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The promise of genome sequencing was that the vast undiscovered country would be 
mapped out by comparison of the multitude of sequences available and would aid research-
ers in deciphering the role of each gene in every organism. Researchers recognize that there 
is a need for high quality data. However, different annotation procedures, numerous databas-
es, and a diminishing percentage of experimentally determined gene functions have resulted 
in a spectrum of annotation quality. NCBI in collaboration with sequencing centers, archival 
databases, and researchers, has developed the first international annotation standards, a fun-
damental step in ensuring that high quality complete prokaryotic genomes are available as 
gold standard references. Highlights include the development of annotation assessment tools, 
community acceptance of protein naming standards, comparison of annotation resources to 
provide consistent annotation, and improved tracking of the evidence used to generate a par-
ticular annotation. The development of a set of minimal standards, including the requirement 
for annotated complete prokaryotic genomes to contain a full set of ribosomal RNAs, transfer 
RNAs, and proteins encoding core conserved functions, is an historic milestone. The use of 
these standards in existing genomes and future submissions will increase the quality of data-
bases, enabling researchers to make accurate biological discoveries. 

Introduction 
Annotation Issues in Genome Records 
Even before the first genome sequence for a cellu-
lar organism was completed in 1995, it was rec-
ognized that the functional content encoded by 
and annotated on nucleotide records represented 
both a blessing and a curse [1-3]. With the com-
plete genome sequence obtained and annotated, a 
full understanding of the biology of an organism 
was thought to be within reach. However, deposi-
tion of an annotated record into the sequence arc-
hives, excepting the rare occasion when a record 
is updated, meant that the archival record 
represented a snapshot in time of both the se-
quence and annotation. Scientists have sought to 
address the annotation issue by creating curated 
databases, developing computational tools for the 
assessment of annotation, and publishing a variety 
of solutions in numerous papers [4,5]. 

Throughout the sequencing era, continuous reas-
sessment of annotations based on new evidence 
led to improved annotations on a number of se-
quences, even though the process is recognized as 
being time-intensive [6,7]. With the exponential 
increase in sequence data, annotation updates 
have become increasingly unlikely events. Errors 
in annotation impact downstream analyses [8]. 
Errors that affect the location of annotated fea-
tures or that result in a missed genomic feature 
greatly impact the evolutionary studies and bio-
logical understanding of an organism, whereas 
mistakes in functional annotation lead to subse-
quent problems in the analyses of pathways, sys-
tems, and metabolic processes. The presence of 
inaccurate annotation in biological databases in-
troduces a hidden cost to researchers that is am-
plified by the amount of data being produced.  
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For prokaryotic organisms, as of August 10, 2010, 
there were 1,218 complete and more than 1,400 
draft genomes that had been sequenced and re-
leased publicly. The Genome Project database and 
other online efforts to catalog genome sequencing 
initiatives list thousands of additional sequence 
projects that have been initiated but for which 
sequence data has not yet been released [9,10]. 
Investigators relying on the complete genome set 
consisting of sequenced and closed replicon mo-
lecules and annotations as a gold standard are 
becoming increasingly affected by the size of the 
dataset even without having to take into account 
the presence of erroneous annotation [11]. As ra-
pidly decreasing sequencing costs for next gener-
ation sequencing are producing unprecedented 
levels of data and errors that can easily inflate in 
size and propagate throughout many datasets, it 
is essential that steps be taken to address these 
issues [8,12]. 

A large body of literature devoted to describing 
annotation problems is available ([13,14] and 
references within). Errors that plague genome 
annotations range from simple spelling mistakes 
that may affect a few records, to incorrectly tuned 
parameters in automatic annotation pipelines 
that can affect thousands of genes. Discrepancies 
can impact the genomic coordinates of a feature, 
or the function ascribed to a feature such as the 
protein or gene name, or both [15]. The common-
ly used Gene Ontology annotations are also sub-
ject to errors [16]. As our understanding of ge-
nome biology and evolution has improved, a 
number of methods have been developed to as-
sess annotation quality. Typically, several pieces 
of evidence are combined in order to assign con-
fidence levels to a particular annotation or to 
predict new functions. In some cases these me-
thods have led investigators to target a specific 
function for experimental validation after the 
prediction was made, a process that both vali-
dated the prediction method and provided im-
proved and experimentally determined annota-
tions such as in the detection of the GGDEF and 
EAL domains as a major part of prokaryotic regu-
lation [17-19]. Some of these methods include 
sequence similarity, phylogenomic or genomic 
context, metabolic reconstruction to determine 
pathway holes, comparative genomics, and in 
many cases a combination of all of the above (re-
viewed in [20]). A number of tools have been de-
veloped to predict annotations based on curated 

and experimental data. Curated model organism 
databases or datasets for specific molecules such 
as transfer RNAs, ribosomal RNAs, or other non-
coding RNAs have been developed along with 
tools to predict their presence in a novel se-
quence [21-24]. 

Several large-scale curated databases have been 
created at large centers, such as at EBI and NCBI. 
NCBI initiated the Reference Sequence database 
to create a curated non-redundant set of se-
quences derived from original submissions to 
INSDC [25]. The sequences include genomic DNA, 
transcripts, and proteins and the annotations may 
consist of submitter-derived, curated, or compu-
tational predictions. One major resource for im-
proving functional annotation is the NCBI Protein 
Clusters database that consists of cliques of re-
lated proteins (ProtClustDB [26]; ). A subset of 
clusters are curated and utilized as sources of 
functional annotation in the annotation pipeline 
as well as to incrementally update RefSeq records 
(see below). RefSeq records are also updated 
from model organism databases such as those for 
E. coli K-12 or Flybase. The UniProt Knowledge-
base (UniProtKB) provided by the UniProt con-
sortium is an expertly curated database, a central 
access point for integrated protein information 
with cross-references to multiple sources [27]. 
The Genome Reviews portal that was a compre-
hensively up-to-date set of genomes has now 
been incorporated at ENSEMBL genomes [28,29]. 
Ongoing collaboration between NCBI and EBI en-
sures that annotation will continue to be curated 
and improved in all databases. 

RefSeq is committed to ensuring that all current 
and future RefSeq prokaryotic records meet the 
minimal standards presented in this article. How-
ever, high throughput next generation sequencing 
increasingly results in a large number of non-
reference sequences populating the databases 
with the expectation that there could be tens of 
thousands of genomes available for all proka-
ryotes. Community acceptance of a set of minimal 
annotation standards puts the burden on all ge-
nome submitters to provide quality annotation 
especially for those complete genomes that are 
often considered gold standard records for se-
quencing and annotation such as Escherichia coli 
K-12 MG1655. 
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The Need for Standards 
Standards and guidelines facilitate the submission, 
retrieval, exchange, and analysis of data. Both the 
format and content of data can be standardized 
(syntactic and semantic). Syntactic standardization 
is easier to implement and enforce. The format and 
representation of genomic records has long been 
established and is not discussed in this article. Se-
mantic standardization is more difficult. Standardi-
zation of the genomic content and annotation will 
facilitate analyses at the functional and systems 
levels, in other words, the biology will be easier to 
understand and to put into an evolutionary context 
which will have a real impact on how researchers 
approach scientific studies. 
An explosion of documents for minimal standards 
in a variety of genomics, bioinformatics, and tran-
scriptomics studies has occurred. Examples include 
the MIAME standards established for microarray 
expression studies, and the MIGS standards that 
were created to establish minimal metadata asso-
ciated with genome sequencing projects [30,31]. 
There is now the Minimum Information for Biologi-
cal and Biomedical Investigations (MIBBI) project 
that aims to comprehensively organize and collate 
all of these projects and BioDBcore, a community 
initiative for specifications of biological databases 
[32,33]. Although the reason for standards is clear, 
the enforcement of standards is a complex issue 
that remains to be resolved [34]. Community stan-
dards that are adopted by the organizations pro-
ducing, archiving, and distributing the data will fa-
cilitate the usage and enforcement of these stan-
dards. Recognizing these growing problems, the 
National Center for Biotechnology Information 
(NCBI) organized three Genome Annotation Work-
shops in 2006, 2007, and 2010. Participants in-
cluded members of the International Nucleotide 
Sequence Database Collaboration (GenBank, the 
European Nucleotide Archive (ENA), and the DNA 
Data Bank of Japan (DDBJ), scientists from the Eu-
ropean Bioinformatics Institute (EBI) including 
those from UniProt Consortium (PIR/EBI/SIB), and 
members of organizations not involved in archiving 
data such as those from the American Society for 
Microbiology (ASM), investigators from a variety of 
sequencing centers such as the Department of 
Energy's Joint Genome Institute, representatives 
associated with the NHGRI human microbiome 
project, and individual scientists. The first two 
workshops were aimed at resolving annotation 
problems for the growing numbers of prokaryotic 
genomes while the 2010 workshop brought to-

gether researchers from both the prokaryotic and 
viral fields. This report is a summary of the results 
from all three meetings. URLs for specific databas-
es, tools, websites, guidelines, and documents can 
be found in Table 1 and the full set of links, updates, 
and contact information will be posted at the work-
shop site at NCBI [51]. 
Milestones from all three workshops include: 1) the 
E. coli CCDS project (ECCDS), 2) a publication de-
tailing the differences between archival and cu-
rated databases, 3) a locus_tag registry, and 4) re-
lease of a set of annotation assessment tools. Spe-
cific proposals on problems of genome annotation 
were generated from a number of working groups 
and focused on the following issues: 1) standard 
operating procedures, 2) structured evidence, 3) 
structural annotation, 4) pseudogenes, 5) protein 
naming guidelines, 6) comparison of functional an-
notation, 7) and viral annotation. Several of these 
proposals were submitted as guidelines and stan-
dards to be approved by INSDC while others are 
already accepted. Some of the proposals include 
reports and data sources that are available online 
(Table 1). The outcomes of each are summarized 
below. 

ECCDS 
The human genome CCDS project, an active collabo-
ration project between EBI, NCBI, Sanger, and UCSC, 
was established to create a core set of consistently 
annotated protein coding genes [52]. This project 
has now grown to include the mouse genome, and 
there are considerations for expanding this to other 
eukaryotic organisms. Using this project as a model, 
the E. coli consensus CDS project was established to 
reconcile the annotation differences for the model 
organism E. coli K-12 MG1655 which was first se-
quenced in 1997 (GenBank Accession Number 
U00096 [53]; ). An updated annotation snapshot 
was released in 2006, and numerous curated and 
archival databases contain annotation for this or-
ganism [43]. Of those, the ones actively contributing 
to the ECCDS project include GenBank, RefSeq, Eco-
Gene, EcoCyc, and UniProt [25], [27] [54-56]. Con-
sistent annotation has been established between 
EcoGene, GenBank, and RefSeq with all three syn-
chronizing the annotation several times a year. Re-
conciliation of this consistent annotation set with 
the EcoCyc and UniProtKB/Swiss-Prot databases is 
an ongoing process that has resulted in improved 
annotations in all five databases benefiting not only 
E. coli researchers but also the entire field of proka-
ryotic genomics (Table 1). 
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Differences between Archival and Curated Databases 
Archival and curated databases serve different 
needs for the genomic and bioinformatics com-
munities, but there is still confusion about the ex-
act roles of all of these databases in the represen-
tation of genome sequencing data. A short article 
(“GenBank, RefSeq, TPA and UniProt: What’s in a 
Name?”) clarifying these issues was authored by 
NCBI and published in the ASM journal Microbe 
and is also available online at NCBI (Table 1). The 
article discussed the differences between the arc-
hival databases (GenBank), curated databases 
such as RefSeq and UniProtKB/Swiss-Prot, and 
Third Party Annotation (TPA), and helped re-
searchers to understand the exact role of each da-
tabase and how sequences and annotations are 
handled in each. Archival databases such as Gen-
Bank contain primary submissions and redundant 
sequences whereas the TPA database provides the 
ability for peer reviewed and published informa-
tion to be used to update the information in the 
primary archives. RefSeq and UniProt have been 
described above. These resources constitute a ma-
jor part of the dataflow for the annotation, sub-
mission, retrieval, and analysis of genomic 
records. 

Locus_tag registry 
Locus_tags are systematic identifiers used for the 
enumeration of annotated genes even for cases 
when the genes have no known function. ASM 
journal editors had noticed that there was an in-
creased use of locus_tags to refer to genes in the 
scientific literature, both in the primary genome 
sequencing paper as well as in subsequent publi-
cations describing specific genes and functions. 
However, as these identifiers were annotated by 
individual investigators and research labs, there 
were increasing instances of the same locus_tag 
being used to describe different but unrelated 
genes in different organisms. Hence the utility of a 
unique identifier was being lost and the use of lo-
cus_tags in a scientific article to identify particular 
genes was resulting in confusion. The solution was 
to create a locus_tag registry in conjunction with 
the Genome Project (soon to be BioProject [57]) 
database. Prefixes consisting of alphanumeric cha-
racters that met the standards could be registered 
along with a genome project submission (Table 1). 
The assignment of a unique locus_tag prefix to 
each genome assures that each gene feature in the 
dataset of all genomes records can be correctly 
identified. 

Annotation Assessment Tools 
NCBI committed to produce additional annotation 
assessment tools to help submitters find problems 
with genome annotations (Table 1). These tools 
are used during the submission process to Gen-
Bank, in the Prokaryotic Genome Automatic Anno-
tation Pipeline, and are available separately and 
include: 1) the Discrepancy Report which includes 
internal consistency checks without the use of ex-
ternal databases, and is available in Sequin, as part 
of the tbl2asn tool or as a stand-alone command-
line tool, 2) the subcheck/frameshift tool which 
incorporates sequence searches in external data-
bases during annotation assessment in order to 
find potentially frameshifted genes and other an-
notation issues and is available via the web or as a 
command line tool. NCBI encourages submitters 
to utilize these tools prior to submission to aid in 
the identification and correction of annotation 
discrepancies. A new annotation report that lists 
quantitative annotation measures and provides 
comparison with multiple organisms is also avail-
able and is detailed below. 

Capturing Annotation Methods and Informa-
tion Sources 
The results of genome annotation processes are 
deposited along with sequence records in the arc-
hival databases. The combination of methods and 
information sources that were used in the creation 
of a particular genome annotation are usually de-
tailed in a publication. With increasing numbers of 
genomes being deposited that do not have an as-
sociated scientific publication, it is of paramount 
importance that there is a process to capture the 
methods and databases used in creating a set of 
annotated features. 

Standard Operating Procedures 
Standard Operating Procedures (SOPs) in the con-
text of genome annotation should: 1) document 
specific processes used to generate annotations, 
2) with enough detail to replicate the process, 3) 
list the input and outputs, 4) reference any exter-
nal tools, and 5) and describe how the outputs of 
software packages are interpreted, filtered, or 
combined. The concept of SOPs, along with an ex-
ample using the NCBI prokaryotic genome auto-
matic annotation pipeline (PGAAP), has been de-
tailed elsewhere [58]. The Genome Standards 
Consortium (GSC), which has set forth a struc-
tured format to capture genome metadata, pro-
vides optional fields to link to an online accessible 
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SOP via a digital object identifier (DOI) or other 
mechanism [31]. INSDC has agreed to adopt this 
structured format for genome metadata, thus pro-
viding the capability to document SOPs and link 
them to each genome record with the metadata 
appearing in the COMMENT section. An example 
record with structured metadata can be found in 
GenBank Accession Number CP002903 (although 
the annotation SOP is not yet provided for this 
particular genome). All submitters are encouraged 
to use this structured format to capture genome 
metadata. 

Structured standards evidence in annotation 
SOPs describe the processes used to make an anno-
tation decision including a list of information 
sources which may include sequence, structure, 
domain databases, or protein family resources. 
Since many of these bioinformatics sources are 
large databases with many records, it is essential to 
note the exact record from which an annotation is 
derived, thus providing a one-to-one or many-to-
one link from annotation sources to the novel pre-
dicted annotation in a new genome. The source be-
comes a vital reference that facilitates analysis and 
comparison and the link to a particular record pro-
vides a trail through which annotation updates or 
problems can be addressed. 

A variety of evidence or confidence-based systems 
are currently used. The Evidence Viewer at NCBI 
displays the sequences that provide evidence for 
the sequence of a particular gene model or mRNA 
[42]. The RefSeq status key provides varying levels 
of confidence to a particular annotation based on 
the level of manual review a particular annotation 
has received [25]. The curated Pseudomonas aeru-
ginosa database incorporates evidence levels for 
functional assignments [59]. UniProt has developed 
an evidence attribution system which attaches an 
evidence tag to each data item in a UniProtKB entry 
identifying its source(s) and/or methods used to 
generate it. Users can easily identify information 
added during the manual curation process, im-
ported from other databases or added by automatic 
annotation procedures. In addition, UniProt has 
developed the protein existence concept which 
provides the level of evidence available for the exis-
tence of a protein [27]. The Gene Ontology (GO) 
system provides evidence for function, component, 
and process and is one of the better known systems 
used in annotation today [60]. However, GO cannot 
be used for all features on a genome, nor are all  

genome sequencing centers and large-scale insti-
tutes routinely using GO or any of the other ontolo-
gies, and similar issues arise with all of the above-
mentioned evidence systems. 

The INSDC flatfile is a commonly used format. It 
provides the capability to annotate many features 
such as genes, protein-binding sites, or ribosomal 
RNAs. For each feature there is a set of mandatory 
and optional qualifiers (Table 1) that provide de-
tailed information in a structured format for each 
particular feature. For example, the gene name, the 
protein binding the DNA, or the ribosomal RNA 
product. The flatfile format is reviewed every year 
by the member databases and proposed changes 
are discussed before acceptance. 

The evidence used to annotate a particular feature 
can be encapsulated in two optional qualifiers, 
“/experiment” and “/inference”. Whereas the 
“/experiment” qualifier provides information on 
the nature of the experiment used to derive the an-
notation of a particular feature, for example N-
terminal sequencing to determine the peptide se-
quence, the “/inference” qualifier provides infor-
mation on the non-experimental evidence to sup-
port the annotation of a particular feature. Three 
tokens have been proposed and accepted that fur-
ther categorize the two annotation qualifiers: 1) 
existence, 2) coordinates, 3) description, and addi-
tionally the experiment qualifier provides a field for 
a direct link to a PubMed identifier or DOI detailing 
the experiment where support for one of the three 
tokens can be found (Table 2). A combination of the 
three tokens can be applied to a set of qualifiers on 
a feature. For example, the evidence for the exact 
start and stop of a protein coding region for a par-
ticular organism is experimentally determined in 
one publication while the function is derived by 
inference from a related organism and all of the 
evidence and the sources used to derive each anno-
tation can be captured with the set of qualifiers and 
tokens. 

This system of evidence linkage gives richer con-
text to genome annotation where the evidence and 
processes used to derive annotation is completely 
traceable. RefSeq will begin implementing evidence 
assignments and encourages all genome research-
ers to do the same. Mechanisms for the search, re-
trieval, and subcategorization of genome records 
and features with different levels of evidence will 
be provided by the major databases. 
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Table 2. Summary of structured evidence for INSDC feature annotation1 

 
Allowed tokens 

 Token "/experiment" qualifier2 "/inference" qualifier3 Comment 

Free text Yes No 
free text describing the experiment 

Non experimental 
structured format 

No Yes 

structured format of TYPE + 
EVIDENCE_BASIS (type includes “non 
experimental”, “similar to”, “profile”, 
or “alignment”, evidence basis can 
include algorithm with version, or  
database with accession.version) 

Coordinates Yes Yes support for annotated coordinates 

Description Yes Yes 
support for description including  
function 

Existence Yes Yes 
support for existence of feature in this 
organism 

PMID or DOI Yes No 
publication describing experimental 
evidence 

1. Changes proposed and accepted by INSDC to the /experiment and /inference qualifiers. The new tokens (bolded) 
are optional for both qualifiers. 

2. A brief description of the nature of the experimental evidence that supports the feature identification or assignment. 

3. A structured description of non-experimental evidence inferring and supporting feature identification or assignment. 
 

Structural Annotation 
Structural annotation and gene calling  
standards, validation (reports and outcomes) 
Structural annotation standards refer to the me-
thods and parameters used to call and validate 
genes on a genome. Numerous research laborato-
ries and sequencing centers utilize a variety of dif-
ferent annotation methods and sources and those 
should be captured as noted above. Therefore, a 
specific set of software tools or databases was not 
chosen as a gold standard set. Instead, a non-
exhaustive set of software tools and resources 
that produces high quality annotations and that 
are publicly available are listed (Table 1) and will 
be available online [51]. Researchers interested in 
annotating genomes are encouraged to start with 
this list. Quantitative measures of annotation were 
implemented to institute a set of minimal stan-
dards. Irrespective of the methodology and data-
sets used to annotate a particular genome, there 
are certain aspects of genome biology that are ex-
pected to be present for all prokaryotes. Key func-
tions that should be present in all genomes in-
clude a set of core genes/functions as well as a 
complete set of ribosomal RNAs and transfer 

RNAs that are required for protein translation 
[61,62]. These requirements are detailed in the 
minimal standards below and are expected to be 
found on all complete genomes. Simple statistical 
reporting of various genome annotation measures 
can also be used to assess annotation quality. For 
example, the distributions of protein lengths re-
flects evolutionary constraints and an examina-
tion of length versus conservation showed that 
conserved genes tend to be longer than non-
conserved [63]. Except for extreme cases, most 
prokaryotic genomes should exhibit similar ge-
nome characteristics and be within an expected 
distribution for each measure. Evolutionary forces 
that may drive a particular genome outside of an 
expected range of values include processes such 
as genome degradation in obligate intracellular 
endosymbionts or decreasing intergenic spacer 
size due to genome streamlining in ubiquitous 
ocean microbes [64,65]. NCBI now generates re-
ports that allows comparison against publicly 
available genomes and will provide a similar  
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report to all genome submitters in an effort to 
identify and correct annotation problems before a 
genome is publicly released (Table 1). Examples of 
these statistics are shown in Table 3. Two model 
organisms, E. coli and Bacillus subtilis, were cho-
sen to represent well-annotated average genomes. 
All other genomes in the table exhibit extremes 
(minimum or maximum) for a particular category, 
and in some instances this reflects annotation that 
does not meet the minimum standards. In cases 
where a RefSeq copy of a genome was made, cor-
rected annotations were added so that the mini-
mum requirements were met. Comparison of se-
lected annotation measures for all organisms is 
shown in Figure 1. A selected set was used in prin-
cipal component analysis to find those measures 
that contribute the most to variation, and to find 
clusters of annotation measures. The two physical 
measures are the length of the chromosomes and 
the GC content. All other measures are annotation-
derived. Length affects all annotation metrics and 
is one of the main drivers of annotation variance. 
For example, an assessment of protein and RNA 
count for all genomes shows a linear increase of 
the number of proteins as the genome size grows 
(Figure 1). Non-coding RNAs (ribosomal, transfer, 
and non-coding RNAs such as antisense RNAs), 
exhibit less of a slope, and in several genomes in 
the INSDC archives no RNAs have been annotated 
at all (Figure 1A). In the complement of complete 
RefSeq genomes, the full set of ribosomal and 
tRNAs have been added either as functional or as 
potential pseudogenes (Figure 1B). The only cases 
where this minimal standard could not be met 
were due either to issues with the sequence (se-
quencing or assembly) or cases of real biology 
such as in small compact genomes for endosym-
bionts. For example, Candidatus Hodgkinia cicadi-
cola Dsem is missing several key functional tRNAs 
due to codon recoding [66]. 

Further examination of the annotation measures 
across all genomes shows how other measures 
interact. For example, increasing coding density 
(more genes per Kbp) in genomes results from an 
increase in the ratio of short proteins (ratio of 
proteins that are less than 150 amino acids/ total 
proteins: Figure 2C). As the coding density in-
creases and the ratio of short proteins increase, 
the average protein length decreases, a logical re-
sult as the increased coding density is due to an 
increase in short overlapping predicted ORFs. A 
more subtle impact shows that with increasing 

coding density the ratio of hypothetical to total 
proteins in the genome increases, whereas the 
utilization of the ATG start codon (standard start) 
decreases (Figure 2D). Increasing GC content also 
coincides with the usage of alternative start co-
dons such as GTG. However, increasing GC content 
and increasing genome length do not generally 
result in an increase in the hypothetical protein 
ratio (data not shown) suggesting that these 
trends are due to differences in annotation quali-
ty. 

Although genome streamlining can impact these 
measures, for example many genomes from the 
Prochlorococcus genus exhibit increased coding 
density; there are other factors at play [64,67,68]. 
This is more clearly seen when closely related ge-
nomes are compared as in a heatmap [69]. Se-
lected annotation measures for the gammapro-
teobacteria are compared in a heatmap in Figure 
2. In several cases, increases or decreases in phys-
ical (length, GC content) or derived measures are 
due to biological causes. For example, gammapro-
teobacterial endosymbionts such as Buchnera spp. 
exhibit reduced genome size and decreased GC 
content [70,71]. In other cases a particular strain 
or set of strains exhibit skewed annotation meas-
ures as compared to other genomes of the same 
species. For example, one particular Salmonella 
genome exhibits an increased coding density, ratio 
of short proteins, and number of hypothetical pro-
teins along with a decreased average protein 
length (Salmonella enterica subsp. enterica sero-
var Paratyphi B str. SPB7). In other cases subclus-
ters of a particular species are formed due to po-
tential erroneous annotations such as the three 
Yersinia pestis genomes that cluster separately 
from other Y. pestis strains due to skews in anno-
tation that were derived from the same pipeline 
[72]. In other cases, substrains do not cluster to-
gether as the annotations were derived from three 
different annotation pipelines such as the case for 
E. coli BL21 where three isolates were sequenced 
and annotated by three different research groups 
[73]. Evolutionary events that result in altered 
annotations in a particular organism are signifi-
cant and aid our understanding of the biology of 
not only that particular organism but of related 
organisms. Annotation differences due to the utili-
zation of different methods and sources skew 
these results and the conclusions that result from 
them. 
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Figure 1. Selected comparisons of genome measures. Principal component analysis showed expected relation-
ships among the different measures (data not shown). Selected examples are plotted as double y-axis scatterplots. 
Legends indicate first or second y-axis for blue dots or red crosses, respectively. Linear regression analysis of each 
y-axes variable independently with respect to the x-axis variable was done and the trend line is drawn on each 
plot color-coded with respect to each measure. R2 and p-values are shown for each measure. A-B. Numbers of 
annotated proteins and RNAs with respect to genome size from INSDC and RefSeq annotation sets for complete 
prokaryotic genomes. Feature counts were obtained from the Complete Microbial Genomes Annotation Report 
(Aug 10, 2010) and proteins and RNAs from INSDC and RefSeq are plotted with respect to genome length. The 
count of proteins follows a linear increase with respect to increasing genome size (blue trend line) while the RNA 
count, which includes all transfer, ribosomal, and non-coding RNAs, shows less of an increase with respect to ge-
nome size. Some genomes have extensively annotated RNA features, whereas others do not. A. All INSDC ge-
nomes (total of 1218 as of Aug 10, 2010). Those records that have below minimal standards for essential RNAs are 
encircled (red ellipse). B. RefSeq genomes (total of 1148 genomes as of Aug 10, 2010). Note, not all INSDC ge-
nomes are copied into RefSeq records. For the cases where INSDC records were missing essential RNAs, if there 
was a RefSeq version, the essential RNAs have been added or properly labeled. In all cases where the full set of 
essential RNAs could not be annotated it appeared that the missing RNA(s) were either non-functional or com-
pletely missing from the genome sequence (Table 3; data not shown). C. Protein lengths with respect to coding 
density for INSDC annotations. As coding density increases (more proteins per Kbp) the average protein length de-
creases (blue trend line) and the ratio of short proteins increases (red trend line). D. Hypothetical proteins and start 
codon ratios versus coding density. The ratio of proteins named 'hypothetical' increases slightly as the coding den-
sity increases whereas the standard start codon ratio decreases. Genomes where 'hypothetical protein' ratio is 1 or 
near 1 (large blue ellipse - every protein is annotated as 'hypothetical protein' in the genome) falls below the mi-
nimal annotation standards. For these particular cases, if a RefSeq version of the annotation existed, the functional 
assignment of a number of proteins was improved via curated clusters in the NCBI ProtClustDB (data not shown). 
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Table 3. Selected annotation report examples1 
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225 
Escherichia coli 
str. K-12 substr. 
MG1655 (1) 

4.640 50.79 4,144 1,75 22 21 0.89 316 14 20.32 90.54 

76 
Bacillus subtilis 
subsp. subtilis str. 
168 (1) 

4.216 43.51 4,177 178 20 221 0.99 294 20 26.48 77.76 

17977 
Candidatus  
Carsonella ruddii 
PV (1) 

0.160 16.56 182 31 20 44 1.14 274 37 32.42 96.15 

32135 
Candidatus  
Hodgkinia cicadi-
cola Dsem (1) 

0.144 58.39 169 18 12* 37 1.18 257 38 33.73 27.22 

46847 
Streptomyces 
bingchenggensis 
BCW-1 (1) 

11.937 70.75 10,022 84 21 3,606 0.84 342 24 19.86 60.69 

19943 
Rickettsia rickettsii 
str. Iowa (1) 

1.268 32.45 1,384 37 19* 607 1.09 232 17 47.76 73.55 

81 
Clostridium tetani 
E88 (1) 

2.799 28.75 2,373 72 20 247 0.85 336 101 12.09 68.27 

12634 
Anaeromyxobacter 
dehalogenans 
2CP-C (1) 

5.013 74.91 4,346 58 21 965 0.87 349 38 15.85 69.21 

49535 

Propionibacterium 
freudenreichii 
subsp. shermanii 
CIRM-BIA1 (1) 

2.616 67.27 2,375 51 20 721 0.91 317 2 21.14 70.57 

43535 
Lactobacillus sali-
varius CECT 5713 
(1) 

1.828 32.94 1,350 120 21 86 0.74 352 95 2.22 80.00 

 

http://standardsingenomics.org/�


Genome Annotation Standards before the Data Deluge 

182 Standards in Genomic Sciences 

Table 3 (cont.). Selected annotation report examples1 
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105 
Haloarcula maris-
mortui ATCC 
43049 (2) 

3.420 61.93 3,412 59 20 1 1.00 285 30 27.02 100.00 

13128 
Photobacterium 
profundum SS9 (2) 

6.323 41.71 5,413 209 21 2,490 0.86 316 35 21.97 73.88 

28711 
Haliangium och-
raceum DSM 
14365 (1) 

9.446 69.48 6,719 55 20 1,827 0.71 411 32 13.37 79.67 

244 
Nostoc sp. PCC 
7120 (1) 

6.414 41.35 5,368 64 20 0 0.84 326 17 25.58 82.41 

19857 
Vibrio harveyi 
ATCC BAA-1116 
(2) 

5.969 45.44 5,944 159 20 5944* 1.00 286 24 30.43 84.84 

28111 
Sorangium cellulo-
sum 'So ce 56' (1) 

13.034 71.38 9,375 319 0* 4,170 0.72 401 30 13.08 73.33 

344 
Rhizobium legu-
minosarum bv. 
viciae 3841 (1) 

5.057 61.09 4,700 0* 0* 247 0.93 309 40 19.57 80.83 

31271 
Mycobacterium 
leprae Br4923 (1) 

3.268 57.80 1,604 47 20 143 0.49 335 33 21.01 54.30 

29335 
Neisseria gonorr-
hoeae 
NCCP11945 (1) 

2.232 52.37 2,662 67 20 324 1.19 240 32 41.81 71.22 

1. Selected genomes and categories for INSDC genomes are shown. The first two rows are for the model organisms E. 
coli and B. subtilis. The other genomes were selected as the minimum (bolded) or maximum (bolded and underlined) 
in the categories shown. Those marked with an asterisk fall below the minimal standards described in this publication. 
2. INSDC Bioproject ID for each genome [57]. 
3. Number of proteins annotated as 'hypothetical protein'. 
4. Number of proteins per Kbp ((total number of proteins/genome length (bp)) * 1000). 
5. Number of amino acids for which at least one tRNA is annotated in the genome (excluding predicted or annotated 
pseudo tRNAs). 
6. Percent of short proteins (number less than 150 amino acids in length/total number of proteins * 100). 
7. Percent of standard starts for proteins (number of standard starts (ATG)/total starts * 100). 
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Figure 2. Heatmap of selected annotation report measures for gammaproteobacteria. A set of 
measures were chosen corresponding to those used in principal component analysis (data not 
shown) but restricted to INSDC genomes from gammaproteobacteria. A two-dimensional cluster-
ing of the selected and scaled data (subtracted column means, division by standard deviation) 
demonstrates similar clusters that were obtained in the PCA analysis (data not shown). For Figure 
2, no clustering was done and the input genomes are arranged alphabetically by organism name 
and shaded to indicate different genera. A color-key and histogram at bottom right indicate the 
relative intensities of the annotation measures (the histogram applies to all measures, color inten-
sities apply to each cell). Genomes described in the text are in bold. 
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Researchers are encouraged to update their anno-
tations on archival records to meet the minimal 
standards and to correct any annotation discre-
pancies. Systems are being developed at NCBI to 
check newly submitted genomes for compliance 
with minimal standards and reports will be pro-
vided to submitters for quality assurance. Genom-
ic records where the minimal standards cannot be 
met for real biological reasons will have explana-
tory comments added to the record. 

Pseudogene Identification, Nomenclature, 
and Annotation 
Pseudogene definitions take a variety of forms and 
the difficulties in properly defining and labeling 
pseudogenes stem from the same problem: a neg-
ative cannot be experimentally verified [74]. In 
eukaryotes, pseudogenes are defined as non-
functional copies of gene fragments due to retro-
transposition or genomic duplication, while in 
prokaryotes they result from degradation 
processes of either single copy or multiple copy 
genes either after duplication or failed horizontal 
transfer events [74,75]. A recent analysis of pseu-
dogenes in Salmonella genomes suggests that they 
are cleared relatively rapidly from a genome indi-
cating that their presence is a recent evolutionary 
event [76]. Although a clear definition of pseudo-
genes was not put forth, it was stressed that 
INSDC expects that all genome annotation should 
reflect the biology as determined by the underly-
ing sequence. The INSDC feature table format pro-
vides several exceptions for cases of unusual biol-
ogy but there are consequences for these unusual 
annotations that serve as flags in genome records 
(Table 3). A proposal was made to alter the pseu-
dogene qualifier "/pseudo" to both"/pseudogene" 
and "/nonfunctional" as /pseudo is not considered 
to equate 100% to /pseudogene and that request 
is still being discussed by INSDC. The INSDC sub-
mission guidelines as they currently stand and the 
possible annotation strategies for pseudogenes, 
non-functional genes, and other cases are detailed 
in Table 4. It is essential for the research commu-
nity to understand that in all cases, INSDC does 
not allow a translated product (protein or po-
lypeptide chain) to be derived from a feature 
labeled as a pseudogene. More specifically, an 
instantiated peptide sequence, a product, and pro-
tein identifiers are not allowed for annotation 
purposes. Similarly, gene fragments (regions of 
similarity without valid start and stop) may not be 

annotated with translations. Exceptions to these 
rules require specific qualifiers that must fit speci-
fied formats and requirements. 

Functional Annotation 
Functional annotation results include guidelines 
on protein naming as well as a project to compare 
different protein naming resources in an effort to 
converge towards a consistent set of protein 
names by utilizing common guidelines. 

Functional Annotation - Protein Naming 
Guidelines 
Establishing protein naming standards has been a 
keystone of various curation efforts. In particular, 
this issue recognizes the protein name as the low-
est common denominator of information ex-
change. The protein name is what is used in 
BLAST definition lines, which many users utilize 
as the sole information source. Ontologies were 
discussed but were not considered a priority. En-
suring up-to-date and well formatted protein 
names aids functional comparison and reliable 
hypotheses can be generated based on a set of 
consistent names, while the converse is true for 
badly formed names. UniProt had established pub-
licly available naming guidelines that were mod-
ified during discussions and a set of prokaryotic-
specific naming guidelines was adopted. The 
guidelines provide a basis for efficient and effec-
tive protein naming that is being used in the cura-
tion of both UniProt and RefSeq annotations. It is 
expected that all genomes submitted to INSDC will 
also follow these guidelines. A separate publica-
tion will detail the UniProt naming guidelines 
which are currently available online (Table 1). In 
addition, there is a general functional naming 
guideline that is applicable to protein names for 
all organisms (Table 1). 

One particular issue of protein naming is the issue 
of specific names for proteins that have unknown 
or uncertain functional assignments. The final ac-
cepted resolution is that only two synonymous 
names will be acceptable: “hypothetical protein” 
or “uncharacterized protein”. Names such as “con-
served hypothetical protein”, “novel protein”, or 
“protein of unknown function” are no longer ac-
ceptable in genome submissions. 
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Table 4. Pseudogene annotation strategies and outcomes 
Case Situation Flag1 How to Annotate Consequence2 In BLAST3 

1 Pseudogene "/pseudo" pseudogene 

no translation; product 
name is in note,  
associated feature 
(CDS, tRNA, rRNA, 
etc.) will be annotated 

No 

2 
Potential pseu-
dogene 

N/A 

normal gene  
annotated, potential 
pseudogene status in 
note 

no CDS feature, not 
documented as a  
pseudogene, not track-
able as protein vs. 
RNA-coding 

No 

3a 

Frameshifted 
gene and  
sequence IS  
correct 

"/pseudo" 
combine intervals 
into a single gene 
with /pseudo 

no translation; product 
name is in note 

No 

3b 

Frameshifted 
gene and se-
quence MAY be 
correct 

N/A 
keep both and add a 
note to each CDS 

two separate coding 
regions and two  
protein translations 

Yes (Both) 

3c* 

Frameshifted 
gene and there 
are sequence 
ERRORS 

/”exception=”annotated 
by transcript or proteo-
mic data” AND 
("/experiment" OR 
"/inference") 

experimental  
evidence defining 
the evidence that 
translation is correct 
and/or inference 
pointing to Acces-
sion Number with 
correct translation 

protein sequence  
imported- translation 
does not match nucleo-
tide 

Yes 

3d 

Frameshifted 
gene and there 
are sequence 
ERRORS 

"/artificial_location" 
locations altered for 
'correct' location 

all protein deflines  
prefaced with “LOW-
QUALITY PROTEIN:” 

Yes 

4 Region of  
similarity N/A 

misc_feature d 
enoting location of 
region of similarity 

no gene, no locus_tag, 
not systematically 
enumerated 

No 

5 
Potential  
unresolvable 
problems N/A 

note explaining the 
issue 

no change in  
annotation 

Yes 

64 

Split/interrupted 
gene in the case 
of an insertion 
(ex. transposon 
insertion) 

N/A 

could be either a 
single interval, or a 
split interval, anno-
tation depends on 
consequence of in-
sertion 

no standards for split 
genes, locations do not 
match regions of  
similarity 

No 

1. Qualifier to be used on feature. 
2. Downstream consequence of annotation decision, including impacts on presentation of the record. 
3. Whether a protein sequence is encoded and will be present in protein and BLAST databases. Note, BLAST dbs only 
provide the ability to differentiate proteins based on defline changes. ie. Case 3b, 3c, and 5 present undifferentiated pro-
tein deflines in BLAST databases whereas case 3d has an altered protein defline. 
4. Insertions can result in complicated cases such as gene fusion events. These annotation results should be due to real 
insertions, not simply regions of the genome that exhibit weak similarity to a part of a protein sequence. 
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Comparison of functional annotation sources 
Numerous resources are used in the annotation of 
protein functions and names and there are two 
established models for curation. Either a model 
organism database has been established for par-
ticularly important or well-studied organisms, or a 
set of protein families with similar function have 
been curated. One of the earliest examples of the 
latter was the Clusters of Orthologous Groups de-
veloped at NCBI which is no longer actively cu-
rated [46]. Since that time extensive work has 
been done by at least four separate groups: JCVI 
has produced the TIGRFAM set of protein families 
with a subset identified as equivalogs with the 
same function, UniProt's High-quality Automated 
and Manual Annotation of microbial and chlorop-
last Proteomes (HAMAP), the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) orthology groups 
(KO) that uses NCBI Reference Sequences, and 
NCBI's Protein Clusters database that includes 
prokaryote, viral, and selected eukaryotic organ-
ism groups (ProtClustDB) [26], [46,47,49,77]. The 
TIGRFAMs and HAMAP projects contain only cu-
rated families, whereas KEGG and ProtClustDB 
have both curated and uncurated clusters. In 2009 
NCBI and JCVI jointly collaborated on an initiative 
to compare the functional names derived from 
TIGRFAMs with NCBI's curated protein clusters. 
The comparison results led to improvements in 
both databases (data not shown). A comparison of 
protein family annotation from all four databases 
is available online (Table 1). 
An immediate goal of this process was the estab-
lishment of a core functional set that is expected 
to be encoded in all genomes. A number of studies 
over the years have addressed the idea of a mi-
nimal set of essential functions for a prokaryotic 
organism. The exact number fluctuates depending 
on the set of organisms used, the criteria for de-
termining orthology, and whether only complete 
proteins or domains are considered [61,62], [78]. 
The initial set of universal COGs derived from pro-
teins encoded in the 66 unicellular genomes at 
that time served as a starting point. Correspon-
dence to the NCBI protein clusters database was 
checked, and a preliminary set of 61 functions 
corresponding to 191 clusters was created 
[26,46]. Next, all complete RefSeq genomes were 
checked to determine if all core functions were 
encoded. For those genomes where a protein 
could not be found, the nucleotide sequence and 
annotation were examined to assess whether a 
pseudogene/frameshifted gene was already  

annotated that corresponded to the missed func-
tion. For those cases that did not already have an 
annotated feature, a proper translation of the 
missed gene was examined with the result that a 
number of core functions that were previously 
missed from the submitted genome annotation 
were added to the Reference Sequence record. A 
total of 42 protein coding genes and translated 
features were added covering 12 functional 
groups (Table 5). To determine if the proteins 
were missed due to their smaller size, an examina-
tion of their average length for the proteins found 
in clusters corresponding to these 12 core func-
tions was undertaken. Although most of the core 
cluster sets exhibit average lengths that are less 
than the minimum of the range of average protein 
lengths found in all genomes (232 aa from Table 
3), especially those that were most frequently 
missed such as ribosomal protein S14, most are 
above typical length cutoffs and should still be 
found in even the most rudimentary annotation 
pipelines. Therefore, high protein length thre-
sholds during annotation pipeline runs cannot 
adequately explain all discrepancies and missed 
core functions. To help solve these problems, all 
new RefSeq genomes will be tested against the 
core set for missed functions, and this process will 
be made available both as a set of clusters and in-
corporated into existing genome analysis tools for 
submitters (Table 1). The core set will gradually 
be expanded to archaeal, bacterial, and then to 
more taxonomically restricted core functional sets 
such as species level pangenomic families [79]. 
The core set establishes the initial set for func-
tional name comparison for the 61 functions and 
191 clusters. Comparison to TIGRFAM, HAMAP, 
and KEGG resulted in mapping to 127, 99, and 77 
families (or subfamilies), respectively. A total of 
122 of the 191 clusters have mappings to all other 
sources. Of those, only 26 have identical curated 
names. Multi-way comparison shows that most 
non-identical names are synonymous, except in a 
few cases. Examples include the tRNA synthetases, 
which almost always have identical names, but in 
a few cases are named as the ligase and not the 
synthetase. An example is 'tryptophanyl-tRNA 
synthetase' which in some instances is named 
'tryptophan--tRNA ligase' the accepted NC-IUB 
(Nomenclature Committee of the International 
Union of Biochemistry) name for the Enzyme 
Commission number 6.1.1.2 (Table 1).  
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Pairwise comparison of ProtClustDB clusters and 
the other protein family sources shows two 
things: 1) a number of protein family resources 
are missing curated core functions or that these 
families mapped below threshold levels, and 2) 
that there are substantially higher numbers of 
identically curated protein names in two- and 
three-way comparisons. All four databases have 
agreed to resolve differences and to work to in-
corporate the UniProt guidelines into the curated 
functional names. As these resources are heavily 
used in genome annotation pipelines, improve-
ments to these records will improve annotations 
in many genomes and set a standard for other re-
sources. Additional protein family resources are 

encouraged to be included if they agree to the 
same goals and are welcome to contact us. Inter-
Pro, for example, is another database that inte-
grates information from a variety of source data-
bases and their ongoing effort was acknowledged 
at the workshop [80]. 

Viral/phage annotation standards 
Viral annotation standards were discussed for the 
first time at the 2010 annotation workshop. A set 
of proposals was published separately and syn-
thesizes many of the ideas presented above with 
respect to issues of annotation, capturing experi-
mental data, meta-data, and genome classification, 
all in the context of viral genomes [81]. 

 

Table 5. Core proteins added to RefSeq genomes1 

Protein2 Number of additions3 Avg. Length4 

30S ribosomal protein S8 1 131.4+/-2.1 

30S ribosomal protein S11 1 130.1+/-5.8 

30S ribosomal protein S14 10 84.1+/-19.3 

30S ribosomal protein S15 3 94.1+/-17.1 

30S ribosomal protein S19 9 96.1+/-15.0 

50S ribosomal protein L2 1 273.8+/-10.2 

50S ribosomal protein L11 1 144.4+/7.0 

50S ribosomal protein L23 2 99.2+/-10.3 

50S ribosomal protein L29 7 68.2+/-9.8 

elongation factor P 1 185.4+/-16.9 

flap-1 endonuclease 2 832.6+/-204.1 

translation initiation factor IF-1 4 77.3+/-11.1 

1. Search for protein and nucleotide against RefSeq genomes (Aug. 10, 2010) iden-
tified cases where gene/protein were not present as either normal or non-
functional. In those cases, a new gene/CDS/protein was added to the RefSeq 
record. 

2. Protein name/functional name. 

3. Number of proteins added for each category, in some cases multiple additions to 
the same genome. 

4. The average protein length and standard deviation of lengths for all proteins from 
all clusters for each functional group. In some cases there are multiple protein clus-
ters for one functional group. 
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Conclusions 
These guidelines provide mechanisms for individual 
researchers studying a single genome as well as 
those doing high throughput sequencing to ensure 
that high quality annotation is produced, submitted 
to, and available from the sequence archives. Me-
chanisms are in place to capture annotation metho-
dologies and evidence, and in conjunction with stan-
dards developed by other international bodies 
where meta-data submission has been defined, pro-
vide a rich and understandable way to determine 
exactly how annotation was produced. Standard 
protein naming guidelines and projects to compare 
and update protein naming resources will result in 
higher quality annotation resources and protein 
names in submitted genomes. A major goal of setting 
minimal standards for the annotation and submis-
sion of gold standard complete genomes was 
achieved and will elevate that set of fundamentally 
important resources for all researchers, ensuring 
those studying basic biological processes,  

epidemiological outbreaks, and large-scale metage-
nomic projects will have a high quality resource to 
draw from when making hypotheses and drawing 
inferences (Table 6). Although not all issues were 
resolved, and many more remain to be addressed at 
future workshops, these initial guidelines provide a 
blueprint for a way forward to resolving these issues 
and we recognize that many others are working to-
wards similar or parallel goals. One such project is 
the COMBREX initiative to establish a gold standard 
set of functionally annotated proteins as well as a 
source of predictions against which functions can be 
tested [82]. If complete genomes are to be efficiently 
utilized as reference genomes it is essential that they 
represent the highest quality annotation possible. 
Although this document specifically listed efforts by 
NCBI to provide resources and tools to improve an-
notation, NCBI recognizes the ongoing work to im-
prove annotation by all of the organizations that at-
tended and contributed to all workshops. 

 
Table 6. Minimal annotation standards and guidelines accepted At 2010 NCBI genome annotation workshop1 
1. A complete prokaryotic genome should have: 

a. set of ribosomal RNAs (at least one each 5S, 16S, 23S) 
b. a set of tRNAS (at least one each for each amino acid) 
c. protein-coding genes at expected density (not all named 'hypothetical protein' and all core genes annotated) 

2. Annotations should follow INSDC submission guidelines: 
Annotation standards should follow feature table format and submission guidelines (GenBank/ENA/DDBJ - Table 
1) 
a. prior to genome submission a submitted Bioproject record with a registered locus_tag prefix is required and the 
genome record should contain the Bioproject ID. All proper features should have genes and locus_tags 
b. the genome submission should be valid according to feature table documentation and follow the standards 

3. Methodologies and SOPs (Standard Operating Procedures): 
Information about SOPs and additional meta data can be provided in a structured comment with more specific in-
formation about experimental or inference support provided on annotated features (see Table 2). 

4. Exceptions: 
Exceptions (unusual annotations, annotations not within expected ranges - see Table 1) should be documented on 
the genome record and strong supporting evidence should be provided. 

5. Pseudogenes: 
Annotated pseudogenes should follow the accepted formats (see Table 4). 

6. Additional/enriched annotations: 
Additional (enriched) annotations should follow INSDC guidelines, and be documented as above (SOPs and evi-
dence). 

7. Catalog of reputable annotation guidelines, software, and pipelines: 
This non-exhaustive list of reliable software, sources, and databases for the production of microbial genome anno-
tation is a useful community resource that aids in producing high quality genome annotation (Table 1). 

8. Validation checks and annotation measures: 
Validation checks should be done prior to the submission of a new genome record. NCBI has already provided 
numerous tools to validate and ensure correctness of annotation and additional checks and reports will be put in 
place to ensure minimal standards are met (see Table 1). 

1 Guidelines were created for complete genomes (all replicons closed to single contigs). In some cases the minimal set of annotations will 
not be found on draft genomes, but the guidelines for annotation still apply. 
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