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ABSTRACT
Taxonomic markers such as the 16S ribosomal RNA gene are widely used in microbial
community analysis. A common first step in marker-gene analysis is grouping genes
into clusters to reduce data sets to a more manageable size and potentially mitigate
the effects of sequencing error. Instead of clustering based on sequence identity,
marker-gene data sets collected over time can be clustered based on temporal
correlation to reveal ecologically meaningful associations. We present Ananke, a
free and open-source algorithm and software package that complements existing
sequence-identity-based clustering approaches by clusteringmarker-gene data based on
time-series profiles and provides interactive visualization of clusters, including high-
lighting of internal OTU inconsistencies. Ananke is able to cluster distinct temporal
patterns from simulations of multiple ecological patterns, such as periodic seasonal
dynamics and organism appearances/disappearances. We apply our algorithm to two
longitudinal marker gene data sets: faecal communities from the human gut of an
individual sampled over one year, and communities from a freshwater lake sampled
over eleven years. Within the gut, the segregation of the bacterial community around a
food-poisoning event was immediately clear. In the freshwater lake, we found that
high sequence identity between marker genes does not guarantee similar temporal
dynamics, and Ananke time-series clusters revealed patterns obscured by clustering
based on sequence identity or taxonomy. Ananke is free and open-source software
available at https://github.com/beiko-lab/ananke.

Subjects Bioinformatics, Ecology, Microbiology, Computational Science
Keywords Time series, Microbiota, Clustering, Marker gene, Visualization

INTRODUCTION
Phylogenetic marker-gene sequencing has revolutionized our understanding of microbial
ecology. Nearly every conceivable habitat has been profiled using markers such as the
16S ribosomal RNA (rRNA) gene. These studies have revealed a hitherto unappreciated
degree of diversity among both well-studied and novel microorganisms (Lynch & Neufeld,
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2015). A single sample provides a detailed view of a microbial community at one given
point in time, but time-series sampling is increasingly used to track changes in a microbial
community, often in connection with changes in the environment. Examples of time-
series sampling include the tracking of microbial succession in the gut of a developing
infant (Koenig et al., 2011), demonstrating the existence of a ‘‘microbial seed bank’’ in a
marine environment (Caporaso et al., 2012), and showing differences in temporal variability
of human oral, gut, and skin microbial communities across individuals (Flores et al., 2014).

The large amount of data generated in microbial marker-gene surveys can present
a significant impediment to analysis; a single data set can contain millions of unique
sequences, including real variants and products of sequencing error. Clustering methods
are often used to reduce the magnitude of the data and minimize the impact of sequencing
errors. Traditionally, the most common clustering approach is to merge sequences into
operational taxonomic units (OTUs) at a pre-defined sequence-identity threshold, often
97% (Koenig et al., 2011; Caporaso et al., 2012; Flores et al., 2014; Shade et al., 2013; David
et al., 2014; Caporaso et al., 2011). Although sequence-identity-based OTU clustering can
streamline and simplify analyses, it suffers from limitations. Sequences from ecologically
distinct community members can be lumped together into the same OTU if their marker
genes have high sequence identity, thus treating them as a single entity in spite of their
ecological differences (Tikhonov, Leach & Wingreen, 2015; Eren et al., 2013). This can
diminish the effectiveness of analyses that treat OTUs as homogeneous entities, such as
co-occurrence network analysis (Beiko, 2015). The common sequence-identity threshold
of 97% is also seen as a proxy for species boundary, but the high accuracy of modern
sequencers (Schirmer et al., 2015) allows us to confidently investigate marker-gene data
at a finer resolution. Several new methods, such as DADA2, oligotyping, and minimum
entropy decomposition, have been developed to harness the accuracy of modern sequence
data to increase the resolution of marker gene analyses (Callahan et al., 2016; Mark Welch
et al., 2014; Eren et al., 2015). These tools indicate a shift away from 97% sequence-identity
OTUs and toward more precise sequence variants.

Methods that construct clusters based on attributes more closely linked to ecological
properties can overcome the limitations of sequence-identity-based OTUs while retaining
the benefits of clustering. For example, distribution-based clustering has been used to split
OTUs when the member sequences have distinct distributions across samples, minimizing
inappropriate aggregation (Preheim et al., 2013). With time-series data, sequences can be
clustered based on correlated changes in relative abundance, which emphasizes temporal
cohesion at the possible expense of taxonomic coherence. This paper introduces Ananke, a
new algorithm and software package that clusters sequences based on temporal dynamics
rather than sequence identity. Ananke, the consort of Chronos in Greek mythology, is
the deity representing compulsion and necessity. Ananke generates time-series clusters
(TSCs) by grouping marker gene sequences based on consistent changes in their relative
abundance over time. We describe Ananke’s clustering algorithm, as well as its interactive
tool for visualizing results. This paper demonstrates Ananke’s high fidelity in detecting
ecological patterns and events using simulated time-series data, and demonstrates Ananke’s
utility using two 16S rRNA gene time-series data sets. Ananke TSCs had defined ecological
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roles in a human gut data set, reflected seasonal dynamics in a temperate lake data set,
and identified subtle patterns in each that may represent previously undescribed ecological
processes.

MATERIALS AND METHODS
Input data
Ananke requires only the sequence data and time points as input. The sequence
data can be any FASTA-formatted data, including but not limited to 16S rRNA gene
amplicon sequences. Sequences can be preprocessed (quality filtered, trimmed, ambiguous
nucleotides removed, etc.) beforehand with users’ preferred methods. The time point data
is a metadata file that relates the sample names to their relative sampling time.

Data tabulation and storage
Ananke tabulates the abundance of each unique sequence at each time point, resulting
in an m×n time-series matrix where m is the number of unique sequences and n is the
number of time points. To reduce space on disk and in memory, this data is stored in
compressed sparse row format in an HDF5 file (The HDF Group, 1997). The flexible HDF5
format allows for storage of all necessary data and metadata in a single file using a binary
representation. Taxonomic classifications and traditional sequence-identity-based OTUs
can be computed with users’ preferred pipelines and stored in the same HDF5 file. Since
Ananke operates on unique sequences rather than sequence-identity-based OTUs, data
filtering is a necessary step for larger data sets. Unique sequences can be filtered based on
the abundance of the sequence or the proportion of samples in which they appear. Ananke
can use raw sequences that are quality filtered with any pipeline. Using raw sequences
can be a beneficial approach as it maximizes the available information by avoiding any
unnecessary aggregation of sequences. This comes at the cost of larger data magnitude,
which can be handled by increased computational power, or a sequence filtering step. It
is also important to take caution in the interpretation of the TSCs that result from raw
sequences as the uncorrected reads will contain sequencing errors, chimeras, and other
artefacts. Ananke can import raw sequences from a FASTA file, or denoised sequences from
DADA2 (Callahan et al., 2016). If importing from DADA2, we recommend increasing the
OMEGA_A parameter to minimize overly aggressive aggregation. Denoising methods, such
as DADA2, minimum entropy decomposition (Eren et al., 2015), or oligotyping (Mark
Welch et al., 2014) are a useful complement to Ananke, as they use a conservative approach
to correct sequences that reduces data set size but is not as destructive to the underlying
patterns as traditional sequence-identity clustering. Denoised sequences generated by any
method can be imported into Ananke if they are first converted to FASTA format. If the user
chooses to denoise as a pre-processing step to Ananke, we recommend using conservative
correction parameters to avoid inadvertently degrading temporal patterns, especially those
resulting from rare sequences.

Calculating distance between time series
Ananke uses the short time-series (STS) distance (Möller-Levet et al., 2003) to compute
the distances between each pair of unique sequences at each time point. This distance
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represents the degree of dissimilarity between the sequences’ temporal profiles. Before
computing the STS distance, the sequence counts for each time point are normalized by
dividing by each time point’s sequence depth. Then each sequence’s temporal profile, xi, is
standardized to Z -scores as in Möller-Levet et al. (2003):

zi=
xi− x̄i
sxi

where x̄i is the mean and sxi is the standard deviation of the ith sequence’s temporal profile.
The squared distance between two standardized temporal profiles, zi and zj , is computed
using the formula:

d2STS=
n−1∑
k=0

(
zi,k+1−zi,k
tk+1− tk

−
zj,k+1−zj,k
tk+1− tk

)2

where i and j index the m unique sequences, and k indexes the n time points. For each
unique sequence there are n−1 slopes between the n consecutive time points. For a given
pair of unique sequences, the differences between their slopes are squared and summed to
obtain their STS distance. The STS distances are divided by the maximum distance in the
data set so that they fall in the closed interval [0,1]. The STS distance is the recommended
measure as it takes the sample order (i.e., temporal gradient) into account; however, other
measures such as Euclidean and Manhattan distances are available to use. To control for
data compositionality within each sample, users can select an optional centered log ratio
transform with count zero multiplicative zero imputation before distance calculations,
using the methods from the CoDaSeq R library (Gloor et al., 2016).

Clustering of time-series distances
The unique sequence pairwise STS distance matrix is clustered into Ananke TSCs by
the DBSCAN algorithm (Ester et al., 1996) implemented in the scikit-learn Python
library (Pedregosa et al., 2011). This algorithm requires two parameters: min_samples,
and ε. The min_samples parameter is set to 2 to prevent singletons from forming their
own Ananke TSCs, and instead places them into the ‘‘noise bin’’ which contains all
unclustered singleton sequences. These ‘‘noise’’ sequences are those that share no similar
temporal dynamics, at a given ε value, with any other sequence, and as such both rare and
highly abundant sequences can be labeled as noise. Additionally, rare sequences that appear
in only one time point, if not filtered out by an abundance filter, will form TSCs with all
other sequences that appear only at that time point. As ε is increased, fewer sequences will
be labeled as noise, but some TSCs will grow too large in size to be useful. Ananke allows
for interactive exploration of the parameter space by pre-computing results over a range of
ε values. Run times and memory usage for the various steps in the Ananke computational
pipeline are given in Table 1.

Visualization of time-series clusters
The Ananke-UI facilitates data exploration with an interactive application built with
Shiny (Chang et al., 2015), a library for the R programming language (R Core Team, 2015).
Ananke-UI imports the results file and plots the temporal profiles of Ananke TSCs, allowing
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Table 1 Run time (in seconds) andmemory usage (in MB) of the steps in the Ananke pipeline.

Step Stool, denoised Lake, full

Time (s) Mem. (MB) Time (s) Mem. (MB)

Tabulate/Import 3.8 126.6 609.1 2189.9
Filter – – 833.6 316.5
Cluster 36.3 719.7 733.1 10531.6
Add Classifications 2.3 106.9 11.1 221.6
Add Clusters 1.8 115.2 6.1 123.2
Total (time) 44.2 – 2193.0 –
Max (memory) – 719.7 – 10531.6

users to interactively explore the effects of the clustering parameter ε in the browser-based
application. We recommend that users begin exploring at the ε that provides the largest
number of TSCs, and therefore the greatest separation of sequences. The user interface
presents the taxonomic classifications and sequence-identity-based OTU assignments for
each unique sequence in an Ananke TSC, allowing users to compare different clustering
methods. The interface allows the user to explore their sequence identity-based clusters
(e.g., traditional 97% OTUs) with the constituent unique sequences coloured by their
time-series cluster membership. This allows temporal inconsistencies within an OTU to be
identified at a glance.

Generation of simulated data
Ecological patterns were simulated to provide a test set with known ground-truth cluster
assignments. We simulated six types of temporal patterns: extinction, arrival, seasonality,
conditional rarity (Shade & Gilbert, 2015), and stationary with low and high variance
(Fig. 1). A template relative abundance profile was generated for each pattern and 100
random trials based on each template were created by adding additional random noise and
scaling by a random factor. The simulations were repeated for different time-series lengths
(25, 100, 250, 500, and 1,000 time points). The simulated temporal profiles were clustered
over a range of ε clustering parameter values, and the adjusted mutual information (AMI)
score (Vinh, Epps & Bailey, 2010) with respect to the ground-truth was used as a measure
of cluster quality. The AMI score is a chance-corrected version of the mutual information
score that accounts for the amount of agreement between two sets of clusters that is
expected to be due to chance. It has been shown to be a better indication of cluster quality
than mutual information or normalized mutual information scores (Vinh, Epps & Bailey,
2010). The highest achieved AMI across the computed ε parameters was reported. The
code to generate simulations is available in the Ananke software package through the
simulation and score_simulation subcommands.

Human-associated and environmental data
Two biological time-series data sets were analyzed using Ananke. From David et al. (2014),
we analyzed the 191 faecal samples of ‘‘Subject B’’ taken on a nearly daily basis for a
year. These data were retrieved from the European Bioinformatics Institute (EBI) under
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Figure 1 Examples of the six types of simulated temporal patterns.

project accession PRJEB6518. The second data set is comprised of 96 time points from
an eleven-year time series of Lake Mendota in Wisconsin, USA. Sequences and metadata
were retrieved through EBI under accession PRJEB14911. For both data sets, Ananke
TSCs were computed over a parameter range of ε= 0.01 to ε= 1 with a step size of 0.01.
For comparison with sequence-identity clustering, sequences were clustered into 97%
OTUs using the UPARSE pipeline (Edgar, 2013) at 97% identity. For the faecal data, all
unique denoised sequences were classified with the Ribosomal Database Project naïve
Bayesian classifier v2.2 (RDP classifier) at a minimum 60% posterior probability (Wang
et al., 2007) trained against GreenGenes revision 13_8 (McDonald et al., 2012) via QIIME
v1.9.0 (Caporaso et al., 2010). For the lake data, unique sequences with greater than 98%
sequence identity to references in the Freshwater Training set (FreshTrain) (Newton et
al., 2011) were classified with the RDP classifier at a minimum 80% posterior probability
trained against the FreshTrain, and the remaining unique sequences were classified with
the RDP classifier at a minimum 70% posterior probability trained against GreenGenes
revision 13_8 via the TaxAss workflow (http://www.github.com/McMahonLab/TaxAss).
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Availability of software and data
The Ananke software, which includes the Python-based clustering algorithm, the R- and
Shiny-based visualization platform, and associated documentation, is available on GitHub
(http://github.com/beiko-lab/ananke and http://github.com/beiko-lab/ananke-ui). Scripts
for reproducing the analyses, including data retrieval, sequence-identity clustering,
taxonomic classification, and the Ananke pipeline are available at https://github.com/
mwhall/Ananke_PeerJ. Ananke HDF5 data files for the lake and stool data sets are available
on figshare (doi: 10.6084/m9.figshare.c.3707938.v1).

RESULTS AND DISCUSSION
Building clusters with Ananke
The goal of Ananke is to group unique marker-gene sequences that are ‘‘dynamically
similar’’ (i.e., that correlate strongly over time) into clusters (Tikhonov, Leach & Wingreen,
2015). This general approach has been used to bin metagenomic sequences for the purpose
of genome assembly (Sharon et al., 2013), whereas our method focuses on single genes
that are used to track phylogenetically distinct groups. Briefly, the clustering algorithm
proceeds as follows: (1) sequences are dereplicated and the time series are tabulated for
each unique sequence, (2) data are filtered to remove sequences with sparsely sampled
time series, (3) the short time-series (STS) distance (Möller-Levet et al., 2003) is calculated
between each pair of unique sequences, (4) the resulting distance matrix is clustered into
Ananke time-series clusters (TSCs) with DBSCAN (Ester et al., 1996), and (5) the Ananke
TSCs are visualized and presented alongside sequence metadata.

The STS distance measure was designed for sampling schemes that are uneven and
contain relatively few time points (Möller-Levet et al., 2003). Unlike other measures such
as the Euclidean distance that are commonly used for clustering, the order of samples is
important for the STS distance. The DBSCAN clustering algorithm was chosen for several
reasons. DBSCAN can define outlier points as noise and remove them, rather than creating
spurious clusters or adding irrelevant sequences to a cluster. DBSCAN is also an efficient
method both in terms of memory usage and run time. DBSCAN requires a neighbourhood
size clustering parameter, denoted by ε, rather than a parameter that prespecifies the
number of desired clusters, which other common clustering methods require. This is
a more intuitive parameterization that is similar to sequence-identity clustering, as ε
controls the granularity of the clusters. A smaller ε value implies clusters of sequences with
more similar temporal profiles, whereas a larger ε would combine sequences with more
disparate patterns.

Assessing accuracy of Ananke with simulated data sets
Assessing cluster quality in a biological data set is a difficult task since no ground truth
exists for comparison. To assess Ananke’s cluster quality, we generated six artificial patterns
of temporal variation that represent ecological events or patterns that users may wish to
identify in a biological data set (Fig. 1). Appearance, disappearance, and conditional
rarity (Shade et al., 2014) patterns may indicate responses to environmental changes, so
it is important that Ananke clusters them appropriately. Periodic patterns often reflect
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Figure 2 Simulated time-series clustering accuracy. AMI scores for Ananke TSCs reconstructed from
simulated time-series data sets of varying lengths. Boxplots of AMI scores across 10 independent simula-
tions are shown, with 100 sequences per simulated cluster.

seasonal changes in natural environments, so Ananke must cluster time-series profiles
with coordinated increases and decreases over time. Patterns that are stationary with low
variance represent organisms with consistent abundance over time, while patterns that are
stationary with a high variance may also represent noisy or undersampled data. Templates
of each time-series pattern were created, and the simulated data sets were generated by
adding random noise and scaling to the templates. We used AMI (Vinh, Epps & Bailey,
2010) to quantify the agreement between the Ananke TSCs computed for the simulated
profiles and the ground-truth patterns from which they were generated. The AMI scores
provide a quantitative measure of the quality of Ananke TSCs, where a higher AMI reflects
higher agreement with the ground-truth patterns.

Ananke yielded average AMI scores >0.8 on simulated time-series data sets with as few
as ten time points (Fig. 2). However, AMI scores were considerably lower for time-series
data sets with 500 (median AMI = 0.69) and 1,000 (median AMI = 0.62) time points.
The drop in AMI scores for very long time-series data sets is a consequence of the STS
distance metric. The sum of small differences, which are a result of random noise added
to each point, can overwhelm the effect of the true pattern over a large number of time
points. To reduce the impact of random noise, very long time series could be smoothed by
averaging over a sliding window. This would reduce the magnitude of the slopes that are
due to random noise, resulting in a smaller cumulative impact on the distance measure.

The majority of the simulations flagged low-variance and high-variance stationary
time-series profiles as noise, or placed these two patterns into the same TSC, which
prevented Ananke from achieving higher AMI scores. Ananke’s algorithm has trouble
clustering stationary time-series profiles because they lack large slopes to influence the
STS distance measure. The STS distance measure does not provide enough information
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to separate the low-variance from the high-variance stationary temporal patterns since
there are no consistently present large slopes. Ananke’s current focus is on the detection
of distinct ecological patterns such as appearance, disappearance, and conditional rarity,
but future incorporation of the overall variance of temporal profiles in addition to shared
slope would allow Ananke to also focus on stationary profiles.

Time-series clustering reveals temporal segregation of taxa in the
human gut
We used the time-series data set from David et al. (2014) to demonstrate our method with
human-associated samples. The data are 16S rRNA gene fragments from faecal samples
taken at 191 time points over 318 days. There were 26,250,105 total sequences and 1,200,847
unique sequences. As a pre-processing step, these sequences were denoised with DADA2
(Callahan et al., 2016) using an OMEGA_A parameter of 1E−2, and default parameters
were used otherwise. After denoising, one time point had a sequence count lower than
1,000 and was excluded, leaving 190 time points. DADA2 reduced the total data by 14%
to 22,468,163 sequences and the unique sequences by 99% to 2,618 sequences. As the
denoising step reduced the data magnitude significantly, no additional filtering step was
required. After time-series clustering with Ananke, a maximum of 180 Ananke TSCs were
found at ε= 0.1, with an average Ananke TSC comprising 0.5% of the data set with 124,823
total sequences and 15 unique sequences (Fig. S1).

The sampled subject experienced food poisoning as a likely result of Salmonella sp.
around day 159. The authors of the original study showed that the food-poisoning event
divides the faecal microbial community into three clear segments from days 0–144, 145–
162, and 163–240 (David et al., 2014). In Ananke TSCs this segregation is readily apparent
(Fig. 3). Some Ananke TSCs disappear after the disturbance event, such as one containing
Lachnospiraceae sequences (Fig. 3A), while others emerge in the environment after the
illness, such as a second Ananke TSC containing sequences classified as Lachnospiraceae
(Fig. 3C). During the food-poisoning disturbance, 108 conditionally rare unique sequences
(accounting for 112,311 total sequences) demonstrated an increase in relative abundance
and were assigned to the same Ananke TSC at ε= 0.16 (Fig. 3B). The two most abundant
sequences in this spike classify to Enterobacteriaceae (the family containing Salmonella sp.)
andHaemophilus parainfluenzae. The remaining sequences belonged to various taxonomic
groups including the genera Leuconostoc, Weissella, Lactococcus, and Turicibacter from
the class Bacilli; Clostridium and Veillonella from the class Clostridia, including known
pathogen C. perfringens; and several sequences from the genus Acinetobacter.

Ananke highlighted several smaller changes in the community in addition to the
changes associated with the food-poisoning disturbance. Some of these changes, such
as those shown in Fig. 4, occurred at a sub-OTU level. After day 22, two Dorea OTUs
have their most abundant sequence decrease in relative abundance to below detection. A
second sequence variant is introduced and persists until the food poisoning event around
day 59, when it sees a decrease in relative abundance. In both cases, a third sequence
variant appears. In OTU 6, classified to Dorea, this third variant does not persist and the
second variant reappears. In OTU 505, classified to Ruminococcus gnavus, the third variant
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Figure 3 TSCs from a human faecal time series. Examples of three select Ananke TSCs from human fae-
cal 16S rRNA gene sequences that demonstrate the segmentation of the time series around a food poison-
ing event. (A) Two sequences classifying to Lachnospiraceae that are present before, but not after, the food
poisoning event. (B) A total of 108 sequences that co-occur during the food poisoning event, including se-
quences classified to Enterobacteriaceae, Haemophilus parainfluenzae, and Clostridium perfringens. (C) Two
additional Lachnospiraceae sequences that appear only after the food poisoning event.

persists, even alongside the second variant as it reappears. An OTU-based approach risks
aggregating these sequence variants, thereby obscuring this subtle transition. Compared
with OTU methods, Ananke provides an alternate, higher resolution method to highlight
both clear and subtle partitioning of the profiles with respect to time.

Seasonal dynamics in a freshwater lake are captured by time-series
clustering
The second biological time-series data set is from Lake Mendota in Wisconsin, USA. This
16S rRNA gene amplicon data set spans eleven years with 96 total time points. There
were 45,094,125 total and 3,058,132 unique sequences. Five time points had fewer than
1,000 sequences and were subsequently discarded, leaving 91 time points in the series. For
Ananke clustering, the data were filtered to only include sequences with abundance≥1,000
counts, reducing the total data by 21% to 37,511,477 sequences and the unique sequences
by 99% to 20,268 sequences. A maximum of 664 Ananke TSCs were found at ε = 0.09,
with an average TSC comprising 0.2% of the data set with 56,493 total sequences and 31
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Figure 4 Inconsistencies within 97% sequence-identity OTUs. (A) Plots of the time-series for the se-
quences contained within OTU 6, with all sequences classifying to genus Dorea. (B) Time-series for the se-
qeuences contained within OTU 505, with all sequences classifying to Ruminococcus gnavus. Sequences are
coloured by their Ananke TSCs at ε = 0.2, highlighting the fact that these sequences exhibit different dis-
tributions across time despite being part of the same 97% sequence-identity OTU.

unique sequences (Figs. S2). This is in contrast to a recent analysis of this data set that
grouped 97% OTUs from these sequences into only 14 clusters based on their annual peak
(Dam et al., 2016). Ananke’s clustering is based on the entire time series instead of a single
temporal feature, which results in finer-resolution clusters.

In the Lake Mendota decade-long data set, Ananke identified seasonal patterns obscured
in analyses using traditional 97% OTUs or taxonomy. Freshwater bacteria in this data set
were named according to the freshwater training set (FreshTrain) nomenclature, where
the taxa levels lineage, clade, and tribe approximate the Linnaean family, genus, and
species (Newton et al., 2011). Ananke TSCs revealed both similarities between ranks of
phylogenetically diverse organisms and fine-scale differences within taxa and OTUs.

The abundant freshwater Bacteroidetes lineage bacI is known to prefer high dissolved
organic carbon, which often occurs during cyanobacterial or algal blooms (Newton et al.,
2011). One of the most abundant bacI Ananke TSCs also included cyanobacterial reads
from the common freshwater genus Synechococcus (Figs. 5A and 5B). The possibility of this
type of co-occurrence is supported by a previous incubation study that found heterotrophic
bacterial community composition correlates with the phytoplankton species (Bagatini et al.,
2014). Ananke was able to identify this type of relationship in an observational time series,
despite the fine-level taxonomy being unknown and the phylogenetic distance between
the co-occurring groups. Discovering these correlations between distant organisms is
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Figure 5 Seasonal patterns in a freshwater lake revealed by TSCs. (A) and (B): Ananke TSCs can group sequences from distant taxonomic groups,
highlighting shared temporal dynamics and suggesting possible associations. Ananke TSC 26 contains sequences classified to the heterotrophic Bac-
teroidetes bacI (A) and the cyanobacterial genus Synechococcus (B). TSC 26 displays periodicity with abundance peaking in September (yellow ver-
tical line). Conversely, sequence-identity-based OTUs can contain sequences from multiple distinct TSCs. (C) and (D): Sequence-identity-based
OTU 464, based on a 97% sequence-identity cut-off, contains sequences from the Luna1-A1 tribe that belong to two distinct TSCs, representing two
distinct temporal patterns. Sequences from OTU 464 that belong to TSC 6 (C) peak around June (indicated by blue vertical lines), while sequences
that belong to TSC 84 (D) peak around September (indicated by yellow vertical lines).

one advantage of Ananke over the distribution-based clustering by Preheim et al. (2013),
which identifies and removes inconsistencies within OTUs but is unable to group distantly
related organisms that share distributional patterns. In many cases, it may be preferable
to keep distant sequences from being placed into the same cluster, and for these cases
distribution-based clustering is a more appropriate method. Taxonomically heterogeneous
TSCs can be useful for generating hypotheses about potential interactions betweenmembers
of a community, and Ananke’s sequence identity-agnostic approach allows users to identify
these potential relationships, which can then be validated with additional experimentation.

Ananke also identified ecological differences between closely related organisms. A
single 97% OTU represented most of the actinobacterial Luna1-A1 tribe and erroneously
included unclassified sequences that may belong to another closely related tribe. Two
distinct Ananke TSCs reveal divergent ecological dynamics within this 97% OTU (Figs. 5C
and 5D). The Luna1 lineage, which contains the tribe Luna1-A1 and three others, is
one of the most abundant Actinobacteria in lakes and contains several candidate species
including Candidatus ‘‘Aquiluna rubra’’ and Candidatus ‘‘Rhodoluna lacicola’’ (Newton et
al., 2011; Hahn, 2009). Despite being considered the same taxonomic unit by traditional
bioinformatic approaches, the two distinct temporal variants bloomed in June (Fig. 5C)
and September (Fig. 5D). The sequences that peak in June classify to the tribe Luna1-A1.
The sequences that peak in September only classify confidently down to the lineage level,
but the gene fragments match most closely to tribe Luna1-A2. June and September are
both months that represent transitions in the seasonal lake cycle: June is a period of
rapid warming and switch from clear-water phase to cyanobacterial domination, while
September is a period of cooling. Thus, it is reasonable to expect that taxonomically similar
but ecologically distinct Luna1 members would be present in each month. The fine-scale
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diversity revealed by Ananke can provide insights into the ecology of these tribes that would
go unobserved in analyses even at the 97% OTU or lineage level.

The most dominant bacterial lineage in many freshwater lakes is the Actinobacteria acI.
This lineage is made up of three major clades, acI-A, acI-B, and acI-C, which accounted
for 10, 7, and 2% of all reads in the Lake Mendota data set, respectively. In Lake Mendota
each of these three clades contained a single dominant sequence that accounted for 38, 75,
and 65% of each clade’s abundance. Since the ecology of these organisms is often studied at
the clade level, the dynamics of these dominant sequences drive our understanding of the
clades. Multiple Ananke TSCs were identified within each clade, many of which were both
abundant and divergent from the dominant sequences (Fig. 6). All of the acI-C Ananke
TSCs shared the autumn peak of the dominant acI-C sequence, but two Ananke TSCs
accounting for 6% of all acI-C reads differed in terms of the duration of the peak or the
relative intensities in different years. Four acI-A Ananke TSCs and one acI-B Ananke TSC
displayed seasonal dynamics with peaks inMay (indicated by blue vertical lines), some with
a secondary peak in November (indicated by yellow vertical lines). These seasonal clusters
account for 24 and 2% of each clade’s abundance. These results indicate that the acI-A
and acI-B clades may encompass more diverse life strategies than previously recognized.
Additionally, many sequences in the divergent Ananke TSCs belong to unclassified tribes
or to the broad ACK-M1 group, which indicates that the FreshTrain should be updated
to include additional reference sequences. Ananke clustering was able to reveal these
dynamics despite limits of the taxonomic reference, suggesting that Ananke could be
especially insightful in other ecosystems where taxonomic analyses occur at even coarser
levels because they lack a custom, curated reference database like the FreshTrain.

Exploration of temporal clusters using Ananke-UI facilitates
identification of potential microbial interactions
Unlike sequence-identity-based clustering where a static cut-off such as 97% sequence
identity is used, there is no single ε parameter appropriate across multiple data sets.
The choice of ε depends on properties such as the number of time points, diversity,
and sequence depth of the data set. Users must explore Ananke’s results and identify the ε
parameter that best addresses their research questions. Decreasing ε results in Ananke TSCs
containing sequences with more cohesive temporal profiles, while increasing ε assembles
larger clusters containing sequences withmore dissimilar temporal profiles (Fig. 7). Ananke
and the associated user interface Ananke-UI allow users to visualize and explore Ananke
TSCs and relevant metadata such as the taxonomic classification and sequence-identity-
based OTU membership of an Ananke cluster’s constituent unique sequences. Potential
relationships between microorganisms can be uncovered using Ananke-UI by interactively
exploring Ananke TSCs at various ε values. For example, two distinct Ananke TSCs in the
lake data set were each taxonomically homogeneous with sequences from Actinomycetales
or Acidimicrobiales at ε= 0.11 (Figs. 7A–7B). When the ε value is increased to 0.12, these
two Ananke TSCs merge into a single Ananke TSC (Fig. 7C). An overlay of constituent
sequences’ temporal profiles shows that both sets of sequences tend to increase and
decrease in relative abundance cohesively, with the exception of one period where the
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Figure 6 Temporal diversity within freshwater clades.Distinct temporal dynamics can occur even
within clades. The clades acI-A, -B, and -C comprise the abundant Actinobacteria lineage acI. Each
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sequence depth and then by sequence abundance in order to bring all sequences onto the same scale and
highlight the time-series shapes.
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Figure 7 Impact of the time-series clustering parameter ε. (A) and (B): two Ananke TSCs at clustering
parameter ε = 0.11. The cluster in (A) contains only sequences belonging to the order Actinomycetales,
while (B) contains only sequences belonging to the order Acidimicrobiales. The red box highlights an area
of the temporal profile that differs between the two TSCs. (C) When the clustering parameter is increased
to ε= 0.12, these two similar TSCs merge into a more taxonomically heterogeneous cluster.

two subclusters show divergent patterns of temporal abundance. By highlighting these
temporal similarities, Ananke can aid in generating hypotheses about the relationships
between microorganisms in a comparable way to other techniques like co-occurrence
networks. Conversely, temporal dissimilarities within a sequence-identity cluster (e.g.,
Fig. 4, and Figs. 5C and 5D) can be highlighted automatically with the interactive Ananke
UI, enabling detection of inconsistencies at a glance.

CONCLUSIONS
Ananke is intended to complement, not replace, traditional sequence-identity-based
approaches such as OTU clustering by examining the assumption that sequence similarity
implies similar ecological properties. Using Ananke TSCs as a base, our work can
be extended with deeper analyses of the relationships among Ananke TSCs. Future
improvements to Ananke could include modifications of the distance measure or
transformations of the time-series data that increase clustering performance with stationary
temporal profiles and longer time series. The application of multivariate time-series
analysis tools to Ananke TSCs will help quantify the importance of a TSC within the
whole-community context and provide additional insight.
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Ananke employs time-series clustering and interactive data exploration to highlight
ecological events that can be obscured by alternative methods. We have demonstrated that
Ananke can generate clusters of sequences that reflect ecological events such as enteric
disease onset in the gut and seasonal changes in a lake. Ananke can also identify subtler
patterns that would not be evident in taxonomic analyses, like the replacement of one
strain by another of the same group (e.g., Fig. 3) or discordant dynamics among sequences
of a single OTU (e.g., Fig. 4). Ananke represents a novel approach to analyzing longitudinal
marker gene data with an emphasis on ecological relevance.
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