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ABSTRACT Cytoprotective functions of a 20S proteasome activator were investigated. Saccharomyces
cerevisiae Blm10 and human 20S proteasome activator 200 (PA200) are homologs. Comparative ge-
nome-wide analyses of untreated diploid cells lacking Blm10 and growing at steady state at defined growth
rates revealed downregulation of numerous genes required for accurate chromosome structure, assembly
and repair, and upregulation of a specific subset of genes encoding protein-folding chaperones. Blm10 loss
or truncation of the Ubp3/Blm3 deubiquitinating enzyme caused massive chromosomal damage and cell
death in homozygous diploids after phleomycin treatments, indicating that Blm10 and Ubp3/Blm3 function
to stabilize the genome and protect against cell death. Diploids lacking Blm10 also were sensitized to
doxorubicin, hydroxyurea, 5-fluorouracil, rapamycin, hydrogen peroxide, methyl methanesulfonate, and
calcofluor. Fluorescently tagged Blm10 localized in nuclei, with enhanced fluorescence after DNA replica-
tion. After DNA damage that caused a classic G2/M arrest, fluorescence remained diffuse, with evidence of
nuclear fragmentation in some cells. Protective functions of Blm10 did not require the carboxyl-terminal
region that makes close contact with 20S proteasomes, indicating that protection does not require this
contact or the truncated Blm10 can interact with the proteasome apart from this region. Without its car-
boxyl-terminus, Blm10(2339aa) localized to nuclei in untreated, nonproliferating (G0) cells, but not during G1

S, G2, and M. The results indicate Blm10 functions in protective mechanisms that include the machinery that
assures proper assembly of chromosomes. These essential guardian functions have implications for ubiq-
uitin-independent targeting in anticancer therapy. Targeting Blm10/PA200 together with one or more of
the upregulated chaperones or a conventional treatment could be efficacious.
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Aggregated, unfolded, misfolded, and nonfunctional proteins accumu-
late in many human diseases, such as cancers (Coughlan and Brodsky
2003; Scott and Frydman 2003; Huo 2010; Nagaraj et al. 2010). Pro-
teasomes degrade such proteins, along with those otherwise damaged or
altered or no longer needed (Dobson 2003; Goldberg 2003; Demartino
and Gillette 2007; Rosenzweig and Glickman 2008). These multicata-
lytic proteinase complexes conduct the preponderance of intracellular
protein degradation and dispense with DNA-damaging agents or other
toxic compounds in cells. Selective inhibition of proteasomes in cancer
cells is an anticancer treatment strategy whose efficacy lies in blocking
metabolic functions, inducing apoptosis, and sensitizing malignant cells
and tumors to chemotherapeutic agents and radiation (Voorhees and
Orlowski 2006; Orlowski and Kuhn 2008; Yang et al. 2009).
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Proteolytic activities of proteasomes occur inside 20S multisubunit
core particles, of which homologous human proteasome activator 200
(PA200) and yeast Blm10 are activators and regulatory proteins
(Schmidt et al. 2005b; F}orster and Hill 2006; Finley 2009; Stadtmueller
and Hill 2011; Savulescu and Glickman 2011; Lopez et al. 2011; Dange
et al. 2011). We found PA200 widely distributed in adult human
tissues but not fetal tissues (Febres et al. 2001), and others found it
widely distributed in mouse tissues (Ustrell et al. 2002) and required
for normal spermatogenesis (Khor et al. 2006). The yeast and human
proteins share 17% sequence identity (Ustrell et al. 2002; Ortega et al.
2005; Iwanczyk et al. 2006). It was actually the divergent sequences
that led to the prediction that PA200 and Blm10 may perform differ-
ent in vivo roles (F}orster and Hill 2006).

Blm10 was first discovered as a multicopy suppressor (Febres et al.
2001; Doherty et al. 2004) of the hypersusceptibilities to killing by
anticancer bleomycins and structurally related phleomycins that are
conferred by the blm3-1 mutation (Moore 1991). This nonsense mu-
tation in the UBP3/BLM3 (human Ubp10/Usp10) ubiquitin-specific
protease gene truncates upstream of the ubiquitin hydrolase domain
(McCullock et al. 2006) (Figure 1). In addition to bleomycin and
phleomycin (Moore 1991; Febres et al. 2001; McCullock et al.
2006), the blm3-1 mutation confers hypersusceptibilities to lethal
effects of gamma irradiation and hydrogen peroxide (Moore 1991)
and canavanine, hydroxyurea, and growth at 37� (McCullock et al.
2006). It was proposed that Ubp3 promotes protein stability by deu-
biquitinating misfolded proteins, permitting their refolding and func-
tion (Brew and Huffaker 2002). Genetic interaction data suggest a role
for Ubp3 in transcriptional elongation (McCullock et al. 2006). It was
suggested that Ubp3 physically interacts with the 26S proteasome and
the Rad4 protein to facilitate degradation of Rad4 and suppression of
DNA nucleotide excision repair (Mao and Smerdon 2010).

As energy-independent 20S proteasome activators, Blm10 and
PA200 do not require ATPases and ubiquitinated substrates for
activation (Ustrell et al. 2002; Schmidt et al. 2005a). Structural
and biochemical properties of Blm10/PA200 were recently reviewed
(Stadtmueller and Hill 2011; Savulescu and Glickman 2011; Lopez et al.
2011; Dange et al. 2011). Electron microscopy (Schmidt et al. 2005a;
Iwanczyk et al. 2006) and crystal structure (Sadre-Bazzaz et al. 2010)
show Blm10 docks onto the axial end of the core particle cylinder,
allowing it to regulate the state of the core particle channel. Active gate
opening by Blm10 engages its carboxyl-terminus with the core particle
(Dange et al. 2011). In proteasome assembly and maturation, Blm10
associates with nascent and de novo synthesized 20S core particles
(Fehlker et al. 2003); caps the core particle in its association with stable,
mature complexes (Schmidt et al. 2005a); and binds to preactivated
core particles (Lehmann et al. 2008). The protein is detected in asso-
ciation with mature proteasomes (Schmidt et al. 2005a; Iwanczyk et al.
2006), and half (Li et al. 2007; Marques et al. 2007) and full (Fehlker
et al. 2003; Li et al. 2007; Marques et al. 2007) precursor complexes.
Although initial computer modeling of the predicted Blm10 amino
acid sequence led to its classification as a potential membrane transport
protein containing seven to 10 transmembrane domains (Febres et al.
2001), these are now known to be HEAT domains (Kajava et al. 2004).
HEAT repeat proteins have a characterized solenoid structure that
facilitates Blm10 binding to the core particle surface, wrapping around
the core particle, and looping into the catalytic chamber to interact
with core components. PA200 attaches to the a-ring surface in a de-
fined conformation, coming into contact with all subunits except a7
(Glickman and Raveh 2005; Ortega et al. 2005).

Although strains with the BLM10 gene deleted are hypersuscepti-
ble to the lethal effects of bleomycin and phleomycin (Febres et al.

2001; Doherty et al. 2004; Schmidt et al. 2005a), no evidence exists
that Blm10 or PA200 performs a direct role in DNA repair. PA200
was previously reported to be involved in DNA repair based on the
change of finely punctated patterns of PA200 in HeLa nuclei to foci
after gamma irradiation but not after hydrogen peroxide or ultraviolet
light treatments (Ustrell et al. 2002). It is now known that this form of
cellular PA200 is found associated with proteasomes and that PA200
in association with proteasomes, rather than independently, accumu-
lates on chromatin after ionizing irradiation (Blickwedehl et al. 2007).
Consistent with these findings, it is known that proteasomes in yeast
associate with sites of DNA double-strand breaks (Krogan et al. 2004).

The purpose of the current studies was to investigate some of the
properties conferred by the BLM10 gene. Because of the valuable bi-
ology that can be obtained from the comprehensive and simultaneous
analyses of thousands of genes, we used the technologies of systems
biology to measure and compare global gene expression in cells with
and without Blm10. To obtain this systems-level understanding, we
sought to identify differentially coexpressed genes and discover some
of the interactive networks and pathways affected by the loss of the
activator irrespective of whether the regulated genes may be directly or
indirectly due to the absence of Blm10. We grew strains under steady-
state growth conditions in chemostats to avoid confounding changes
in gene expression caused by changes in growth rates between normal
and mutant strains (Brauer et al. 2008). We followed up the compar-
ative genomic analyses with comparative studies of global chromo-
somal integrity. We investigated a potential role for Blm10 or Ubp3/
Blm3 in maintaining chromosomal integrity after DNA damage and
a potential role of Blm10 in protecting against agents with different
mechanisms of action. In protein localization experiments, we con-
structed a YFP-Blm10 fusion protein and used it to track Blm10
localization during the cell cycle and before and after DNA damage.
Functions of the Blm10 carboxyl-terminus in protection and proper
localization were also examined. Blm10 activation or regulation of the
20S proteasome is shown to be an important step in properly assem-
bling chromosomes. The findings provide important new insights into
the molecular mechanisms of protection and genomic stability con-
ferred by Blm10 and suggest Blm10/PA200 inhibition could hold
promise as a novel approach to cancer treatment.

Figure 1 Truncations of the Blm10 and Ubp3/Blm3 proteins as
described in the text. Dark blue indicates full-length proteins; light
blue: truncated proteins.
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MATERIALS AND METHODS

Strains, plasmids, and primers
Yeast strains, plasmids, and primers used in these studies are listed,
respectively, in Table 1, Table 2, and Table 3. Transformations and
plasmid isolations were adapted from published methods (Rose and
Broach 1991; Febres et al. 2001; Gietz and Woods 2002). For chemo-
stat experiments, pulsed-field gel electrophoretic analyses, survival,
and susceptibility experiments, we used diploid strains to avoid sup-
pressors that could mask or modify mutant phenotypes.

Deletion of BLM10

Using polymerase chain reaction (PCR) deletion and replacement
methods (Baudin et al. 1993), chromosomal BLM10 was deleted in
haploid strains by PCR amplification of the HIS3 replacement cassette
in plasmid pRS303 (kindly provided by Dr. Susan Henry), transforma-
tion of the PCR product into strain BMA-8A (kindly donated by Dr.
Agnes Baudin), selection ofHIS3+ recombinants, and verification by PCR
of the correct gene deletion using oligonucleotides complementary to
BLM10 flanking sequences (Table 3). Segregants from heterozygous dip-
loids sporulated in 0.25% yeast extract, 0.1% glucose, 0.98% potassium
acetate, and 40 mg/mL uracil, tryptophan, and leucine were intercrossed.

Chemostats
Detailed procedures for chemostat setup, temperature and pH probes,
glucose-limited medium, aeration, daily monitoring, data acquisition,
harvests, sample processing, and RNA preparations were followed as
described at http://dunham.gs.washington.edu/protocols.shtml. Chemo-
stats with individually calibrated pH and temperature probes were estab-
lished in 500-mL fermenter vessels (Sixfors; Infors AG, Bottmingen,
Switzerland) containing 300-mL cultures. They were stirred at 400 rpm
with 5 L per minute of humidified and filtered air. Equivalent population
growth (dilution) rates and doubling times were confirmed by measuring
effluent volumes over time, microscopic examination, and cell counts.

Microarrays
RNA was isolated, labeled, and hybridized according to the instruc-
tions supplied by Agilent. Reference RNA was isolated from diploid
strain DBY9500 (CEN.PK;Mal2-8C/Mal2-8C), labeled, and used in all
hybridization samples. Cells had been grown to steady state in a che-
mostat and kindly provided by Dr. Maitreya Dunham.

Analyses of gene expression data
Mean expression values were calculated among replicated experiments
and microarrays. Data were analyzed using the Agilent Scanner and
Feature Extraction software, Princeton University MicroArray database
(Gollub et al. 2003), Gene Ontology Local Exploration Map (GOLEM)
software (Sealfon et al. 2006), Saccharomyces Genome Database (SGD
2010), and bioPIXIE (biological Process Inference from eXperimental
Interaction Evidence) software (Myers et al. 2005). Results are pre-
sented for dilution rate = 0.06 hr-1 (doubling time = ~12 hr) and were
comparable for dilution rate = 0.12 hr-1 (doubling time = ~6 hr).

b-galactosidase assays
Strains CM1469-5A (BLM10, UBP3/BLM3), CM1522-9B (blm10D,
UBP3/BLM3), and CM1469-5C (BLM10, blm3-1) are auxotrophic
for uracil. They were grown in synthetic selective media lacking uracil
to select the URA3 gene on plasmid pUB23 (kindly provided by Dr.
Alfred Goldberg). After induction of the fusion protein by galactose,
b-galactosidase was assayed as published (Rose and Botstein 1983).

Pulsed-field gel electrophoreses and survival
Pulsed-field gel electrophoresis and cell survival were measured in
parallel in each experiment as previously described (Moore et al.
2000). Phleomycin was supplied and prepared as previously described
(Moore 1982, 1988). Concentrations were determined using the Beer-
Lambert equation (OD245 /1.6 · 1022). Liquid-holding (LH) recovery
was measured under nondividing, non-replicating conditions main-
taining full viability (Moore et al. 2000).

Susceptibility tests
Fresh cells were harvested from overnight cultures grown in standard,
nonsynthetic complete medium (YPAD; Moore 1982) with aera-
tion at 30� to 5 · 108 cells/mL, washed twice with deionized water
to remove growth medium, and resuspended at 5 · 107 cells/mL in
deionized water. Five microliters of several dilutions were pipetted
on YPAD plates, prepared the preceding day, with varying dilu-
tions of 1% methyl methanesulfonate (Sigma-Aldrich), hydrogen
peroxide (3% stabilized, pharmaceutical grade), 0.02 M 5-fluoro-
uracil (3 mg/mL; City Chemical), 5 M hydroxyurea (0.38 g/mL;
Sigma-Aldrich), 0.001 M doxorubicin chlorhydrate (adriamycin, Teco-
land; 0.58 mg/mL DMSO [Fisher Scientific]), rapamycin/sirolimus

n Table 1 Yeast strains

Strain Genotype Source

BESY54 derived from M1452-98B. ade2-40 ilv1-92 trp1-1 ura3-1 YFP-BLM10 SPC42-CFP Eric Muller
BMA-8A MATa ura3-52 trp1D63 leu2D his3D200 gal2 Agnes Baudin
CM1452-98B MATa ura3-52 ade2-40 leu2-3 ilv1-92 This laboratory
CM1469-5A MATa ilv1-92 his3-11 or his3-15 leu2-3, 112 trp1-1 ura3-1 This laboratory
CM1469-5C MATa ade2-40 or ade2-1 ura3-1 ilvl-92 trp5-12 ura3-1 blm3-1 This laboratory
CM1522-9B MATa ura3-52 trp1D63 leu2D his3D200 blm10D::HIS3 This laboratory
CM-1526 MATa/MATa ade2-40/ade2-40 trp1-1/trp1-1 HIS3/his3-11 LEU2/leu2-3 ura3-1/ura3-1

ILV1/ilv1-92 blm3-1/blm3-1
This laboratory

CM-1527 MATa/MATa LEU2/leu2-3 ILV1/ilv1-92 HIS3/his3-11 ade2-40/ade2-40 TRP1/trp1-1 This laboratory
CM-1528 MATa/MATa LEU2/leu2-3 ade2-40/ade2-40 trp1-1/trp1-1 URA3/ura3-1 ILV1/ilv1-92

BLM3/blm3-1
This laboratory

CM-1529 MATa/MATa LEU2/leu2-3 URA3/ura3-1 ILV1/ilv1-92 ade2-40/ade2-40 trp1-1/trp1-1 This laboratory
CM1530-1A MATa ura3-52 trp1D63 leu2D his3D200 gal2 blm10D::HIS3 This laboratory
CM-1531 MATa/MATa trp1/trp1 leu2/leu2 ura3/ura3 blm10D::HIS3/ blm10D::HIS3 This laboratory
CM1531-1B MATa ura3-52 ade2-40 leu2-3 ilv1-92 BLM10::YFP This laboratory
DBY9500 (CEN.PK) MATa/MATa MAL2-8C/ MAL2-8C Maitreya Dunham
EJ758 MATa his3-D200 leu2-3,112 ura3-52 pep4::URA3 Eric Phizicky,

Elizabeth Jones
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(Tecoland; 0.09 mg/mL), or calcofluor white (American Cyanamid).
Plates were incubated at 30� for up to 4 days.

Yellow fluorescent protein (YFP) fusion
and fluorescence microscopy
YFP was fused to the N-terminus of Blm10 as previously described
(Prein et al. 2000). The fusion complements a Blm10 deletion mutant
as judged by its total relief of hypersensitivity to phleomycin.
CM1452-98B (YFP-Blm10) and BESY54 (YFP-Blm10, Spc42-CFP)
were grown on nonsynthetic complete medium and imaged using
a DeltaVision microscopy system from Applied Precision (Issaquah,
WA). The system incorporates an Olympus IL-70 microscope, a
u-plan-apo 100· oil objective (1.35NA), a CoolSnap HQ digital cam-
era from Roper Scientific (Tucson, AZ), and optical filter sets from
Omega Optical (Brattleboro, VT). Live cells were imaged on thin pads
of medium containing 1% agarose (Muller et al. 2005). Images were
analyzed and quantitated using the program Fluorcal, an integrated
set of Matlab scripts designed for the automated selection and analysis
of regions of interest within images obtained by fluorescence micros-
copy (Shimogawa et al. 2010). Phleomycin D1 was purchased from
Invitrogen (Life Technologies, Carlsbad, CA) in the formulation of
Zeocin.

Glutathione-S-transferase (GST) fusion,
immunofluorescence, and quantitative expression
of Blm10(-339aa)
Truncated Blm10-GST under control of the CUP1 promoter was
purified from a pool of slightly modified plasmid pYEX 4T-1 (kindly
provided by Dr. Eric Phizicky; Martzen et al. 1999), confirmed by
DNA sequencing, and transformed into blm10D cells. To localize
Blm10-GST, cells were grown to early exponential phase (1062107

cells/mL) in liquid YPAD containing copper (50 mM) to induce ex-
pression of fusion protein. Cells were fixed by adding 3.7% formalde-
hyde directly to the medium, incubated for at least 1 hr, converted to
spheroplasts in 1 mL of 50 mL/mL Zymolyase 100T in 0.1 M potas-
sium phosphate (pH 7.5) with 2 mL/mL 2-mercaptoethanol, gently
pelleted, and treated with Alexa Fluor 488 anti-GST conjugate anti-
body (Molecular Probes) or 49,6-diamidino-2-phenylindole (DAPI,
1 mg/mL in water). Cells were observed using a Zeiss fluorescent
microscope at 100· with FITC and DAPI filters.

To quantitate growth and survival, copper and phleomycin were
added to fresh cells grown overnight in YPAD, washed, and
resuspended in YPAD at 5 · 106 cells/mL. Cells were counted and
plated on YPAD at each time point to determine viability.

RESULTS

Genomic instability signature of downregulated genes
To determine how cells alter their gene expression in the absence of
the Blm10 protein, we studied microarray-based global gene expres-

sion for the entire genome (~6000 genes) in normal (BLM10/BLM10)
and mutant (blm10Δ/ blm10Δ) diploids in the context-specific envi-
ronments of chemostats. Diploids of both genotypes were grown in
continuous steady-state at the same controlled growth rates (Brauer
et al. 2005; Kubitschek 1970). In these steady-state growth conditions,
the growth rate is determined by the medium flow rate and therefore
identical between normal and mutant cultures. This was an important
part of the experimental design because we found blm10D/blm10D
cells grow slowly outside of chemostats in some media in comparison
with BLM10D/BLM10D cells of the same genetic background.

To our surprise, many genes specifically encoding proteins re-
quired for proper chromosome organization, assembly, function,
repair, and progression through the cell cycle were downregulated to
different extents in blm10Δ/blm10Δ cells. Some of these are shown in
Table 4, along with their human homologs. Among these were genes
encoding 18 DNA packaging, nucleosome organization, and chro-
matin assembly proteins; nine DNA damage and checkpoint pro-
teins; seven DNA repair proteins; eight transcription factors; and 34
proteins assuring correct numbers of chromosomes segregate during
cell division. Twenty-five additional genes involved in nucleosome
modeling and DNA packaging were downregulated more than 25%
(supporting information, Table S1). In addition, the recombinational
repair gene, RAD51, was downregulated 62%, and all six remaining
YRF1 helicase genes were downregulated 76–91% (Table S1).

While striking, the downregulation of all of these genes may not
necessarily decrease protein expression in all instances after post-
transcriptional and posttranslational modification, or actually be
a direct rather than indirect consequence in all cases by the absence
of Blm10. Moreover, the actual levels of downregulation may not be
strictly quantitative. However, what is most important and remarkable
is the unique and composite signature defined by the simultaneous
downregulation of the genes. As a whole, the results suggest a vulner-
ability of cells without Blm10.

Chaperone-mediated, protein-folding signature
of upregulated genes
We reasoned that mutant cells may compensate by upregulating
particular pathways or genes. To evaluate this possibility, we first
submitted all genes and open reading frames (ORFs) upregulated
greater than fourfold in blm10D/blm10D cells (gray nodes in Figure 2)
to bioPIXIE (Myers et al. 2005) to query whether any of the genes
colocalized near each other in a functional network, and if so, what
other genes colocalized with them.

The most relevant part of the functional network surrounding the
upregulated genes was extracted by bioPIXIE and is shown in Figure
2. Most central and geometrically close in the integrated functional
network lie SSA1- and SSA2-encoded chaperone proteins, homologs
of yeast and human members of the heat shock protein 70 multigene
family, together with HSP104 of the Hsp100 family. Ssa1 and Ssa2 are
novel G2/M checkpoint proteins that copurify with the DNA damage-

n Table 2 Plasmids

Plasmid Name Experiment Parental Vector
Escherichia

coli Selection Yeast Selection Tag Insert

pRS303 Deletion pBluescript Amp HIS3 None HIS3
pDH22 Localization Amp Kanr None Kan and YFP
pSH47 Localization Amp URA3 None Cre recombinase
pUB23 b-galactosidase URA3
pYEX 4T-1B GST pYEULC Amp URA3 GST BLM10

GST, Glutathione-S-transferase.
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dependent checkpoint protein, Rad9, and function after ultraviolet
light irradiation in phosphorylating Rad9 and another checkpoint
protein, Rad53 (Gilbert et al. 2003). It is proposed that the chaperone
activities of Ssa1 and Ssa2 remodel the large Rad9 complex to a smaller
Rad53 activating complex after genomic insult (Van Den Bosch and
Lowndes 2004).

By far, the highest enrichment bioPIXIE measured in the whole
network (P value 4 · 1029) comprised more than 19% of all genes
(Table 5). This specific subset encodes protein-folding chaperones,
nine of which were upregulated twofold to sevenfold in mutant cells
(Table 6). Those that physically interact with Blm10 (SGD Project
2010) are indicated in Table 6. Eight additional protein-folding genes
were enriched (GOLEM, P value 5 · 10210) among 144 genes upre-
gulated twofold or more, and are listed in Table 7 with other protein-
folding genes regulated $1.5 fold. As a group, the encoded molecular
chaperones in Figure 2 and Tables 6 and 7 assist to properly fold and
assemble nascent polypeptide chains or refold previously denatured or
aggregated proteins. Equally important, they interact with partially

folded or unfolded protein subunits to stabilize, translocate, or de-
grade them.

The Rpn4 transcription factor that stimulates expression of pro-
teasomal genes, positively regulates DNA repair, and physically
interacts with Blm10 (SGD Project 2010), was upregulated nearly
twofold in mutant cells in the current studies (Table S1). However,
the expression of genes encoding components of the 19S and 20S
proteasome subunits with which Blm10 physically associates (e.g.
Pre1-Pre10, Pup2, Pup3, Rpt6, and Scl12; SGD Project 2010) were
not significantly altered in cells lacking Blm10, with the exception of
PRE6 and PUP2, which were downregulated 31% and 23%, respec-
tively, and PUP3 which was upregulated 28% (Table S1).

By analogy to the downregulated genes, all of the upregulated
genes in these groups may not lead to upregulated protein expression
following posttranscriptional and posttranslational modification, or
result directly from deleting BLM10. Nevertheless, the concurrent
upregulated expression of this specific subset of genes produces a chap-
erone-mediated, protein-folding signature.

n Table 3 Oligonucleotide primers

Primer Name Primer Use Length (Bases) Sequence 59-39

1 Sequencing 20 ATATGCCGCAGACGGAAGAC
2 Sequencing 20 ATATAAGACTGAAAGTCATG
3 Sequencing 21 GCCTATCGTTACATCCGTTGT
4 Sequencing 21 AGTAATTCGGTTTATTGTGAT
5 Sequencing 19 CAAAGAACAAATCAAAAGA
6 Sequencing 20 TCAGTGGCACGTACCTTCTA
7 Sequencing 21 CTTCATTGACGTTGATTTCCT
8 Sequencing 22 CAAAAAGAAAAAGCGTGAGTAC
9 Sequencing 22 AAAGCTCAATTTACGTGAGAAT

10 Sequencing 22 GTTGGTATTTGATCACCCATAC
11 Sequencing 21 GTTCGTGCGGCATCCATTTTG
PA-05 Sequencing/deletion

verification/YFP
verification

30 GCGCGGTACCATTACGCAGAATAATCTATG

YFP-up YFP cassette 94 TTCAATTGGGATAAGGTCTTGTTAGTAATGGGAAT
GGGTGATTTGATATCATCGTCATTGTTAGCGGTCAT
TTTGTACAATTCATCCATACCATG

YFP-down YFP cassette 82 TTGCATACATAAACTTTATCATTGTTCGTTAGCTAG
CTTTGCACATTAATTTTTCGATTTGTTACCGCCACGG
CCGCCAGGG

Deletion primer 1 Replacement cassette 72 ATGATCTCAAACTGCTTCTTAATATAGGCATCCAC
CTTTTCTGGGACGCTTTTTACTCTTGGCCTCCTCTAG

Deletion primer 2 Replacement cassette 68 CAAATCTACATGTATATACAGATCTATACAGCAA
TTATAGGATATCTTTCGTTCAGAATGACACG

HIS3 R Verify deletion 21 CAGACAATCAACGTGGAGGGT
NF Sequencing 22 ATTCCCATTACTAACAAGACCT
NR Sequencing 22 ATCGCAATATAAAGATTAACTA
L1F Sequencing 22 AATCTTATATTGCGATCAGCTC
L1R Sequencing 24 GATATGATAAGATAGGGCACAAC
L2F Sequencing 24 GGGATTTTTACTGATGATCAAATG
L2R Sequencing 25 GATATGATAATGATAGGGCACAAC
L3F Sequencing 24 TGTTTAACTTCTTTTTGTCACGAA
L3R Sequencing 25 GATAGGAATGAAAGCGGCTATAGA
L4F Sequencing 24 AACCTCATCAACGGTATTGTATCT
L4R Sequencing 24 TATTTCGGTTGTACATAGAGTTGC
L5F Sequencing 25 ACTCTATGTACAACCGAAATAACTG
L5R Sequencing 21 AAATATCAATCTGCCGATGTC
L6F Sequencing 25 AGTGTATGTGTCATTTCCGATCAAG
L6R Sequencing 23 CATATTCAGTTCGCAGAAACCAG
CF Sequencing 24 TCATCTGGTTTCTGCGAACTGAAT
CR Sequencing 25 GTTAGCGACAGCTGGCGAACCTGA
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In Figure 2, UBP3/BLM3 is tightly connected and geometrically
proximal to SSA1 and SSA2 with high confidence (1.0 and 0.9, re-
spectively). Also proximal to these chaperone proteins is SNF2 (0.65
confidence), encoding the catalytic subunit of the SWI/SNF chro-
matin remodeling complex involved in nucleosome modification,
transcriptional regulation, and DNA double-strand break repair.
NGG1 is also proximal (0.62 confidence), and is involved in chro-
matin modification as a constituent of histone acetyltransferase
complexes.

Proteolysis
Having discovered UBP3/BLM3 is linked with the highest confidence
to both highly upregulated genes most central in the network of
upregulated genes in blm10D/blm10D cells (Figure 2), we compared
the degradation of b-galactosidase in blm3-1 cells with that in wild-
type and blm10D cells. Cells were transformed with pUB23, a plasmid
containing an ubiquitin-lacZ gene fusion under the control of a GAL
promoter that allows gene expression to be controlled by the amount
of galactose supplied in media (Bachmair et al. 1986). After induction

n Table 4 Some of the significantly downregulated genes critical for chromosomal integrity

Genes

Chromosome organization and function

DNA packaging, nucleosome organization, chromatin assembly
or dissassembly, nucleosome and chromatin remodeling,
chromatin organization and modification

ACS2 2.8, HST3 2.3, HHF1 2.2, HTZ1 2.2, HHO1 2.1, NHP6A 2.1,
HTB1 2.0, HTB2 2.0

DNA repair: double-strand break repair, mismatch repair,
postreplication repair

RAD59 2.4, MCK1 2.3, NHP6A 2.1, HTB1 2.0, PSY3 1.8, MEC3 1.6,
DUN1 1.5

Mitotic DNA recombination, telomere arrangement and
maintenance

RAD59 2.4, HHO1 2.1, YRF1-3 2.0, YRF1-6 2.0, PSY3 1.8, MEC3 1.6

Regulation and progression of cell cycle, cyclin-dependent
protein kinase activity

CLB2 3.3, PCL9 3.2, SIC1 2.6, CLB1 2.0, MEC3 1.6

G1/S transition of mitotic cell cycle PCL9 3.2, SIC1 2.6
Mitotic spindle assembly and chromosome segregation CIN8 2.4
Spindle pole body separation, microtubule cytoskeleton

organization, G2/M transition
CLB2 3.3, CLB1 2.0, HSL1 1.9

Chromatin silencing and negative regulation of gene expression,
epigenetic

HTZ1 2.2, MEC3 1.6

Meiotic DNA replication, meiotic DNA recombination RIM4 2.2, MUM2 2.1

Checkpoints

Genome integrity, DNA damage sensor MEC1 1.6, MEC3 1.6, SGS1 1.6, DUN1 1.5
DNA replication, gap repair of damaged DNA TOF1 1.5
Septin HSL1 1.9, GIN4 1.7
Spindle checkpoint activation, protects sister chromatid

cohesion in mitosis
PHB2 1.6

Meiotic recombination FPR3 1.7

Cytokinesis

Cytokinesis, cell division DSE2 5.4, SUN4 5.3, DSE1 4.6, CTS1 4.1, SCW11 3.7, CHS2 3.5,
BUD9 3.2, EGT2 2.8, HOF1 2.5, MYO1 2.3, RAX1 2.3, IQG1 2.2,
HSL1 1.9

Transcription factors

G1 cell-cycle progression, cyclin-dependant kinase target SFG1 3.6
Activates expression of early G1-specific genes ACE2 2.6
Activates transcription of genes expressed at M/G1 and G1,

activates cyclin Pcl9
SWI5 2.5

Response to DNA damage stimulus, expression highest in G1 TOS4 1.8
Response to DNA damage stimulus, progression from G1 to

S and G2 to M
CKA2 1.6

Involved in directing transcription of genes by RNA polymerases,
I, II, and III

SPT15 1.5

RNA polymerase II initiation and elongation TFG2 1.5
Calcineurin B; calcineurin regulates stress-response transcription

factor Crz1; human protein participates in apoptosis and other
signaling pathways

CNB1 1.5

Genes are listed in each subgroup or group in order of their fold decreased expression. Essential genes are underlined. Yeast genes in bold have the following human
homologs: ACS (ACS2), ATR (MEC1), BLM and WRN (SGS1), BRSK2 (HSL1), CCNB1 (CLB1), CCNB2 (CLB2), CHEK2 (DUN1), CSNK2A1 (CKA2), FPR3 (FPR3), GSK3
family (MCK1), H1F0 (HHO1), H2AFV, (HTZ1), HIST1H2BH (HTB1), HIST1H2BO (HTB2), HIST1H4N (HHF1), HMGB1/HMG1 (NHP6A), Hus1 (MEC3), IQGAP1 (IQG1),
Kip1 (SIC1), and MYH11 (MYO1), PHB2 (PHB2), PPP3R2 (CNB1), RAP30 (TFG2), TBP (SPT15).
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of the fusion protein, ubiquitinated b-galactosidase is produced, and
the ubiquitin tag automatically targets b-galactosidase for degradation
by proteasomes (Bachmair et al. 1986).

Time-dependent b-galactosidase activities in the three strains are
shown in Figure 3. Activities were barely detectable at time zero but
increased after the first hour and for two additional hours before
reaching a plateau. Comparable activities of the three genotypes in-
dicated Ubp3/Blm3 and Blm10 do not stimulate hydrolysis of this
model and intact, folded protein. Our Blm10 results are consistent
with structural restraints of the small dome-like opening of Blm10/
PA200-proteasome complexes through which small peptides, but not

proteins, might pass (recently reviewed in Savulescu and Glickman
2011; Stadtmueller and Hill 2011; Dange et al. 2011). They also are
consistent with previous reports that Blm10 appears not to contribute
significantly to the degradation of other ubiquitinated proteasome
substrates (Schmidt et al. 2005a), and that Blm10/PA200 binding to
the core particle activates it for hydrolysis of some peptides (Ustrell
et al. 2002; Schmidt et al. 2005a; Iwanczyk et al. 2006; Lehmann et al.
2008; Lopez et al. 2011; Dange et al. 2011). The specific peptide sub-
strate affects the amount of hydrolysis by Blm10/PA200 in vitro
(Ustrell et al. 2002; Fehlker et al. 2003; Lopez et al. 2011; Dange
et al. 2011).

Figure 2 Pathway analysis of coordinated upregulation without Blm10. Gray nodes are genes and ORFs upregulated fourfold to eightfold
in blm10D/blm10D mutant cells relative to BLM10/BLM10 cells. YAL004W is a dubious ORF, and YGL117W and YHL008C are uncharacterized
ORFs (SGD Project 2010). Confidence-weighted pairwise linkages between genes are color-coded (Myers et al. 2005): red (highest confidence),
orange, yellow, green (lowest confidence).
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Global DNA damage is conferred by the blm10Δ
and blm3-1 mutations
As a logical follow-up to the comparative genome analyses, we
evaluated the genomic integrity in diploid cells without Blm10 and
included blm3-1/ blm3-1 diploid cells in these studies. For these chro-
mosomal studies, we used pulsed-field gel electrophoresis, during
which individual chromosomes separate into distinct bands according
to molecular weight and electric field interaction, and double-strand
breaks in DNAs cause bands to lessen in intensity or disappear in
a dose-dependent manner (Moore et al. 2000). Degraded chromo-
somes either leave the gel or accumulate at the bottom as a diffuse
smear. The bleomycin-phleomycin family of chemical congeners is
used as a tool in DNA damage studies (e.g. Moore 1990, 1999; Moore
et al. 2000), and we used phleomycin to examine the quality of chro-
mosomal DNAs in wild-type diploid cells (BLM10/BLM10, BLM3/
BLM3) and mutant diploid cells in which either BLM10 was deleted
(blm10D/blm10D, BLM3/BLM3) orUBP3/BLM3was truncated (BLM10/
BLM10, blm3-1lblm3-1) on homologous chromosomes.

Without treatment, chromosomes from all three diploids consistently
produced strong bands (Figure 4, A and B, lanes 123). In wild-type cells,
chromosomal bands remained relatively strong after 0.1 mg/mL (lanes
426; Figure 4A) and 0.25 mg/mL (lanes 729; Figure 4A) phleomycin
treatments, and underwent moderate degradation after 0.35 mg/mL
treatments (lanes 10212; Figure 4A). However, chromosomes in
blm10D/blm10D and blm3-1/blm3-1 cells degraded following the same
three treatments (lanes 4212 vs. lanes 123; Figure 4A), indicating
marked deficiencies. Exposure to 10- to 100-fold lower doses left chro-
mosomes in blm10D/blm10D cells intact (Figure 4B).

Cell death, measured in parallel with DNA damage in wild-type,
blm10D/blm10D, and blm3-1/blm3-1 cells in each experiment, was low in
wild-type cells and increased after 0.1 and 0.25 mg/mL phleomycin treat-
ments (Figure 4A). Cell death was greater in mutant cells than in wild-
type cells (Figure 4, A and B), indicating protective functions of Blm10
and Ubp3/Blm3. The order of decreasing resistance among the diploids
was BLM10/BLM10, BLM3/BLM3 . blm10D/blm10D, BLM3/BLM3 .
BLM10/BLM10, blm3-1lblm3-1 . blm10D/blm10D, blm3-1lblm3-1.

Consistently, we observed lower cell death in wild-type cells after
0.35 mg/mL treatments than after 0.25 mg/mL treatments, but not in
mutant cells (Figure 4A). The reduced cell death in wild-type cells is
most likely attributable to induced DNA repair and cellular recovery

observed after this drug family causes extensive chromosomal damage
(Moore et al. 2000).

Susceptibilities to lethal effects of agents with different
mechanisms of action
The comparative genome analyses together with finding elevated
DNA damage and killing after phleomycin treatments led us to
examine whether the absence of Blm10 heightened susceptibilities to
agents with different mechanisms of action. For these studies, we
selected agents we previously had not investigated.

As shown in Figure 5, Blm10 loss reduced resistance to low con-
centrations of methyl methanesulfonate and strikingly compromised
defenses against low-dose treatments of hydrogen peroxide, 5-fluoro-
uracil, hydroxyurea, and doxorubicin. Considered oxidant mutagens,
the bleomycin-phleomycin family and hydrogen peroxide cause similar
DNA damage (Demple and Harrison 1994). Some of the gene func-
tions important for resistance to these agents (e.g. Moore 1978, 1982;
Moore et al. 1992, 2000; Aouida et al. 2004; Cloos et al. 2006) overlap
with those required for resistance to ionizing radiation (Bennett et al.
2001) and some other chemicals (Parsons et al. 2004). In contrast,
anticancer 5-fluorouracil and hydroxyurea are antimetabolites
(Brunton et al. 2006; Friedberg et al. 2006; Nitiss and Heitman
2007). 5-fluorouracil is a pyrimidine antagonist that is synthesized
into 5-fluoro-2-deoxyuridine, a nucleotide that inhibits the 2-
deoxythymidine synthesis by thymidine synthetase. Incorporation
of 5-fluorouracil into DNA interferes with DNA synthesis and
inhibits RNA production. Hydroxyurea inhibits DNA and RNA
synthesis by blocking ribonucleotide reductase and causes site-
specific DNA damage through the formation of hydrogen peroxide
and nitric oxide (Sakano et al. 2001). The anthracycline doxoru-
bicin intercalates between DNA bases, causing DNA breaks by
blocking topoisomerase type II (Brunton et al. 2006). Moreover,
DNA can be damaged by oxidative free radicals generated during
the metabolism of doxorubicin (Turner et al. 1990).

Mutant cells also lost protection against rapamycin (Figure 5), a
novel anticancer antibiotic first identified as antifungal (Brunton et al.
2006; Nitiss and Heitman 2007). Immunosuppressant rapamycin
arrests cells at G1/S and inhibits highly conserved nutrient sensing
pathways. The elevated sensitivity of the mutant cells to rapamycin
perhaps could be explained by the knowledge that this drug strongly

n Table 5 Gene ontology terms enriched in the gene network shown in Figure 2

Go term Cluster Frequency Genome Frequency P Value Genes

Protein folding 11/57 19.3% 70 / 6471 1.1% 4.1029 SSA4, STI1, SSA2, SSE1, SIS1, HSC82, HSP82, SSA3, SSA1,
HSP104, CNS1

Arginine biosynthesis 4/57 7.0% 10 / 6471 0.2% 3.4224 ARG3, CPA2, ARG5, 6, ECM40

Cellular physiological
process

55/57 96.5% 4689/6471 72.5% 7.8324 SMT3, SSA4, SSB1, HIS4, GCV2, NUP57, NSL1, WHI3, ARG3,
STI1, HSF1, CPA2, RTS3, RSC8, DCP1, SSA2, SNO1, ADA2,
YDJ1, RTS1, RSC3, SSE1, NUP159, SUP35, YRA1, SWI3,
NPL6, NUP116, SNF1, SIS1, GRR1, PTK1, CDC25, PRE1,
HSC82, SSU1, PHO85, UBP3, NGG1, HSP82, BAT2, NAF1,
RPO21, ARG5, 6, SSA3, SSA1, ECM40, SNF2, HXT2, HSP104,
YHL008C, GCN5, TRP5, CNS1, RSC2

Cellular process 55/57 96.5% 4728/6471 73.1% 1.1923 SMT3, SSA4, SSB1, HIS4, GCV2, NUP57, NSL1, WHI3, ARG3,
STI1, HSF1, CPA2, RTS3, RSC8, DCP1, SSA2, SNO1, ADA2,
YDJ1, RTS1, RSC3, SSE1, NUP159, SUP35, YRA1, SWI3,
NPL6, NUP116, SNF1, SIS1, GRR1, PTK1, CDC25, PRE1,
HSC82, SSU1, PHO85, UBP3, NGG1, HSP82, BAT2, NAF1,
RPO21, ARG5, 6, SSA3, SSA1, ECM40, SNF2, HXT2, HSP104,
YHL008C, GCN5, TRP5, CNS1, RSC2
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induces BLM10 (Hardwick et al. 1999) and increases BLM10 mRNA
levels (Lopez et al. 2011), and these events would not be possible in
blm10-deleted cells.

Finally, bleomycin damages fungal cell walls (Moore et al. 1992;
Beaudouin et al. 1993; Moore et al. 2003), as does cell-wall perturbing
calcofluor which binds chitin, thereby inhibiting chitin synthase and
proper cell wall biosynthesis (Nitiss and Heitman 2007). As Figure 5
shows, cells lacking Blm10 were hypersusceptible to calcofluor. It is
tempting to suggest that this sensitivity could be attributable to the
downregulation ofMEC3, cell-cycle checkpoints, transcription factors,
and cytokinesis in these cells (Table 4). As a whole, the results shown
in Figure 5 suggest inhibition by Blm10/PA200 could dually target
cancer and fungal cells.

In similar experiments, normal and mutant strains grew equally
well after mitomycin C, ultraviolet light irradiation, and ethidium
bromide treatments (data not shown). This could reveal discernment of
the type of DNA damage because the modes of action of these agents
differ from those in Figure 5. Mitomycin C is a potent DNA cross-
linker (Friedberg et al. 2006; Deans and West 2011). Ultraviolet radi-
ation produces cyclobutane pyrimidine dimers in DNAs, along with
pyrimidine-pyrimidone (6-4) and other photoproducts (Friedberg et al.

2006). Ethidium bromide intercalates in DNA (Reinhardt and Krugh
1978), but differs from doxorubicin in its action.

In a previous study, BLM10 and blm10Δ strains were reported to
grow equally after treatments with gamma irradiation, methyl meth-
anesulfonate, ultraviolet irradiation, and camptothecin (Iwanczyk
et al. 2006). In the same study these strains also grew equally after
treatments with bleomycin, phleomycin, and hydroxyurea (Iwanczyk
et al. 2006), in contrast to the hypersusceptibilities blm10Δ cells
exhibited to these drugs in the current studies (Figures 4 and 5)
and to the bleomycin-phleomycin family in previous studies (Febres
et al. 2001; Doherty et al. 2004; Schmidt et al. 2005a).

Growth of BLM10/BLM10 and blm10D/blm10D
strains at 37�
Previously, a temperature-sensitive phenotype was reported for
blm10D cells growing at 37� in one strain background (Fehlker
et al. 2003) but not in others (Schmidt et al. 2005a; Iwanczyk et al.
2006). We compared the growth of BLM10/BLM10 and blm10D/
blm10D strains in several experiments in the current studies and
found that they grew equally well at 37�. This finding was confirmed
in quantitative growth measurements by hemacytometer counts of

n Table 6 Regulation of protein-folding molecular chaperones encoded by genes in Figure 2

Gene Fold Change Encoded Chaperone Activity Human Homolog or Domain

SSA2 [7.1 Hsp70 family member, member of Rad9 DNA-checkpoint complex Hsp70
SSA1a [4.2 Hsp70 family, chaperone complex with ADJ1, protein refolding,

member of Rad9 DNA-checkpoint complex
Hsp70

HSP104a [4.0 Hsp100 family, acts in conjunction with Ssa1 and Ydj1 (Hsp40),
protein refolding

SSA3 [3.8 Hsp70 family member HSPA1AB
HSP82 [3.3 Hsp90 isoform, associates with Cpr6, Sti1, Cns1, Hch1, Aha1, Sse1,

nascent chain folding, protein refolding, proteasome assembly
HSP90AB1

SIS1 [2.7 HSP40 (DNAJ) co-chaperone, interacts with Ssa1 DNAJB1 [HSP40]
SSE1 [2.6 Hsp70 family member, component of Hsp90 chaperone complex,

protein refolding
HSPA4

HSC82a [2.3 Hsp90 isoform, associates with Sti1, Cns1, Cpr6, Hch1, Aha1, Sse1,
nascent chain folding, protein refolding, proteasome assembly

HS90AB1

STI1 [1.9 Hsp90 co-chaperone, interacts with Ssa and Hsp70 chaperones STIP1
SSA4 [1.2 Hsp70 family member HSPA8
CNS1b Y1.7 Hsp90 co-chaperone, binds Hsp82 and Ssa1 TTC4
a
Chaperone physically interacts with Blm10.

b
Essential gene.

n Table 7 Additional protein-folding genes regulated $1.5-fold

Gene Fold Change Encoded Chaperone Activity Human Homolog or Domain

HSP78 [3.7 Hsp100 family, mitochondrial homolog of Hsp104, protein refolding Clp/Hsp100
HSP26 [2.9 Small molecular chaperone
AHA1 [2.6 Co-chaperone, binds Hsp82, activates Hsp90, similar to Hch1 AHSA1
HCH1 [2.6 Co-chaperone, binds and activates Hsp90
APJ1 [2.4 HSP40 (DNAJ) family, regulates Hsp70 activity, genetically interacts with Ydj1 Contains a DNAJ domain
HSP42 [2.3 Small molecular chaperone
CPR6 [2.3 Binds Hsp82, protein refolding PPID
CIN1 [2.1 Tubulin-folding factor TBCD
HSP31 [1.9 DJ-1/Pfpl family, amino acid substitution in DJ-1 associated with early-onset

Parkinson’s
DJ-1

YDJ1 [1.8 Hsp40 (DNAJ), Ssa1 co-chaperone, regulates Hsp70 and Hsp90 functions,
nascent chain folding, protein refolding

DNAJA2 (DNAJ [Hsp40])

HSP60 [1.6 Mitochondrial chaperonin, nascent chain folding, protein refolding HSPD1
HSP10 [1.5 Hsp60 co-chaperonin, protein refolding HSPE1
MPD1 Y1.9 Endoplasmic reticulum chaperone for glycoproteins
SBA1 Y1.5 Co-chaperone, binds to and regulates Hsp90 family, regulates telomerase activity p23

Essential genes are underlined.
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cells from 0 to 72 hr in three independent experiments (K. Doherty
and J. Lukose, unpublished data).

Respiratory deficiency
The functional state of mitochondria affects resistance to killing by the
bleomycin-phleomycin family of DNA-cleaving drugs, as respiratory-
deficient cells lacking mitochondrial DNA (r0) are up to 100-fold more
resistant than isogenic respiratory-proficient (r+) cells (Davermann
et al. 2002). During the current studies, we found that blm10D and
blm10D/blm10D strains growing in the absence of bleomycin or
phleomycin produced up to tenfold higher frequencies of respiratory-
deficient petite colonies than BLM10 and BLM10/BLM10 strains
(L. Pride, K. Doherty, and C.W. Moore, unpublished data). Other
blm10D haploid strain backgrounds also produced increased yields
of petite colonies (Sadre-Bazzaz et al. 2010).

Blm10 localization during the cell cycle
The cellular localization of the YFP-Blm10 fusion protein was deter-
mined in live cells by fluorescence microscopy. YFP-Blm10 was the
sole copy of Blm10 in the cell and gene expression was driven from its
endogenous promoter in its native chromosomal context. The protein
is completely functional in totally relieving phleomycin hypersensitiv-
ity in blm10D and blm10D/blm10D mutant cells.

YFP-Blm10 localized to nuclei in all budded and unbudded cells
(Figure 6A), consistent with our findings that Blm10 protects against
DNA damage, and that the yeast 26S proteasome complex is pre-
dominantly nuclear (80%; Russell et al. 1999). The identification of
the nucleus was confirmed by coexpressing YFP-Blm10 with CFP-
tagged Spc42 (Figure 6B), a component of the spindle pole body that
is embedded in the nuclear membrane (Muller et al. 2005).

The levels of Blm10 in the nucleus were measured quantitatively as
described in Materials and Methods and found not to be constant
during the cell cycle. The fluorescence intensity of YFP-Blm10 in
budded cells, before nuclear migration to the neck, was approximately
40% greater than in unbudded G1 cells. Thus, after DNA replication
Blm10 becomes enriched in the nucleus during late S and early M
phases, before anaphase and cell division. The enrichment at the S/M
transition of the cell cycle is when the state of the DNA is monitored
by checkpoint controls.

Blm10 localization signal and pattern after
DNA damage
We compared the localization signals and patterns after DNA damage
to those before DNA damage. Cells were treated with 20 mg/mL

phleomycin D1 for 4 hr. After this treatment, fluorescence was rela-
tively uniform throughout the nucleus. A heterogeneous response was
observed, with some cells showing a large increase in the level of YFP-
Blm10 in the nucleus and some cells showing evidence of nuclear
fragmentation (Figure 6C).

Identification of conserved regions in different parts
of the Blm10 protein
The Blm10 protein is highly conserved among diverse organisms,
from yeast to humans. Blm10/PA200 is the most conserved protea-
some activator (Finley 2009). In addition, all homologs are quite large,
with 240-kD Blm10 being the largest (http://blast.ncbi.nlm.nih.gov/
Blast.cgi).

We arbitrarily selected seven of these homologs and used the
Blocks database (Henikoff et al. 2000) to multiply align ungapped
Blm10 regions to them. This identified five conserved regions (Figure
7A). Comparing the yeast sequence to the other sequences, we found
that the positions of the first two conserved regions, and the distances
between these two conserved regions, varied most (Figure 7A). In
contrast, the positions and spacing of the three carboxyl-terminal
regions were more conserved among all seven sequences. The sizes
of the human, rat, and mouse proteins and the positions of all five
conserved sequences in those proteins were identical (Figure 7A). The
mosquito sequence was most similar to these three in size and loca-
tions of conservation.

The Blm10 sequences of two molds and two fungi that grow as
yeasts also were arbitrarily selected and compared (Figure 7B). In-
terestingly, the sizes and locations of the conserved regions of the
Neurospora crassa homolog were most similar to those in the other
mold, Aspergillus fumigatus. By comparison, the sizes and locations of
conserved regions of Blm10 in S. cerevisiae were most similar to those
in Candida albicans.

Protection does not require the largest conserved
region at the carboxyl-terminus
We investigated activities of a truncated Blm10 protein (Figure 1)
lacking the three carboxyl-terminal conserved regions (blocks 3, 4,
and 5 in Figure 7A). Without drug, mutant cells grew normally
whether or not Blm10(-339aa) was induced (Figure 8). However,
Blm10(-339aa) rescued growth-inhibition and cell death in the presence
of 0.5, 1, 3, 5, 7, and 9 mg/mL phleomycin. For example, as shown in
Figure 8, blm10D conferred complete inhibition of growth in the
presence of 5 mg/mL phleomycin, and survival of the treated cells
decreased to 2% by 35 hr unless Blm10(-339aa) was produced (Figure
8, top row). These experiments demonstrated Blm10(-339aa) was func-
tional when produced as a GST-fusion, and its expression rescued
growth inhibition and cell death. Similarly, the largest conserved re-
gion was not required for relief of phleomycin hypersusceptibility in
blm3-1 mutant strains (Febres et al. 2001; Doherty et al. 2004). In
experiments not shown here, overexpression of Blm10(-339aa) did not
produce additional phenotypes.

Control experiments confirmed Blm10(-339aa) expression was re-
quired to rescue growth inhibition and cell death because mutant cells
without plasmid-expressed Blm10(-339aa) were growth inhibited and
survived poorly (Figure 8, middle and bottom rows). Copper had
no effect on growth or killing because each was comparable with
and without copper.

Of note, haploid and homozygous diploid strains encoding
Blm10(-339aa) under the control of its endogenous promoter exhibit
higher sensitivities to killing by phleomycin than strains of the same

Figure 3 Degradation of b-galactosidase by proteasomes in normal
(h), blm3-1 (Ο), and blm10D (D) strains. Enzymatic activities in cells
were determined spectrophotometrically at the indicated time points.
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ploidy with the entire gene deleted, and their sensitivities were nearly
as high as blm3-1 strains (Febres et al. 2001; Doherty et al. 2004). In
a different strain background, a truncated deletion also caused higher
bleomycin sensitivity than the full deletion (Schmidt et al. 2005a).
Heterozygous strains bearing the truncated BLM10 allele exhibited
intermediate resistance (Febres et al. 2001; D. Febres and K. Doherty,
unpublished data).

Localization of Blm10(-339aa)
Using the same Blm10(-339aa)-GST, we investigated its localization and
whether the conserved C-terminus was required for nuclear localiza-
tion. Immunofluorescence microscopy localized Blm10(-339aa)-GST
with GST antibodies, and various copper concentrations controlled
protein amounts. Like full-length Blm10, Blm10(-339aa) localized in
nuclei of stationary phase (G0) cells, as confirmed by DAPI staining
of DNA (e.g., Figure 9A). During G1, S, G2, and M phases, the
fluorescence formed a disk at the bud neck or septum between mother
and daughter cells (e.g. Figure 9, B and C). It appeared to arch and
follow the contour of the mother cell rather than the daughter (e.g.,
Figure 9C). Expressing GST alone revealed diffuse cytoplasmic stain-
ing (Figure 9D), eliminating the GST as the cause for the localization
patterns. Without staining, no significant autofluorescence was obser-
ved (Figure 9E).

The localization we observed in budded cells and the cytoplasmic
distribution of Blm10 observed previously (Schmidt et al. 2005a) sug-
gest that a nuclear localization sequence could be encoded in the
truncated region. Database searches identified a strong, although

not canonical, nuclear localization sequence in that region (Schmidt
et al. 2005a).

DISCUSSION
Cells have multiple protein complexes to keep the genome intact and
functional. Based on the current studies, the relationship among the
components of the complexes may well differ between cells with and
without the Blm10-20S proteasome activator. Loss of the activator
downregulated numerous genes crucial for maintaining genomic sta-
bility, heightened DNA damage, and selectively sensitized cells to
agents with different mechanisms of action. Although the exact or
direct cause of the elevated DNA damage in Blm10 cells was not
investigated for the current studies, the simultaneous downregulated
expression appears important and suggests ways that Blm10 loss pre-
disposes cells to lethal effects of agents with diverse mechanisms of
action. We propose that modulated chromatin structure could com-
promise DNA integrity in blm10Δ/blm10Δ mutant cells, and conclude
that the hypersusceptibilities establish Blm10 as a guardian against
cellular stresses.

Even without external stimuli, cells were stressed without Blm10
because components of the chaperone and co-chaperone Hsp90 com-
plex, Hsp70 subfamily, and Hsp100 family were selectively upregu-
lated. This upregulation took place despite the fact that the chemostat
regime guaranteed the growth rate remained the same in wild-type
and mutant cultures. Consistent with its protection of chromosomes,
Blm10 remained in nuclei throughout the cell cycle. The findings
contribute knowledge that provides a strong foundation for future

Figure 4 Pulsed-field gel electrophoretic analyses comparing chromosomal damage and killing after no treatments and after 30-min phleomycin
treatments. Diploid genotypes with respect to BLM10 and BLM3 were BLM10/BLM10, BLM3/BLM3; blm10D/blm10D, BLM3/BLM3; and BLM10/
BLM10, blm3-1/blm3-1. Treated populations were divided and incubated under nongrowing conditions for 24 or 48 hr, during which competent
strains can reconstruct their chromosomes (Moore et al. 2000). Routine microscopic examination and visual counting of cells before and after
these LH periods confirmed cell populations did not bud or grow, and cell lysis was never observed. (A) Lanes 1, 4, 7, and 10, no LH. Lanes 2, 5, 8,
and 11, 24-hr LH. Lanes 3, 6, 9 and 12, 48-hr LH. (B) Lanes 1, 4, 7, no LH. Lanes 2, 5, 8, 24-hr LH. Lanes 3, 6, 9, 48-hr LH. Corresponding survival
data: squares, 0 LH; inverted triangles, 24-hr LH; triangles, 48-hr LH. Pulsed-field gel electrophoreses and survival analyses are representative of
three independent experiments and of multiple diploid constructions of the same genotypes.
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studies of the role(s) of Blm10 in relationship to functional groups of
proteins, and of the mechanisms of the downregulated and upregu-
lated genes, pathways and signaling networks.

The results also have implications for translational studies of
ubiquitin-independent targeting in anticancer therapy. PA200/Blm10
inhibition could be a novel approach to cancer treatment, either alone
or in combination with targeted inhibition of one or more of the
upregulated chaperones. In fact, cytokinesis was the most enriched
process among genes downregulated 25% or more in the current
study, suggesting that inhibiting Blm10/PA200 could cause cancer
cells to fail to divide. That proteasome inhibitors upregulate molecular
chaperones in mammalian cells (Wyttenbach et al. 2000; Mitsiades
et al. 2002; Pritts et al. 2002; Awasthi and Wagner 2005; Zaarur et al.
2006) supports our predictions. However, control experiments such as
the steady-state conditions in the current report were not possible in
mammalian cells to determine whether the general mammalian stress
response was induced.

Blm10 physically associates with proteins that can assist in medi-
ating protection and maintaining the integrity of chromosomal DNA
(SGD Project 2010). Three of these proteins, Sir4, Zds2, and Dun1, are
involved in maintaining chromosomal integrity and promoting DNA
repair. Genetic interaction between Blm10 and the Dun1 DNA dam-
age checkpoint kinase causes a synthetic growth defect (Pan et al.
2006). Without Blm10, DUN1 was downregulated 50% in the current
studies, ZDS2 was upregulated 10%, and the expression of SIR4 was
not significantly changed (Table S1). Sir4 and Zds2 are important for
efficient DNA repair by nonhomologous end-joining (Lewis and
Resnick 2000), the major DNA repair pathway in human cells. Sir4
leaves telomeres after DNA damage and relocates to double-strand
breaks, where it binds the well-established component of double-
strand break repair, yKu70 (Martin et al. 1999). Zds2 confers resis-
tance to the anticancer DNA damaging drug cisplatin (Burger et al.
2000), suppresses defects resulting from histone mutations (Ma et al.
1996), and suppresses mutations in the CDC20 gene required for
chromosome segregation (Yu et al. 1996).

Interacting proteins also include the molecular chaperones,
Hsp104, Hsc82, Ssz1, Ump1, and Zuo1. When Blm10 was absent,
HSP104 and HSC82 were upregulated fourfold and 2.3-fold, respec-
tively (Table 6). SSZ1 and UMP1 were upregulated 30% and 10%,
respectively (Table S1).

Blm10 and Ubp3/Blm3 physically associate or exhibit genetic
interactions with four of the same proteins, Hsc82, Sir4, Rpn4,
and Ump1, a short-lived chaperone involved in ubiquitin-mediated
proteolysis and protein folding (SGD Project 2010). These shared
interactions may have facilitated compensation for the blm3-1 mutant
defect by Blm10 overexpression (Febres et al. 2001; Doherty et al.
2004) and could link the two proteins. It is unknown why the

blm3-1mutant phenotype was not suppressed by Blm10 overexpres-
sion from a different construct in a later study (McCullock et al. 2006).

Based upon all of the results presented in the current report, and
strengthened by the functional knowledge of proteins with which
Blm10 physically and genetically interact, we propose that Blm10 acts
to mediate DNA damage and other stresses. For example, 20S pro-
teasomes effectively degrade and remove oxidatively damaged histo-
nes and other proteins. Chromatin reorganization would then allow
for efficient DNA repair. We further propose that the activated
Blm10-CP complex may be involved in removing toxic agents or
detoxifying them. In future studies, it would be informative to de-
termine which of the downregulated genes contribute to the vulner-
ability of blm10D cells to agents with different mechanisms of action.
It is possible that at least some of the downregulated genes may cause
the slower growth of blm10Δ/blm10Δ mutant diploids than wild-type
diploids that we observe in and on limited or synthetic media outside
of chemostats.

Figure 5 Dose-dependent susceptibilities of normal
and mutant diploids. From left to right are fivefold serial
dilutions of each genotype. MMS indicates methyl
methanesulfonate; H2O2, hydrogen peroxide; 5-FU,
5-fluorouracil; HU, hydroxyurea; Dox, doxorubicin;
Rap, rapamycin; CW, calcofluor white. Results are rep-
resentative of two to four independent experiments.

Figure 6 Nuclear localization and colocalization of Blm10. Shown are
representative YFP and differential interference contrast (DIC) images
of living cells. The scale bar applies for all images in the panels as all
images are scaled equally. Representative cells from populations of
4000 to 10,000 cells are shown to illustrate the following: (A) Nuclear
localization, showing progression from unbudded to large-budded
cells. (B) Colocalization of nuclear Spc42-CFP and YFP-Blm10. (C)
Nuclear localization after growth on medium supplemented with
20 mg/mL phleomycin D1. Arrows indicate cells with evidence for nu-
clear membrane fragmentation.
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We also propose a role for Ubp3/Blm3 in protection based on its
central position and connection to SSA1 and SSA2 in the upregulated
protein network (Figure 2) and the excessive chromosomal damage
and lethality in blm3-1/blm3-1 cells (Figure 4). UBP3 was isolated as
a multicopy suppressor of the temperature sensitivity of S. cerevisiae
cells doubly mutant for the SSA1 and SSA2molecular chaperone genes
(Baxter and Craig 1998). Interestingly, these two chaperone-encoding
genes were the most highly upregulated in blm10D/blm10D cells in the
current studies (Table 6). In addition, it is known that Ubp3 binds Sir4
and regulates chromosomal silencing, possibly by controlling the ac-
tivity or assembly of the Sir complex (Moazed and Johnson 1996). It

has been proposed that by deubiquitinating misfolded proteins, Ubp3
permits protein refolding, stability and function (Brew and Huffaker
2002). The S. cerevisiae Rad4 protein binds ultraviolet light-damaged
DNA and promotes nucleotide excision repair (Mao and Smerdon
2010). Recently, it was suggested that Ubp3 physically interacts with
the 26S proteasome and the Rad4 protein to help degrade Rad4 and
suppress DNA repair (Mao and Smerdon 2010).

Results in this report indicate Blm10 protects cells from genomic
instability and cell death. Consistent with our findings, PA200-
knockdown cells showed genomic instability and reduced survival
after ionizing irradiation (Blickwedehl et al. 2008). We reason that

Figure 7 Evolutionarily conserved sequences among Blm10 homologs. The sequences are kept to scale to show the relative location and spatial
arrangements of the conserved regions. Homologs were aligned by the global multiple sequence alignment program, CLUSTALW (http://www.
ddbj.nig.ac.jp/search/clustalw-j.html). Proteins are arranged in order of decreasing size in (A) and (B). (A) Dissimilar distances among some of the
homologs between the N-terminus and first conserved block, first and second block, and second and third block contrast with the relatively similar
distances between carboxyl-conserved regions in all homologs. (B) Similarities among conserved regions as described in the text.
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protein interactions and signaling cascades respond to DNA damage to
arrest the cell cycle and repair DNA, recruit chromatin remodeling and
DNA repair proteins, and recruit chaperones to assist with ridding cells
of dysfunctional proteins or toxic agents. Molecular chaperones can
repair nonfunctional or misfolded proteins or proteins can be ubiquiti-
nated and targeted to the 26S proteasome for degradation. Neither
PA200 nor Blm10 activates the proteasomal 20S catalytic chamber in
response to ubiquitinated proteins or requires the activity of ATPase for
proteasomal cleavage (Ustrell et al. 2002; Schmidt et al. 2005a), unlike
the ubiquitin-dependent, ATPase-dependent 19S regulatory particle.

Although the protective function of Blm10 does not require its
carboxyl-terminal region (Figure 8), it does require the two new con-
served regions identified in these studies (Figure 7A). The truncated
protein is missing the last three residues (TyrTyrAla) that structural
analyses show make very close contact with the 20S proteasome
(Sadre-Bazzaz et al. 2010). In addition, manipulation of these residues
by mutagenesis alters Blm10 function (Lopez et al. 2011; Dange et al.
2011). Thus, the protective function appears not to require that Blm10
associate with the 20S proteasome, or the truncated Blm10 can asso-
ciate with the proteasome without this region.

The truncated protein may be missing a domain that disallows its
association or interaction with one or more other proteins. The
carboxyl-terminus is essential for retention in the nucleus at all stages
of growth, since the truncated protein mislocalized in a prior study
(Schmidt et al. 2005a) and in budded cells in the current studies. It is
not known if the septin localization relates to the physical association of

Blm10 with a protein involved in bud site selection, Bud20 (Ho et al.
2002), which could pull the complex to the septin. This could underlie
the increased calcofluor sensitivity of blm10D/blm10D cells (Figure 5).

Finally, results presented here suggest a 20s proteasome ac-
tivator could be a target for proteasome inhibition in combination
anticancer therapies. Multiple myeloma cells, for example, have in-
creased proteasome levels and activity (Wada et al. 1993; Edwards
et al. 2009) and circulating proteasomes (Jakob et al. 2007). Pro-
teasome inhibition in these cells inhibits proliferation, induces
apoptosis, and overcomes drug resistance (Hideshima et al. 2001;
Edwards et al. 2009). In addition to targeting PA200/Blm10 and
one or more of the upregulated proteins, targeting it with a con-
ventional treatment could be effective.
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