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Inhibitory effects of choline-O-sulfate on amyloid formation of human islet
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Choline-O-sulfate (2-(trimethylammonio)ethyl sulfate, COS) is a naturally occurring osmolyte that is
synthesized by plants, lichens, algae, fungi, and several bacterial species. We examined the inhibi-
tory effects of COS on amyloid formation of the human islet amyloid polypeptide (hIAPP or amylin)
using a thioflavin T (ThT) fluorescence assay, circular dichroism spectroscopy and transmission elec-
tron microscopy. The results showed that COS suppresses a conformational change of hIAPP from a
random coil to a b-sheet structure, resulting in the inhibition of amyloid formation. Comparisons
with various structural analogs including carnitine, acetylcholine and non-detergent sulfobetaines
(NDSBs) using the ThT fluorescence assay showed that COS is the most effective inhibitor of hIAPP
amyloid formation, suggesting that the sulfate group, which is unique to COS, significantly contrib-
utes to the inhibition.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction lytes, including trehalose [11], a-D-mannosylglycerate [12] and
Osmolytes are small organic compounds that accumulate in
cells in response to osmotic stress to prevent the misfolding/dena-
turation of proteins and ensure that they maintain their native
structure [1]. Thus, osmolytes are often termed ‘‘chemical chaper-
ones’’ or ‘‘small stress molecules’’. Most of the organic osmolytes
bear no net charge at physiological pH, and at high concentrations
do not affect cytoplasmic functions such as protein catalysts and
show no toxicity to the cellular environment.

These properties of osmolytes have enabled their application in
biotechnology and medicine. Glycine betaine is a strong stabilizer
of globular proteins against thermodenaturation or salt stress
in vitro [2–4]. In contrast, destabilizing osmolytes such as arginine
and lysine are commonly used to solubilize inclusion bodies and
insoluble protein aggregates. Glycine betaine is often used as PCR
enhancing agents that improve yields and the specificity of difficult
targets (for example, GC-rich sequences) in PCR amplification reac-
tions [5–8]. Osmolytes are capable of stabilizing and destabilizing
proteins and DNA, depending on the osmolyte concentrations
and/or solvent conditions (pH) [9,10]. In addition, several osmo-
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ectoine [13], are effective in preventing amyloid formation of Alz-
heimer’s Ab peptides in vitro. Since these osmolytes are not toxic to
the cellular environment, they represent potential inhibitors of
neurodegenerative disorders [14].

This study focuses on the choline ester, choline-O-sulfate
(2-(trimethylammonio)ethyl sulfate, COS), which is an osmolyte
widely distributed in nature (Fig. 1). When compared with other
osmolytes, the sulfate group of COS is unique and is the most char-
acteristic structural and functional feature. COS is synthesized by a
variety of plants, lichens, algae and fungi, and by several bacterial
species [15–19]. The synthesis of COS is catalyzed by sulfur trans-
ferases that use 30-phosphoadenosine-50-phosphosulfate and cho-
line as their substrates. COS also plays an important role in the
microbial transformation of sulfur in the soil. Production of COS
by the conjugation of sulfate with choline is proposed to serve in
the detoxification of SO�4 , whereas COS can also function as a source
of choline and sulfur after hydrolysis by choline sulfatases [20]. The
osmoprotective effects of COS are known for several plant, fungal
and bacterial species, such as Halomonas elongata [21], Salmonella
typhimurium [22], Limonium [17], Penicillium fellutanum [23], Esch-
erichia coli and Bacillus subtilis [19]. However, the application of
COS as an anti-aggregation reagent has not been reported.

In this study, we examined the inhibitory effects of COS on amy-
loid formation of an amyloidogenic peptide associated with dis-
eases using a thioflavin T (ThT) fluorescence assay, circular
dichroism (CD) spectroscopy and transmission electron microscopy
lsevier B.V. All rights reserved.
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Fig. 1. Chemical structure of COS and the structural analogs used in this study.
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(TEM). The amyloid-forming peptide used was human islet amyloid
polypeptide (hIAPP, also known as amylin), which is a 37-residue
hormone peptide that is co-secreted with insulin from pancreatic
b-cells [24,25]. In most type-2 diabetes patients, hIAPP is found in
large deposits in the pancreas where it aggregates to form amyloid
fibers. hIAPP aggregation is believed to be pathologically associated
with b-cells toxicity in type-2 diabetes. In addition, to clarify which
group of COS is functionally important in inhibiting amyloid forma-
tion, we used the ThT fluorescence assay to compare the activities
of COS and various structural analogs, including glycine betaine,
carnitine, acetylcholine and non-detergent sulfobetaines (NDSBs)
(Fig. 1). Although NDSBs are not naturally synthesized, they are
similar to COS in terms of quaternary ammonium compounds with
a short hydrophobic group. NDSBs have often been used as agents
to prevent protein aggregation and improve the yield of active pro-
teins when added to buffers during in vitro protein renaturation
[26–28]. A key difference between COS and NDSBs is that NDSBs
have a sulfonate group, whereas COS has a sulfate group (Fig. 1).
This is the first report describing the anti-aggregation properties
of COS. The results show that COS is the most effective inhibitor
of amyloid formation of hIAPP in vitro, with the sulfate group play-
ing a key role in the inhibition.

2. Material and methods

2.1. Materials

Full-length hIAPP (37 residues) was purchased from the Peptide
Institute, Inc. (Osaka, Japan). COS was obtained from SI Science Co.,
Ltd. (Tokyo, Japan). All NDSBs were purchased from Merck Japan
Ltd. (Tokyo, Japan). 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) was
purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan).
The other chemicals and reagents were purchased from Wako Pure
Chemical Industries Ltd. (Osaka, Japan).

2.2. Preparation of peptide solutions

The preparation of synthetic hIAPP in a stable conformation was
carried out according to Higham et al. [29]. hIAPP was dissolved in
100% HFIP to a concentration of 0.37 mg/ml and sonicated in a
water bath for 2 min. The dissolved peptide was filtered
(0.2 lm), aliquoted into microtubes, dried under vacuum and
stored at �30 �C. Immediately prior to use, the HFIP-treated hIAPP
was dissolved to a final concentration of 1 mM in 100% HFIP and
diluted to a final concentration of 10 lM in 10 mM sodium acetate
buffer (pH 6.4). Amyloid formation of hIAPP was followed by incu-
bation at room temperature (25 �C).

2.3. The ThT fluorescence assay

The hIAPP sample solution was prepared as described above;
the concentration was 10 lM hIAPP, 10 mM sodium acetate (pH
6.4) and 1% HFIP (v/v) in the absence of COS, or in the presence
of COS or the structural analogs. For the assay, the ThT solution
was added to the sample to a final concentration of 20 lM. ThT
fluorescence changes were measured at room temperature using
an FP-6500 spectrofluorometer (Jasco, Japan). The fluorescence
intensity was monitored at an excitation wavelength of 450 nm
and an emission wavelength of 482 nm with excitation and emis-
sion slit widths at 5 nm each. The curve fitting was according to a
four-parameter sigmoidal curve using Sigma Plot v. 6.00 (SSPS Inc.,
USA) using the following equation:

y ¼ y0 þ a=ð1þ expð�ðx� x0Þ=bÞÞ ð1Þ

where y is the fluorescence at time x, y0 is the initial fluorescence
value, x0 is the time when the fluorescence reaches 50% of its max-
imum value, and a is the maximal fluorescence at the stationary
phase [30].

2.4. Transmission electron microscope (TEM)

TEM was used to visualize the hIAPP aggregates. The concentra-
tion of the sample solution was the same as described in the ThT
fluorescence assay. After a 24-hour incubation period with or with-
out 100 mM COS at room temperature, 20 ll of the hIAPP sample
was applied to the Carbon-coated Formvar 200 mesh copper grids.
After 30 s, excess fluid was removed, and grids were negatively
stained with 2% aqueous uranyl acetate (5 ll) for 10 s and dried
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overnight. Stained grids were viewed with a JEM-2010 TEM (JEOL,
Japan).

2.5. Circular dichroism (CD) spectroscopy

CD spectra in the far-UV light range (190–260 nm) at each time
point were measured at room temperature with a model J-720
spectropolarimeter (Jasco), using a cylindrical quartz cell with a
0.1 or 0.5 mm path length. The concentration of the sample solu-
tion was the same as described in the ThT fluorescence assay. For
each sample, four consecutive spectra were acquired and base-
line-subtracted. Results were expressed as mean residue ellipticity.
The secondary structure content was estimated from each spec-
trum using the CDPro software package [31,32]. A reference data
set, SDP42(#6), was used in the CDPro analysis.

3. Results and discussion

3.1. ThT fluorescence assay

hIAPP is among the most amyloidogenic peptides known, and
has a strong in vitro tendency to aggregate into fibrils [33–35].
To establish identical starting conditions for the series of experi-
ments, HFIP-treated hIAPP peptides were used. Under these condi-
tions, the peptide is soluble and adopts primarily a random
conformation that undergoes a slow transition to the amyloido-
genic b-sheet structure [29].

ThT exhibits a characteristic fluorescence spectral change upon
binding amyloid fibrils [36]. The effect of COS on amyloid forma-
tion of hIAPP was examined by monitoring changes in the ThT fluo-
rescence of hIAPP (10 lM) in the presence of different
concentrations of COS. When hIAPP was incubated alone, a time-
dependent increase in ThT fluorescence was observed and followed
a sigmoidal curve (Fig. 2A). Such an observation is typical of amy-
loid formation with an initial lag phase and subsequent phases of
elongation and saturation [37,38]. Co-incubation of hIAPP with
COS inhibited the amyloid formation of hIAPP in a concentration-
dependent manner (Fig. 2A). Fig. 2B indicates that the IC50 value
is approximately 70 mM. These results indicate that COS inhibits
hIAPP aggregation.

3.2. TEM observations

TEM images showed that the control sample of the hIAPP aggre-
gates in the absence of COS contained a high density of typical
Fig. 2. Effect of COS on hIAPP amyloid formation. (A) ThT fluorescence intensity of hIAPP
from 10 to 500 mM. (B) Concentration-dependent inhibition by COS against hIAPP amylo
incubated with COS at each concentration for 24 h to that of the control in the absence of
estimated to be approximately 70 mM.
unbranched amyloid fibrils, which have been previously reported
[35,39,40] (Fig. 3, left). In contrast, the samples in the presence
of COS contained a much lower density of thin fibrils (Fig. 3, right).
These results also demonstrated that COS prevents amyloid
formation.

3.3. CD spectral analysis

To examine how COS affects the secondary structure during
hIAPP aggregation, we measured CD spectra at different time
points in the presence or absence of COS. The hIAPP peptide in
the absence of COS initially showed a CD spectrum with a mini-
mum at 203 nm (Fig. 4A, left). Such a spectrum is characteristic
of random coil conformations. CD spectra recorded at 30, 72 and
120 h demonstrated a time-dependent conversion from random
coil to b-sheet conformation, as shown by a loss of the signal at
203 nm and the appearance of a minimum at 218 nm. According
to the results of the CD deconvolution, the content of random coil
conformation decreased from 64% to 34%, whereas the b-sheet con-
tent increased from 27% to 53% (Fig. 4B, left). The helical content
did not significantly change. Similar results using CD analysis of
the hIAPP peptide have been reported [35,39].

In the presence of COS, however, the spectra remained primar-
ily unchanged for the first 30 h, and therefore the peptide adopted
a random coil conformation. At 72 h, the spectrum altered with
minima at 207 and 219 nm (Fig. 4A, right). At 120 h, the amplitude
of the spectrum had significantly decreased. This can be explained
by the increase in insoluble amyloid fibrils of hIAPP as observed in
the ThT fluorescence assay. The CD deconvolution indicated that
the content of random coil decreased from 64% to 54%, and that
of the b-sheet increased from 25% to 34% (Fig. 4B, right). Such an
increase in b-sheet structure occurred more slowly when COS
was present. With or without COS, the helical content remained
at �15% for 120 h. Such virtually unchanged helical content over
time is also observed in other similar in vitro experiments of hIAPP
fibril formation [35,39]. These results showed that COS suppresses
a conformational change of hIAPP from a random coil conforma-
tion to a b-sheet structure.

3.4. Comparison of the inhibitory effects with COS structural analogs

To examine which chemical group of COS functions more
effectively in suppressing amyloid formation, we compared the
inhibitory effects of COS with those of various structural analogs
of COS using the ThT fluorescence assay. The analogues used
(10 lM) at room temperature in the absence and presence of COS at concentrations
id formation. Data are expressed as a ratio of the ThT fluorescence intensity of hIAPP
COS. Values are the means ± standard deviations (n = 3). The IC50 values of COS were



Fig. 3. TEM images of hIAPP incubated without/with 100 mM COS for 24 h with 2%
uranyl acetate. The COS concentrations approximately correspond to the IC50 values
of COS.

Fig. 5. Inhibition of COS and the structural analogs on hIAPP amyloid formation.
ThT fluorescence of hIAPP (10 lM) incubated with 100 mM COS or each structural
analog was measured at room temperature after 24 h.
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included glycine betaine, carnitine, acetylcholine and five NDSBs
(Fig. 1). The comparison showed that COS is the most effective
inhibitor of hIAPP amyloid formation (Fig. 5). The inhibitory effects
are in the order: COS > NDSB-195, -201, -211, -221 and -256 > ace-
tylcholine, carnitine and glycine betaine. No significant difference
among the NDSBs indicates that the distinct ‘side-chains’ grafted
onto their quaternary amine are not directly involved in inhibiting
hIAPP amyloid formation. Moreover, as COS was a more effective
inhibitor than glycine betaine, acetylcholine or carnitine, all of
which have the same quaternary amine group, this suggests that
the sulfate group of COS is more important in suppressing amyloid
formation than the other acid groups.
Fig. 4. Effect of COS on the secondary structure of hIAPP during amyloid formation. (A)
points in the absence (left) and presence (right) of 100 mM COS. Similar data were obtaine
the CD spectra in the absence (left) and presence (right) of COS. Data are presented as m
3.5. Concluding remarks

The results of this study showed that COS suppresses the
structural conversion of hIAPP from a random coil conformation
to a b-sheet structure, thereby inhibiting amyloid formation. Thus,
the presence of COS appears to stabilize the random coil state of
the peptide. Some osmolytes have both properties of stabilizing
Far-UV CD spectroscopy of hIAPP recorded at room temperature at different time
d in at least four replicate experiments. (B) Secondary structure prediction based on
ean ± standard deviation (n = 4).
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and destabilizing proteins, depending on the concentration and/or
solvent conditions [41,42]. The stabilizing osmolytes are preferen-
tially excluded from the immediate vicinity of the protein surface,
and this exclusion suggests a solvophobic interaction between
amino acids forming the protein surface and the protecting osmo-
lytes. Conversely, certain solution conditions disfavor exclusion
and this allows osmolytes to be preferentially bound to the protein,
leading to the stabilization of the denatured protein state. Both
functions are thought to involve the interaction of the osmolyte
with the peptide bond [43–45]. Thus, presumably, COS preferen-
tially interacts with the backbone of hIAPP and prevents interac-
tions between the peptide backbone moieties that facilitate the
formation of b-sheets and subsequent amyloid formation. The re-
sults in this study suggest that the sulfate group of COS efficiently
interacts with the amide group of the peptide backbone. According
to the TEM observations, the fibrils formed in the presence of COS,
which were rarely observed, are thinner than the fibrils formed in
the absence of COS. The putative interaction of COS with the pep-
tides may have effects on the formation of the b-sheet structure
and/or the fibrils.

The findings provide insights into the design of inhibitors
against protein aggregation or amyloid formation; for example, a
new NDSB containing a sulfate group. The application of COS or a
new NDSB as an inhibitory agent against various kinds of aggrega-
tion states requires examination, and further studies will reveal the
detailed molecular mechanism of the COS inhibition.
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