilson et al are such that high values = lower “pain” and lower values = higher “pain.” Data from computational models are such that high values = high

pain and low values = lower pain.

��Mean and SD for the SOM inhibited uninjured data are zero. For calculation of Hedges’ g we utilized the SD of the comparison group whenever SOM inhibited

uninjured data was utilized.

https://doi.org/10.1371/journal.pcbi.1009097.t004
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Results

Our results explore model predictions of pain for a range of parameter values and scenarios.

First, we simulated a default scenario in which the PKCδ and SOM neurons occur in equal

proportions in the CeA. We use this scenario to demonstrate the model’s ability to produce

changes in pain during and after injury that are consistent with our expectations. Additional

simulations of the model under this scenario were performed to explore the impact of select

model parameters on system-level output, such as pain and total number of inhibited neurons.

Second, we simulated the model using the proportions of PKCδ and SOM neurons that

were obtained from wet-lab experiments. We found differences in the relative proportion of

PKCδ and SOM across these studies and used the model to explore the impact of these differ-

ences on predicted values of pain. To validate our model predictions, we calculated the stan-

dardized mean difference between values of pain outputted from the model and those

observed in wet-lab experiments.

Simulation of pain using ABM with equal proportions of PKCδ and SOM

neurons

Previously published data as well as new wet lab data were used to estimate values of parame-

ters in the ABM. In our published data set[16], we demonstrated changes in excitability of

labeled PKCδ and SOM neurons in the right CeA under control and chronic cuff injury condi-

tions (Fig 1). Neurons were classified as either regular spiking (RS) or late firing (LF). Broadly

speaking, the excitability of PKCδ neurons increased with injury and the excitability of SOM

neurons decreased with injury. These data are in line with our behavioral observations when

we manipulated PKCδ or SOM neurons using chemogenetic vectors. In those data, we found a

pro-nociceptive output from PKCδ neurons and an anti-nociceptive output from SOM neu-

rons. For the purposes of the ABM, we assumed that pain output was dependent on a balance

between pro-nociceptive PKCδ and anti-nociceptive SOM neurons. When necessary, we

extrapolated our physiology data to a maximum of 220 pA using a linear model (Fig 1 trian-

gles). We also measured the proportions of RS, LF, and spontaneous neurons in slices from

control and injured mice (Fig 2). While PKCδ neuron proportions did not drastically change

after injury (Fig 2A and 2B), we did observe an apparent change in proportion of SOM neu-

rons in injured mice (Fig 2C and 2D). We found more RS and fewer spontaneous SOM neu-

rons in injured mice compared to the control mice.

Initial simulations of the ABM were performed to determine if the model could replicate

these increases in electrophysiological output after injury and in response to changes in exter-

nal stimulation. In these simulations, the model was initialized with an equal number of PKCδ
and SOM neurons in each of the left and right CeAs (referred to as the “50:50” model). Addi-

tionally, during the creation of the connectivity network, each neuron was allowed a maximum

of three inputs (Maxin = 3) and three outputs (Maxout = 3). Emergent values of “damage” and

“pain” were analyzed for two different stimulation scenarios. In the first scenario, the external

stimulation is constant 120 pA for the duration of the simulation (Fig 3A). In the second sce-

nario, the external stimulation starts at 120 pA and gradually ramps up to 220 pA before

returning to 120 pA at the end of the simulation (Fig 3D). 120 pA can be conceptually thought

of in an animal as spontaneous “pain.” We would expect little spontaneous pain in control

mice but more in injured mice. In contrast, 220 pA (peak current value) would yield the equiv-

alent of the type of “pain” experienced by an animal if it were given a strong noxious pinch.

Both the control and injured mice would experience an increase in “pain” to pinch but the

injured animal’s response would be classified as hyperalgesic. Due to the stochasticity of the

ABM, each scenario was repeated 100 times. The average damage across all neurons and
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replicate simulations was calculated for the constant 120 pA scenario and the ramping current

scenario. Injury occurs during damage accumulation (shaded regions in Fig 3B and 3E).

In both scenarios, pain output (difference between cumulative PKCδ and SOM firing rates

on the left and right) significantly increased above baseline measures during injury and

remained elevated post-injury. Fig 3 shows the average, maximum and minimum pain values

observed over the 100 replicate simulations for the constant 120 pA scenario (Fig 3C) and the

ramping current scenario (Fig 3F). Average pain during baseline conditions (i.e., before

injury) is approximately -2000 in both scenarios, indicating a dominant presence of antinoci-

ceptive output from SOM neurons and an absence of pain. During injury, average neural dam-

age increased steadily until it reached maximum value (d = 100). At the same time, pain

increased to a positive value and remained elevated after injury. In interpreting the model’s

pain output, our focus is on the change in pain values over time rather than the absolute values

of pain on the y-axis. The positive changes in pain values during injury are attributed to the

increasing pro-nociceptive output from the PKCδ neurons and the elevated pain values that

remain after injury suggest this pro-nociceptive activity outweighs any anti-nociceptive output

from the SOM neurons when injury is present. Previous studies have shown that endogenous

pain pathways tonically inhibit pain signals at baseline in well-known areas in the brainstem

[42] as well as in the amygdala[9,16]. The net negative values at baseline in our model are con-

sistent with this baseline tonic inhibition, primarily driven by SOM neurons in our model.

Fig 3. 50:50 model output during constant and ramping current scenarios. The 50:50 model was simulated using constant 120 pA current (A) and ramping current (D).

In the model, PKCδ and SOM neurons accumulate damage during injury. Average damage values from all PKCδ and SOM neurons during the constant current (B) and

ramping current (E) scenarios are displayed. In both scenarios, pain increases during injury and remains elevated post-injury. The average (black line), minimum (bottom

blue line), and maximum (top blue line) model pain output across 100 replicate simulations is displayed for the constant current (C) and ramping current (F) scenarios.

https://doi.org/10.1371/journal.pcbi.1009097.g003
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In the scenario with ramping current, pain output fluctuated in response to changes in the

external stimulation. With each 20 pA increase in current, pain also increased (Fig 3F). At

maximum current (220 pA), pain ranged from 1000 to 2500. When current was dropped back

down to 120 pA at the end of the simulation, pain decreased (compared to the 220 pA level)

but still remained significantly higher than baseline measures. Overall, one can think of the

model’s predictions of pain before injury as the spontaneous pain experienced by an animal at

baseline (i.e. no pain). During injury, damage accumulates and neurons become sensitized,

causing an increase in pain. Increases in stimulation (e.g. >120 pA) lead to increases in pain.

As described above, this can be thought of as the evoked pain caused by “pinching” the paw of

an animal. Finally, after injury has occurred and the stimulation has been reduced to 120 pA,

the elevated pain output is considered spontaneous non-evoked pain experienced after injury.

Model simulations demonstrate the importance of neuronal circuits in

pain output

Using the 50:50 model, we explored the impact of connectivity between neurons in the CeA.

In designing the connectivity network, we utilized published data to estimate the number of

connections between neurons. Based on data showing an average of 3.5 primary dendrites in

CeC neurons[29], we considered four different networks of primary connections (e.g. primary

dendrites or primary axonal branches): no connectivity (0:0 network), exactly 1 input and 1

output per neuron (1:1 network), at most 3 inputs and 3 outputs per neuron (3:3 network),

and at most 5 inputs and 5 outputs per neuron (5:5 network). The maximum number of inputs

(Maxin) and maximum number of outputs (Maxout) per neuron did not differ between PKCδ
and SOM neurons. To estimate the probability of PKCδ-to-PKCδ, PKCδ-to-SOM, SOM-to-

SOM, and SOM-to-PKCδ connections, we utilized another published data set[17]. In those

experiments, the authors used a combination of transgenic expression markers and immuno-

histochemistry to determine the frequency of PKCδ-to-PKCδ, PKCδ-to-SOM, PKCδ-to-other,

SOM-to-SOM, SOM-to-PKCδ and SOM-to-other connections. To extract these data from the

paper, we calculated the percentage of all connections between classified neurons in the manu-

script (n = 20), of which 55% were SOM-to-SOM, 20% were PKCδ-to-PKCδ, 10% were PKCδ-

to-SOM, and 15% SOM-to-PKCδ. These values correspond to the probability of a PKCδ-to-

PKCδ, PKCδ-to-SOM, SOM-to-SOM, and SOM-to-PKCδ connection in the model (Table 3).

All other connections in the model are assumed to be either PKCδ-to-Other or SOM-to-Other

where “Other” indicates a neuron that is neither PKCδ nor SOM and does not contribute to

pain output.

We explored the impact of the network parameters Maxin and Maxout on model output by

simulating the constant 120 pA stimulation scenario for four different network configurations

(0:0, 1:1 3:3, and 5:5) (Fig 4). The total number of links in each network increased as values of

Maxin: Maxout increased. The 1:1 network yielded an average of 1600 links, the 3:3 network

yielded an average of 4764 links, and the 5:5 network yielded an average of 7879 links in the

network. Similarly, larger values of Maxin: Maxout resulted in a larger number of inhibited neu-

rons at any time point (Fig 4B). Across all networks with links (1:1, 3:3, and 5:5), approxi-

mately 60–80% of inhibited neurons were SOM (Fig 4B), with the remaining inhibited

neurons being PKCδ. In the 0:0 network, no links exist and therefore no neurons are inhibited

at any time. Average pain values were similar for model simulations using the 0:0 (no network)

and 1:1 network. However, due to the large number of inhibited “anti-nociceptive” SOM neu-

rons, higher levels of pain were observed in model simulations using the 3:3 and 5:5 networks

(Fig 4D). Given the presence of actual cell-to-cell networks in real life, the baseline pain
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outputs of these last two models are likely more accurate and represent the important contri-

bution of the network on what a baseline pain state actually is in vivo.

Model output is most impacted by the proportions of PKCδ and SOM

neurons

We next wanted to understand the impact of select parameters on the model’s prediction of

pain before, during, and after injury. To achieve this goal, we performed a local sensitivity

analysis. For the sensitivity analysis, we initialized the 50:50 model with a 3:3 network configu-

ration and assumed a constant stimulation of 120 pA throughout each simulation. Parameters

included in the sensitivity analysis and their baseline values are: PKCδ-to-PKCδ connectivity

probability (0.20), PKCδ-to-SOM connectivity probability (0.10), SOM-to-SOM connectivity

probability (0.55), SOM-to-PKCδ connectivity probability (0.15), percentage of SOM neurons

labeled as RS (27%), percentage of PKCδ neurons labeled as RS (48%), and the percentage of

SOM neurons in each hemisphere (50%). For each parameter, an upper endpoint was identi-

fied as R+ = R+0.05 and a lower endpoint was identified as R− = R−0.05, where R represents

the baseline value of the parameter. To generate sensitivity values, the model was simulated

100 times for each parameter when evaluated at the lower endpoint, baseline value, and upper

endpoint. In each simulation, values of pain (P) were outputted at times t = 10 (before injury),

t = 105 (during injury), t = 240 (after injury). At each of these three timepoints, the sensitivities

of pain to each parameter were calculated as Sþ ¼ ðPþ� PÞ
ðRþ� RÞ and S� ¼ ðP� � PÞ

ðR� R� Þ where P−, P, P+ are

Fig 4. 50:50 model output for different network parameters. Simulations of the 50:50 model were performed for four different connectivity networks: No network, 1:1

network, 3:3 network, and 5:5 network. In all simulations, we assumed a constant 120 pA current (A). The total number of inhibited neurons (B) and pain output (D)

varied across the different network structures. However, the percentage of inhibited neurons that are SOM was similar for the 1:1, 3:3, and 5:5 networks (C). In simulations

with no network, there are no inhibited neurons and the pain output closely resembles pain output from the 1:1 model.

https://doi.org/10.1371/journal.pcbi.1009097.g004
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the average values of pain when the parameter is valued at R−, R, R+, respectively. Here, S+ rep-

resents the sensitivity of model outputted values of pain to an increase in the parameter and S−

represents the sensitivity of pain to a decrease in the parameter.

Fig 5 displays the sensitivity values (S+, S−) before, during, and after injury for each of the

seven parameters. The y-axis of all plots in Fig 5 is the same for comparison across parameters.

Sensitivity values are largest for the parameter controlling the relative quantity of SOM and

PKCδ neurons (Fig 5G). The gray bars indicate that a small increase to the percentage of neu-

rons that are SOM (and therefore a decrease to the percentage of neurons that are PKCδ) will

result in a substantial decrease in pain, especially during and after injury. Similarly, the black

bars indicate that a small decrease to this parameter will result in a substantial increase to pain,

especially during and after injury.

Sensitivity values were moderately high for the parameters controlling the proportion of

PKCδ and SOM neurons that are RS (Fig 5E and 5F). Surprisingly, the network connectivity

parameters (Fig 5A and 5D) had the smallest sensitivity values, indicating that small changes

to these parameters have relatively less impact on pain.

Model simulations using alternative proportions of PKCδ and SOM

neurons highlight a current controversy in the literature

Motivated by the results of the sensitivity analysis, we next wanted to probe the effects of differ-

ential expression of PKCδ and SOM neurons in both the right and left amygdala. The differ-

ence in the relative quantity of PKCδ and SOM cells has been hypothesized as an important

factor in whether the amygdala sends an increased pain signal or decreased signal; however,

there is controversy in the literature on the magnitude of differences in these cell types in the

Fig 5. Sensitivity analysis of 50:50 model. A sensitivity analysis was conducted on the 50:50 model with constant 120 pA current to determine the sensitivity

of pain output to select model parameters before injury (t = 10), during injury (t = 105), and after injury (t = 240). Values of S+ and S− represent the sensitivity

of pain to small increases and decreases, respectively, in each parameter. Relatively small values of S+ and S− are associated with the connectivity parameters

(A-D). The larger sensitivity values associated with the parameters determining the proportion of PKCδ neurons that are regular spiking (E), the proportion of

SOM neurons that are regular spiking (F), and the proportion of neurons that are SOM (G) indicate pain is most sensitive to perturbation in these parameters.

https://doi.org/10.1371/journal.pcbi.1009097.g005
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amygdala[17,18]. We simulated the model for three different assumptions regarding the per-

centage of PKCδ and SOM neurons in the CeA.

As described above, the 50:50 results were obtained using an equal number of PKCδ and

SOM neurons in each the left and right hemisphere. Additionally, the ABM was simulated

with initial distributions of PKCδ and SOM neurons matching those observed in two separate

laboratory experiments. First, the model was initialized with 56% PKCδ and 44% SOM in each

the left and right hemispheres, as was reported in Hunt et al 2017[17]. These model conditions

are referred to as the “60:40” model. Second, the model was initialized with 30% PKCδ and

70% SOM in the left hemisphere and 37% PKCδ and 63% SOM in the right hemisphere. This

model is referred to as the “30:70” model. The percentages in the 30:70 model were based on

our new analysis of left and right PKCδ and SOM expression data (Fig 6). Comparing left and

right CeA PKCδ and SOM, we found significant main effects of side of brain (2-way RM

ANOVA P = 0.007) and cell type (P = 0.0001). Multiple comparisons showed a statistically sig-

nificantly higher number of PKCδ neurons (Fig 6A) on the right compared to the left CeA

(Fig 6C; P<0.01). We found a statistically significantly higher number of SOM neurons (Fig

6B) on the left compared to the right CeA (Fig 6C; P<0.01). Finally, there were significantly

more SOM neurons compared to PKCδ on the left and the right (Fig 6C; P<0.001).

We repeated 100 replicate model simulations for each of these three sets of initial condi-

tions (50:50, 60:40, and 30:70). In all simulations, we used the 3:3 network parameters

described above and assumed a constant 120 pA external simulation. First, we inspected differ-

ences in individual-level neural activity before and after injury across the three models (50:50,

60:40, 30:70). For each model, we outputted the firing rate (obtained prior to inhibition by the

Fig 6. Expression of PKCδ and SOM in the left and right CeA. Utilizing Ai9 reporter mice for SOM and immunohistochemistry for PKCδ, the average number

of (A) PKCδ and (B) SOM neurons were counted in the left or right CeA from -0.58 to -1.94mm Bregma. Images show 2x of left hemisphere along with 10x

zoomed image of the CeA and basolateral amygdala (BLA). Scale bar = 500μm. (C) There are significantly more PKCδ neurons on the right CeA compared to the

left. There are significantly more SOM neurons on the right CeA compared to the left. There are significantly more SOM vs PKCδ neurons on the left and right

CeA. Two-Way RM ANOVA with Sidak multiple comparisons �� P<0.01, �� P<0.001, ��� P<0.0001.

https://doi.org/10.1371/journal.pcbi.1009097.g006
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network) and firing frequency (RS, LF, or Spontaneous) of all 1600 PKCδ and SOM neurons

at time t = 10 (before injury) and time t = 240 (after injury) from one of the 100 replicate simu-

lations. We then plotted each neuron in the left CeA as a square on a 40x20 grid, and likewise

for the right CeA, with color corresponding to the neuron’s type (blue = PKCδ, red = SOM)

and hue determined by the neuron’s firing rate (Fig 7). For the purpose of this visualization,

neurons were grouped by firing frequency within each hemisphere.

Several distinguishing characteristics of the three models are visible in Fig 7. First and fore-

most, the difference in quantity of PKCδ and SOM neurons across the three models is evident

by the different proportion of blue and red squares, respectively. Second, the top two rows cor-

responding to the 60:40 model and 50:50 model show no difference in the distribution of

PKCδ and SOM neurons when comparing the left and right hemispheres. However, the bot-

tom row shows an asymmetric distribution of PKCδ and SOM neurons that is unique to the

30:70 Model. In all three models, injury causes a decrease in the quantity of SOM spontaneous

neurons and an increase in the quantity of SOM RS. This is most visible in 30:70 model due to

the large number of SOM neurons present.

Second, we aggregated the firing rates of all RS and LF neurons in Fig 7 by type (PKCδ or

SOM) and compared corresponding distributions within and across the three models. Fig 8

Fig 7. Individual neuron firing rates before and after injury. For each of our three models, the firing rates of all 1600 neurons during a simulation with constant 120 pA

were outputted before injury (t = 10) and after injury (t = 240). Darker hues correspond to higher firing rates in PKCδ neurons (blue) and SOM neurons (red). Regular

spiking (RS), late firing (LF), and spontaneous (Spont) SOM and PKCδ neurons are grouped together in each plot. Across all three models, the firing rates of PKCδ RS and

LF neurons increase with injury and the firing rates of SOM RS and LF neurons decrease with injury (corresponding to lab data in Fig 1). However, injury also results in

an increase in the quantity of SOM RS neurons and a decrease in the quantity of SOM spontaneous neurons (corresponding to lab data in Fig 2). Data on the left and right

are the same for the 60:40 and 50:50 models, but distinct for the 30:70 model (corresponding to lab data in Fig 6).

https://doi.org/10.1371/journal.pcbi.1009097.g007
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shows the distributions of firing rates for all PKCδ RS and LF neurons (blue) and all SOM RS

and LF neurons (red) in each hemisphere before and after injury. Statistical comparisons were

made between corresponding pre-injury and post-injury distributions, between corresponding

left and right distributions, and between distributions resulting from different models (e.g.

60:40 vs. 30:70). In almost all situations, we found a significant difference in the firing rates of

corresponding pre-injury and post-injury distributions with one exception (50:50 model for

left CeA SOM) which showed a strong trend (P = 0.053). As expected, there was a decrease in

the firing rates of SOM RS and LF neurons after injury and an increase in the firing rates of

PKCδ RS and LF neurons after injury. None of the other comparisons resulted in statistically

significant differences between corresponding distributions. Thus, while the quantity of PKCδ
and SOM neurons differed between the models, the distributions of their firing rates did not.

See S2 Table in the Supporting Information for the U-values and P-values of all comparisons.

Third, we compared system-level measures of pain across the three different models. Pain

output differed dramatically between the model versions (Fig 9). Pain values from the 60:40

model (Fig 9A) were slightly higher than those in the 50:50 model (Fig 3C) due to a small

increase in PKCδ neurons (pro-nociceptive output) and small decrease in SOM neurons (anti-

nociceptive output). The 30:70 model did not produce the same pattern of pain development

Fig 8. Aggregated PKCδ and SOM firing rates before and after injury. Histograms show the distributions of firing rates for all PKCδ RS and LF neurons (blue) and all

SOM RS and LF neurons (red) before injury (t = 10) and after injury (t = 240) during constant 120 pA stimulation. The median firing rate (M) is provided for each

distribution. In all three models (50:50, 60:40, 30:70), the post-injury firing rates of PKCδ neurons are significantly higher than their corresponding pre-injury firing rates

(P< 0.05) and the post-injury firing rates of SOM neurons are significantly less than their corresponding pre-injury firing rates (P< 0.05) with the exception of left side

SOM neurons in the 50:50 model (P = 0.053). There are no statistically significant differences in the corresponding distributions of firing rates between hemispheres (Left

vs. Right) or across models (e.g., 50:50 vs. 60:40).

https://doi.org/10.1371/journal.pcbi.1009097.g008
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observed in the other models. In the 30:70 model, average pain output is approximately -2800

during baseline (pre-injury) conditions and increases to approximately -1200 during injury

(Fig 9B). Overall, the 30:70 model yielded the smallest change in pain during injury compared

to the other models. Negative pain values throughout the simulation of the 30:70 model are

attributed to the large quantity of SOM neurons in both the left and right hemispheres. Pain

actually decreases at one point during injury when 21% of SOM neurons (~224 neurons) are

converted from spontaneous to regular spiking. The stark difference in pain observed across

these two models (Fig 9) corroborate the results of the sensitivity analysis (Fig 5) showing that

changes in the relative proportions of PKCδ and SOM neurons have a large impact on pain.

Moreover, the fact that changes in the relative proportions of PKCδ and SOM neurons in CeA

led to the greatest changes in pain suggests that this parameter could be used as a metric to

understand chronic pain plasticity and/or treatment.

Standardized effect analyses demonstrate good concordance between

model predicted effect sizes and observed effect sizes in mice

After building our three models, we sought to determine whether predicted outcomes from

the models would match our wet-lab data using the cuff neuropathic pain model in male mice

[16]. We utilized Hedges’ g standardized mean effect size analysis to compare these data sets.

For the inhibition of each PKCδ and SOM, we completed four different standardized mean

difference scores using Forest Plots with Hedges’ g and 95% confidence intervals (CIs) plotted

(Fig 10). In these calculations, any mean difference greater than zero is indicative of increased

“pain.” First, we compared the standardized mean difference of injured and uninjured pain

output values. As expected, we found positive values for our wet-lab data and all three models

(Fig 10A and 10E). The magnitude of the pain effect in the models is generally close or within

the 95% CIs of the wet-lab data although the Hedges’ g for the model data were slightly higher.

The magnitude of the model pain output increases slightly as the proportion of PKCδ cells

increases and SOM decreases. So, the highest magnitude is with the 60(PKCδ):40(SOM)

model followed by the 50:50 model, and the 30:70 model has the lowest magnitude. Next, we

compared Hedges’ g values between control and injured animals when either PKCδ or SOM

was inhibited.

Fig 9. 60:40 and 30:70 model output. The 60(PKCδ):40(SOM) model (A) and 30:70 model (B) were each simulated 100 times using constant 120 pA current and the

average, minimum, and maximum pain output was plotted. In both models, pain increases during injury and remains elevated post-injury. However, in the 30:70 model a

brief decrease in pain is observed around time t = 125 as spontaneous SOM neurons are converted to regular spiking.

https://doi.org/10.1371/journal.pcbi.1009097.g009
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For PKCδ, we found two areas of congruency and one area of difference between the mod-

els and the wet-lab data (Fig 10B, 10C and 10D). First, a similar pattern was seen when evalu-

ating the Hedges’ g for inhibited control groups versus uninhibited (intact) control groups

(Fig 10C; purple data points). Second, we evaluated the Hedges’ g comparing injured groups

with or without PKCδ inhibition (Fig 10D; light blue data points). Here, we found an “analge-

sic” effect of PKCδ inhibition for the wet-lab experiment and all three models with overlapping

CI’s. Finally, we investigated the impact of inhibiting PKCδ in control and injured conditions

with the hypothesis that these groups would likely be similar under this inhibitory condition.

For the wet-lab data, there was no meaningful difference between the control and injured mice

when PKCδ was inhibited (Fig 10B; “Wilson et al” data points). Hedges’ g effect sizes for the

three models, in contrast, demonstrated a small mean difference that was less than zero (i.e. a

decrease in pain).

Next, we replicated these analyses with inhibition of SOM (Fig 10F, 10G and 10H). When

inhibiting SOM in injured and control groups, we found no significant effect size for the wet-

lab data but substantial increases in effect size for all three models (Fig 10F; orange data

points). In the control condition comparing SOM inhibition to intact SOM, we see good

Fig 10. Standardized mean effect differences between wet-lab experiment and model simulations. Hedges’ g standardized mean effect differences were calculated

between different groups from our wet-lab experiments and three models (60:40, 50:50, and 30:70) which differed based on the PKCδ:SOM ratio. Forest plots show

Hedges’ g +/- 95% confidence intervals. Positive Hedges’ g is indicative of an increase in pain-like effect for the indicated comparison and a negative Hedges’ g is indicative

of a decrease in pain-like effects. (A, E) Hedges’ g calculations for intact experiment when neither PKCδ nor SOM is manipulated. Black data points show the standardized

difference between control groups and injured groups with strong congruency across the wet-lab experiment and all three models showing that injury/damage

accumulation leads to an increase in “pain” compared to control condition. (B-D) Data showing the impact of PKCδ inhibition. (B) Blue data points show the impact of

PKCδ inhibition in both the control and injured groups. (C) Purple data points show the impact of PKCδ inhibition in the control group only. (D) Light blue data points

show the impact of PKCδ inhibition in the injured group only. (F-H) Data showing the impact of SOM inhibition. (F) Orange data points show the impact of SOM

inhibition in both the control and injured groups. (G) Pink data points show the impact of SOM inhibition in the control group only. (H) Red data points show the impact

of SOM inhibition in the injured group only. Wet lab data are from published work[16].

https://doi.org/10.1371/journal.pcbi.1009097.g010

PLOS COMPUTATIONAL BIOLOGY Computational model of amygdala and pain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009097 June 8, 2021 26 / 34

https://doi.org/10.1371/journal.pcbi.1009097.g010
https://doi.org/10.1371/journal.pcbi.1009097


alignment in the Hedges’ g between the wet-lab experiment and the three models (Fig 10G;

pink data points). Finally, when evaluating SOM inhibition in the injured mice (Fig 10H; red

data points), we see a similar pattern to what is seen for inhibition in the control vs inhibition

in the injured condition with all three models in agreement (overlapping CI’s) but in contrast

to the null effect observed in the wet-lab data (Fig 10F).

Discussion

In this paper, we present an agent-based model (ABM) of pain-related neurons in the left and

right hemispheres with a focus on the CeA. Each neuron in the model is described by a type

(PKCδ or SOM), firing frequency (LF, RS, or spontaneous), and location (left or right CeA).

Neural firing rates are stochastically updated at each time step and inhibitory signals are trans-

mitted between neurons via the connectivity network. During periods of noxious stimulation,

neurons accrue damage which, over time, leads to sensitization and changes in the neurons’

firing rates. A main purpose of the ABM is to determine how these changes at the neuron-level

impact system-level responses. The primary system-level measure in our study is “pain,”

which we defined as the difference between cumulative pro-nociceptive neural output and

anti-nociceptive neural output across the left and right hemispheres.

The ABM presented here is an expansion of our preliminary model[10] and offers new

insight into the interplay of SOM and PKCδ neurons that could not have been afforded by the

previous version. The current model offers greater heterogeneity at the neuron-level by includ-

ing physiological and histological properties of neurons as well as a connectivity network

allowing neurons to transmit inhibitory signals to one another. While the preliminary model

only allowed for painful stimulation to be ‘on’ or ‘off’, the current model allows for stimulation

to any take value in a defined range (e.g. 120 pA to 220 pA in our simulations). Thus, the cur-

rent ABM is able to output values of pain that evolve over time and in response to varying lev-

els of stimulation. As stimulation (i.e. current) increases, the average individual firing rates of

SOM and PKCδ neurons increase (Fig 1). Although PKCδ and SOM neurons have opposite

roles in pain modulation, increases to their firing rates do not result in a zero net change to

pain. As seen in Fig 3F, increases in current result in corresponding increases to pain (i.e.

evoked pain) despite there being an equal number of SOM and PKCδ neurons. This phenom-

ena is attributed to the presence of the network in the ABM and the fact that the majority of

inhibited neurons are SOM (Fig 4C).

When possible, the parameter values in our ABM were estimated from previously published

studies, and when this was not possible, we performed our own wet-lab experiments to gather

the necessary data. One parameter in particular emerged as highly influential in determining

pain output. This parameter is the relative proportion of PKCδ neurons to SOM neurons, and,

in our model this parameter is allowed to vary between the left and right hemispheres. To min-

imize the bias of this parameter in our model output, our initial simulations assumed a 50:50

ratio (50% PKCδ and 50% SOM in both hemispheres). Under this scenario, our model showed

promising results by predicting an increase in pain during injury and elevated pain levels post-

injury. Subsequently, we used the 50:50 model to explore the impact of the connectivity net-

work on pain output. These results showed that the 1:1 network and 0:0 network (no-network)

yield similar results. However, as the complexity and size of the network increased (e.g., 3:3,

5:5 network), we observed more inhibited neurons and higher pain values compared to output

from the 1:1 and 0:0 networks. This increase in pain is attributed to the fact that a majority of

the inhibited neurons are SOM (anti-nociceptive). When SOM is inhibited, the remaining

pro-nociceptive PKCδ agents increase “pain” output. These results suggest the connectivity

network plays an important role in modulating pain and the inclusion of this feature in our
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model is important. Our model included only primary inputs/outputs and did not account for

secondary and tertiary branches in neurons. We find that while the number of primary den-

drites is not different between PKCδ and SOM cells, the number of tertiary branches increases

in SOM CeA neurons[26]. This will be an important factor to consider in future versions of

the network.

Another variable to consider in future versions of the model is the spatial relationship

between connections. As seen in the modeling of the lateral nucleus of amygdala output in

Pavlovian fear memories, distance between different neurons is a major factor in overall

model output[43]. Within the CeA, functional connections between and within PKCδ and

SOM neurons have been found to be ~50–100 um[17] but dendrites/axons from these neurons

are on the order of 500–1000 um[15,17] suggesting the potential for longer range connections

that have yet to be found. Ultimately, additional wet-lab experiments are necessary to better

understand the structure and size of the CeA network between PKCδ and SOM neurons. This

would entail a more thorough paired recording setup that specifically looks for both short-

range and long-range projections with post-hoc cell filling dyes to evaluate direct versus indi-

rect connections at baseline and following injury.

We used both published data and the results of our own wet-lab experiments to estimate

the proportion of PKCδ and SOM neurons in the CeA. First, we found significant left-right lat-

eralization, which has not been previously reported. Second, our data highlighted a current

controversy in the literature. We found higher numbers of SOM vs PKCδ neurons in the CeA,

which is consistent with another report[18] that found twice as many SOM neurons as PKCδ
(side of brain undefined). In contrast, two other reports have found more PKCδ neurons than

SOM neurons[17,39]. One possible and important distinction between approaches was Hunt

et al’s[17] and Kovner et al’s[39] use of direct immunodetection for both PKCδ and SOM com-

pared to Han et al’s[18] and our own analyses that used a Cre-dependent reporter line for

SOM, coupled with immunodetection for PKCδ[18]. In our experiment, any neuron that has

ever expressed SOM in development will continue to express the reporter even if that neuron

no longer expresses SOM. In that context, we and others may have overestimated the quantity

of SOM neurons.

A major assumption of the model as written is that all PKCδ are pro-nociceptive and all

SOM neurons are anti-nociceptive. This assumption followed our wet-lab experiments in

which the primary output from manipulation of these two populations in naïve and injured

mice demonstrated such a dichotomy on pain-like behavior. However, there is evidence that

some PKCδ neurons may be anti-nociceptive. Isoflurane gas anesthesia activates a group of

CeA neurons[11]. When additionally activated with DREADDS, these neurons reduced pain-

like behavior in mice. It was reported that 79% of these neurons expressed PKCδ. Future stud-

ies will be critical in determining the relative proportion of PKCδ neurons that drive pro-noci-

ceptive versus anti-nociceptive output from the CeA. A related variable in these studies will be

the physical location of the neurons within the CeA. Data from appetitive and defensive behav-

iors has found differences in the roles of neuronal sub-types depending on the subnuclei of the

CeA[44]. Fortunately, such factors, when available, would be straightforward to incorporate

into our ABM.

To evaluate the ABM we directly compared the effect size of model predictions of pain

under different conditions to our previously collected data from mice[16]. First, without

manipulating PKCδ or SOM, all three of our models fit the wet-lab nerve injury pain model

output in both direction (e.g. an increase in “pain” after injury) and magnitude. Second, we

inhibited the PKCδ or SOM neurons by silencing their firing rates. This action can easily be

achieved using the “inhibitory” buttons in the NetLogo GUI (see S1 Text and S1 Fig). This

interface is a major advantage of using the NetLogo software to develop the ABM. The
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inhibitory sliders are the equivalent of both classic pharmacology approaches using receptor

antagonists and newer approaches using inhibitory opto- and chemo-genetics.

When we inhibited PKCδ neurons in our three models (50:50, 60:40, 30:70), we found areas

of congruency and incongruency. In mice, PKCδ inhibition had no effect in control animals.

When we looked at the standardized mean effects for inhibition of control groups, we found

that two of the three models and the wet-lab data had CIs that straddled the zero line (i.e. a

null difference; Fig 10C). Only the 30:70 model showed a very slight analgesic effect of PKCδ
inhibition in the control condition.

In mice, PKCδ inhibition nearly completely reversed the cuff model mechanical hypersensi-

tivity[16]. Thus, it was not surprising that the Hedges’ g for the wet-lab data had a confidence

interval that straddled the zero Hedges’ g line (Fig 10B). In contrast to this wet-lab data,

Hedges’ g calculation of all three models demonstrated a small “analgesic” mean difference

that is attributed to a small impact of PKCδ inhibition in the control condition but with a con-

sistent large impact of PKCδ inhibition in the injured condition for the models. The lack of an

effect in control wet-lab mice with PKCδ inhibition may be related to the behavioral assay

used in our previous publication, namely mechanical sensitivity analysis. Mechanical stimula-

tion is not a suprathreshold nocifensive response in naïve mice. If wet-lab experiments were

completed in naïve mice using a hyperalgesic stimulus such as hot plate, inhibition of PKCδ in

control mice may very well reduce the behavioral response aligning these data with the model

predictions. On the other hand, it is possible that in vivo behavioral assays are simply too

coarse to detect small analgesic effects with typical experimental variability. Overall, the anal-

gesic effect in the models was modest compared to the larger Hedges’ g seen with our compari-

son of PKCδ inhibition in injured groups versus intact (no PKCδ inhibition) injured groups.

In that experiment, we found large effects sizes and good concordance between the wet-lab

mice and all three models. Essentially, inhibition of PKCδ reversed the effects of injury (dam-

age accumulation). This is consistent with a largely pro-nociceptive role for PKCδ after injury.

The magnitude of the effect size for the models was similar to the wet-lab experiment with two

of three models having overlapping CI’s with the wet lab CI’s (Fig 10D).

Similar to PKCδ, when we inhibited SOM neurons in our three models (50:50, 60:40,

30:70), we found areas of incongruency and congruency with our wet-lab findings. We believe

that the incongruent aspects again may be driven by limitations in the animal assays. First, for

inhibition of control and injured SOM neurons our models predicted an increase in pain con-

sistent with an anti-nociceptive output of SOM neurons; the Hedges’ g for the wet-lab data

showed a zero effect size. Here, the difference between the models and the wet-lab data is likely

attributed to the fact that the actual mice are at the “floor” in the mechanical assay while the

model output has no floor. Injured mice are at floor in the actual behavior assay (i.e. maximum

hypersensitivity) before SOM inhibition and cannot experience more “pain” with loss of anal-

gesic SOM cells. In uninjured mice, SOM inhibition causes so much mechanical hypersensitiv-

ity that those animals are also at floor. Thus, there is a null Hedges’ g mean difference. These

animals though are not likely at a biological maximum for pain, it is simply a disadvantage of

that assay. In contrast, in our models without a floor, we see that inhibition of SOM in the

injured group causes a larger hyperalgesic difference in Hedges’ g compared to inhibition of

SOM in the control condition. A similar explanation can be applied to differences in the

model prediction for SOM inhibition in the injured state versus intact (no SOM inhibition)

injured groups (Fig 10H). That is, the wet-lab data show no difference between the intact

injured mice and the SOM inhibited injured mice because the mice are at floor in the assay

and cannot show any greater mechanical hypersensitivity. In contrast, our model output, with

no floor, is able to show that loss of SOM causes an increase in pain like-effects in the context

of on-going injury. This assay floor issue did not confound our interpretation of Hedges’ g
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analysis comparing SOM inhibition in the control condition versus intact (no SOM inhibition)

in the control condition (Fig 10G). In all circumstances, wet-lab and models, inhibition of

SOM in the control groups causes a hyperalgesic reaction compared to the intact control

group and two of three models have overlapping CIs with the wet-lab CIs. The only model to

not overlap with the wet-lab data was the 30:70 model which showed the highest hyperalgesic

effect. Since this model has the largest number of SOM positive neurons, it is not surprising

that it also shows the biggest effect of losing those neurons. All of the mean effect data are con-

sistent with the idea that SOM provides analgesic tone such that when it is removed through

inhibition, the mouse/model shows increased pain-like effects.

If we look across all of our simulations and experiments, we can make some observations

regarding which model topologies fit the in vivo wet lab data the best. It is clear that the 3:3

and 5:5 networks are more in line with our understanding of the connectivity in the CeA than

1:1 and no networks. Using the 3:3 network, we varied the proportion of PKCδ and SOM neu-

rons based on existing experimental data and our new experimental data. As described, there

is good concordance within the models in Fig 10 with two notable exceptions. In Fig 10C, we

see that 60:40 and 50:50 perfectly match up with the wet-lab data but the 30:70 model shows an

analgesic change. In a similar manner, in Fig 10G, we see stronger matching between the

60:40 and 50:50 models with the wet-lab data than we do for the 30:70 model. Here, the 30:70

model shows a greater increase in pain when SOM is inhibited in control conditions. Overall,

these data all point to the 60:40 model (PKCδ>SOM) with a 3:3 network as being more accu-

rate of the real-world scenario compared to the 30:70 model (PKCδ<SOM).

The ABM presented here has two distinct functions for the field moving into the future.

First, the ABM serves a central framework for synthesizing data across multiple research stud-

ies and detecting emergent properties of the amygdala that might not be obvious in direct

experimental testing. As researchers continue to amass data and formulate hypotheses at the

neuron-level, this information can be included in the ABM framework. Subsequently, through

simulation and formal analyses, the ABM can be used to evaluate the collective properties of

neurons and in particular, the impact of these properties on pain. Second, the ABM can be

immediately used by researchers to complete “thought” experiments prior to implementation

of time-intensive and laborious wet-lab experiments. The Netlogo interface (S1 Fig) is

straightforward and the software is free. Using a combination of the inhibition and expression

sliders (e.g., proportion of PKCδ vs SOM), investigators can explore the interaction of PKCδ
and SOM in the left and right amygdala (S1 Text). As described in the introduction, left versus

right differences in amygdala function have come to represent a major consideration in the

interpretation of wet-lab experiments[8]. Comparison of the different network models can

also be used to evaluate the impact of synaptic plasticity that might occur in disease states.

Overall, this ABM of the amygdala represents the first comprehensive model of the amyg-

dala in the context of pain using modern cell-type specific electrophysiological and expression

data. Future iterations of the model will incorporate additional cell markers (e.g., corticotro-

pin-releasing factor (CRF), calcitonin gene-related peptide (CGRP) receptor, dynorphin/

kappa opioid receptor (KOR), pituitary adenylate cyclase-activating peptide receptor (PAC1),

etc.) and finer gradations of proportions of cells driving anti-nociceptive and pro-nociceptive

output from the amygdala in the context of injury and pain.

Supporting information

S1 Fig. Graphical user interface for ABM model built using NetLogo. (A) Panel illustrates a

sample screenshot of the NetLogo user interface at the end of a model simulation. Features of

the interface include monitors, plots, buttons, toggle switches, a pull-down menu, and sliders
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to allow a user to control the parameters of a simulation and observe the output produced by

the model. A 40x41 grid of patches and agents (white arrows) represent the CeA and its neu-

rons. Within this grid, the boundary between the hemispheres is a grey vertical line and neu-

rons are assigned a color based on their role in the CeA as follows: SOM RS neurons are blue,

SOM LF neurons are light blue, PKCδ RS neurons are red, PKCδ LF neurons are light red, all

spontaneous neurons are black, “other” neurons are grey, and inhibited neurons are yellow.

Panel also contains the buttons used to initialize and then start a simulation. Drop-down

menu allows user to select a current stimulation history file. (B) Zoom in of left CeA sliders to

control the proportions of neurons (PKCδ vs SOM) and firing types. (C) Zoom in depicts a

close-up of a toggle switches to control the inclusion of a neural network and sliders to control

the firing rates of spontaneous neurons, inhibition threshold input signal, and maximum

inputs and outputs a neuron can have. Panel also contains the buttons used to silence certain

groups of neurons, which can be pressed any time after the Initialize button is pressed. (D)

During a simulation, the total pain output is graphed in real-time. Representative graph shows

pain output status near the end of a simulation. Panel portrays a close-up of a plot outputted

by the model, which tracks the changes in pain value over time. (E) Other outputs in real-time

include left vs right CeA total pain output (not shown) and left (shown) and right (not shown)

PKCδ vs SOM cumulative firing rates over time. The purple curve represents the PKCδ RS and

LF neurons. The blue curve represents the SOM RS and LF neurons.

(TIFF)

S1 Table. Parameters defining the probability distributions for random variables X

(unsensitized firing rate) and Y (sensitized firing rate) in Eq (2). Both X and Y have trun-

cated normal distributions with mean μ, standard deviation σ, minimum value min, and maxi-

mum value max.

(DOCX)

S2 Table. Results of statistical tests comparing distributions of PKCδ and SOM firing

rates. A two-tailed, unpaired Mann-Whitney test was used to compare corresponding distri-

butions of firing rates from PKCδ and SOM neurons in the left and right hemispheres before

and after injury (as seen in Fig 8). The table below provides the results (U-value and P-value)

of the Mann-Whitney tests. �P<0.05.

(DOCX)

S3 Table. Raw data from Wilson et al used for mean effect size calculations. Low values are

indicative of mechanical hypersensitivity. Mean and SD of each group is given at baseline

(before injection) and 1 hour after injection of the DREADD activator Clozapine N-oxide

(CNO) or control saline (Sal).

(DOCX)

S4 Table. Hedges’ g values calculated for in vivo studies and three models.

(DOCX)

S1 Text. Step-by-step directions for simulating the agent-based model in NetLogo.

(DOCX)
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