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Abstract
We study the relative importance of two key control measures for epidemic spread-
ing: endogenous social self-distancing and exogenous imposed quarantine. We use
the framework of adaptive networks, moment-closure, and ordinary differential equa-
tions to introduce newmodel types of susceptible-infected-recovered (SIR) dynamics.
First, we compare computationally expensive, adaptive network simulations with their
corresponding computationally efficient ODE equivalents and find excellent agree-
ment. Second, we discover that there exists a critical curve in parameter space for the
epidemic threshold, which suggests a mutual compensation effect between the two
mitigation strategies: as long as social distancing and quarantine measures are both
sufficiently strong, large outbreaks are prevented. Third, we study the total number of
infected and the maximum peak during large outbreaks using a combination of ana-
lytical estimates and numerical simulations. Also for large outbreaks we find a similar
compensation mechanism as for the epidemic threshold. This means that if there is
little incentive for social distancing in a population, drastic quarantining is required,
and vice versa. Both pure scenarios are unrealistic in practice. The new models show
that only a combination of measures is likely to succeed to control epidemic spread-
ing. Fourth, we analytically compute an upper bound for the total number of infected
on adaptive networks, using integral estimates in combination with a moment-closure
approximation on the level of an observable. Our method allows us to elegantly and
quickly check and cross-validate various conjectures about the relevance of different
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network control measures. In this sense it becomes possible to adapt also other models
rapidly to new epidemic challenges.

Keywords Epidemic dynamics on networks · quarantaine · social distancing

1 Introduction

The recent COVID-19 pandemic demonstrated the necessity to develop and study
effective models of epidemic dynamics Anderson andMay (1991). Classical epidemic
models are compartmental models leading to relatively simple low-dimensional ordi-
nary differential equations (ODEs) Brauer and van den Driessche (2008); Diekmann
and Heesterbeek (2000). These minimal ODEmodels can be derived from first princi-
ples Kiss et al. (2017) but often suffer from strong assumptions, such as a sufficiently
high link density within the network of individuals. Within the past two decades, it
became apparent that viewing the structure of the contagion process via a network sci-
ence approach is crucial Pastor-Satorras and Vespignani (2001); Colizza et al. (2006);
Durrett (2010); House and Keeling (2011); Pastor-Satorras et al. (2015); Thurner et al.
(2020). During the COVID-19 pandemic it also became apparent that there exist two
major effects controlling direct epidemic spreading in humans without an available
vaccine or immediate medical treatment (non-pharmaceutical interventions): exoge-
nous quarantine measures Maier and Brockmann (2020); Kucharski et al. (2020) and
endogenous social self-distancing (or social avoidance) of existing contacts Gior-
dano et al. (2020). Formally, measures can be considered on a finer scale, such as
(digital) contact tracing Ferretti et al. (2020); Kretzschmar et al. (2020). Yet, most
non-pharmaceutical interventions (NPI) can be grouped into external/exogenous ones
leading effectively to quarantine-type effects, and intrinsic/endogenous ones within a
population that lead effectively to a social re-organization of contact networks. There
have been different modeling approaches with a trend towards large-scale black-box
simulations Kerr et al. (2021). Our approach is complementary in the sense of aiming
at mathematically tractable models to understand the impact of different effects in
more detail. In particular, we stress that although our model design is motivated by
COVID, the basic rules we present below are of generic interest for a wide variety of
diseases.

In this work, we are interested in developing and analyzing effective, yet tractable
mathematical network epidemicmodels to understand how to compare and balance the
effects of quarantining and social self-distancing. Motivated by the COVID-19 pan-
demic Thurner et al. (2020), we start from a standard susceptible-infected-recovered
(SIR) model on a complex network Kiss et al. (2017). Next, we use two well-
established modelling approaches. First, we add a possible quarantine state, X , of
the nodes Maier and Brockmann (2020); Peak et al. (2020) together with a transi-
tion rate, κ , of infected individuals to transition to state X . Second, we use a social
self-distancing rule of susceptible individuals trying to avoid contactwith infected indi-
viduals leading to re-wiring of links Gross et al. (2006); Shaw and Schwartz (2008);
Risau-Gusman and Zanette (2009) controlled by a re-wiring rate,w; we keep the pop-
ulation size and the total number of links fixed to account for the propensity to keep

123



Balancing Quarantine and Self-Distancing Measures… Page 3 of 22 79

social contact. Note that re-wiring links makes the network fully adaptive Gross and
Sayama (2009), i.e., there is dynamics on and of the network. The resulting model is
a Markov chain on all possible node states and all possible edge configurations. It can
be simulated on small to medium size networks, but becomes quickly computationally
intractable on large networks. For this reason, we derive suitable ODE approximations
Kiss et al. (2017) based on a moment-closure approximation Keeling (1999); Keeling
et al. (1997); Gross et al. (2006); Kuehn (2016). This approximation technique can
also account for the dynamically changing connectivity of the network. We obtain a
hierarchy of models. A particular model is obtained after fixing a truncation level.
In our analysis we focus on the second-order or pair-approximation moment-closure,
which leads to a five-dimensional ODE. We compare medium-size direct network
simulations with ODE simulations.

As a next step, we investigate the main questions associated with SIR-type models:
(I) Does epidemic spreading happen, or does it die out immediately? (II) How big
is the cumulative size of the epidemic outbreak? (III) What is the maximum size of
the infected population during an epidemic? As expected, the first question (I) can be
calculated directly using local analysis and we can express the epidemic threshold as
a function of the re-wiring rate w and the quarantine transition rate κ in the approx-
imating ODEs. Questions (II)-(III) are harder to address as network structure effects
preclude the application of classical methods frommathematical epidemiology to cal-
culate the SIR outbreak size and/or the maximum peak. We develop a new technical
tool by viewing the outbreak size as a global observable and applying moment-closure
methods and integral estimates on the level of this observable. This technique leads to
an upper bound on the global outbreak size within suitable parameter regimes, which
we cross-validate numerically.

From a public health perspective, we find that large parameter regimes in the (w, κ)-
plane show a linear, or almost linear relationship regarding the effects of quarantine
versus social self-distancing leading to a bounded triangular region, within which
the epidemic cannot be avoided, controlled, or contained efficiently. This shows that
there is a balancing effect between strong quarantining and social self-distancing, i.e.,
the weakening of one measure necessitates the strengthening of the other and vice
versa. On the one hand, this is an intuitive result, on the other, it arises without any
major assumptions in broad parameter regimes in a complex fully-adaptive network
epidemic model. In addition, it can be observed in network- and ODE simulations,
and can be analytically treated both, locally and globally via nonlinear dynamics
techniques. Hence, it seems advisable, when reducing or observing the reduction of
mitigation measures, i.e., a decrease of w and/or κ , to avoid entering the dangerous
triangle region as there is no easy way to exit it by a simple small change.

Our contributions are threefold. First, on the level of modeling, we derive a new
class of models combining two existing approaches, namely quarantining Maier and
Brockmann (2020) and social self-distancing Gross et al. (2006). For this new class
of models, we employ numerical simulations, moment closure, and bifurcation the-
ory techniques. Second, we develop a new technical tool extending existing moment
closure methods Keeling et al. (1997); Gross et al. (2006); Kuehn (2016) to the inte-
gral level of observables, that could have major implications even beyond epidemic
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modeling. Third, we derive clear applicable conclusions, most prominently the para-
metrically approximately linear relation for the effectiveness of exogenous versus
endogenous NPIs in epidemic spreading.

The paper is structured as follows: In Sect. 2 we provide the detailed mathematical
model for adaptive social self-distancing models with quarantine including moment-
closure via pair approximation; in the appendix we develop more complicated higher-
ordermoment-closuremodels. In Sect. 3 we present ourmain analytical and numerical
results, including a new global moment-closure viewpoint for global observables. In
Sect. 4, we provide a summary and outlook of how our approach can be extended to
a wider set of applications.

2 Adaptive SIR-type NetworkModels

Here we compare two different, yet comparable, measures present in most epidemics:
social self-distancing, i.e., nodes/agents avoid infected individuals simply due to the
risk of acquiring the disease themselves, and external quarantine measures, which
enforce the removal of infected nodes from the population. It is evident from data
that both measures have played a key role during the COVID-19 pandemic Maier and
Brockmann (2020); Kucharski et al. (2020); Giordano et al. (2020). To account for
the complex social structure, we start with microscopic Markov process models of
susceptible-infected-recovered (SIR) dynamics on general networks with N nodes, K
undirected links, and node states S, I , and R. Then we add mitigation measures to the
SIR model. The well-known basic SIR rules are:

• (infection) infected I nodes infect susceptible S nodes along susceptible-infected
SI links with a rate β > 0.

• (recovery/death) infected I nodes become recovered R nodes at a rate γ > 0.

One way to model social self-distancing, as proposed in Gross et al. (2006); Shaw
and Schwartz (2008), is the preference of the susceptible S nodes to avoid interactions
with the infected I nodes:

• (social self-distancing) SI links are re-wired at a rate w ≥ 0 to susceptible-
susceptible SS links or to susceptible-recovered SR links (with equal proportion).

The self-distancing/re-wiring rule makes the network fully adaptive Gross and
Sayama (2009) and allows for very general network topologies. The rule also takes
into account that links are not lost, which mirrors the desire to keep as many social
connections as possible and to optimally re-wire them to mitigate risk. Note that
broken social connections can be re-established in principle once both individuals
are susceptible but that this process is currently modeled using uniformly at random
re-wiring; see also Sect. 4 for a broader discussion of possible extensions to the model.

While it is straightforward to simulate the resulting Markov process on any given
network, the simulations becomeprohibitively expensive for large N . It is also straight-
forward to use the master equation for the resultingMarkov process Norris (2006) and
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arrive at the following set of ODEs via standard techniques Kiss et al. (2017)

˙[S] = d
dt [S] = −β[SI ],

˙[I ] = d
dt [I ] = β[SI ] − γ [I ],

˙[R] = d
dt [R] = γ [I ],

˙[SI ] = d
dt [SI ] = −(β + γ + w)[SI ] + β[SSI ] − β[I S I ],

˙[SS] = d
dt [SS] = −β[SSI ] + w [S]

[R]+[S] [SI ],

(1)

where [S] = [S](t), [I ] = [I ](t), [R] = [R](t), [SI ] = [SI ](t), [SS] = [SS](t),
[SSI ] = [SSI ](t) and [I S I ] = [I S I ](t) are expectation values of the number of
susceptible, infected and recovered nodes, of SI -links and SS-links and of SSI - and
I S I -tripletmotifs. The ordinary differential equations (ODEs) (1) represent a variation
of earlier models Shaw and Schwartz (2008); Gross et al. (2006). Note that we do not
allow recovered individuals to pass back into the susceptible compartment. This is a
reasonable assumption when the timescale at which immunity is lost is much larger
than the characteristic epidemic timescales β−1, γ −1 andw−1. This also holds to some
extend for the COVID-19 pandemic, where immunity is conjectured to last on average
at the order of months, whereas the infection and recovery timescales are of the order
of days. Although the ODEs (1) are actually exact in the mean-field limit Kiss et al.
(2017) for any graph, they are not closed as we have not written down the equations
for the SSI and I S I motifs. Although these equations could be derived, they would
depend on fourth-order motifs, and so on Kuehn (2016); House and Keeling (2011).
To avoid studying an infinite system of ODEs, we employ a standard moment-closure
pair approximation Keeling et al. (1997); Keeling (1999); Kiss et al. (2017); Gross
et al. (2006), assuming that

[ABC] ≈ m(A, B)m(B,C)
[AB][BC]

[B] for A, B,C ∈ {S, I , R},

where m(A, B) = 2 if A = B and m(A, B) = 1 if A �= B. With this closure, one
obtains a system of four ODEs for the densities ρI = [I ]/N and ρR = [R]/N of
infected and recovered nodes and the per-node densities of susceptible-infected and
susceptible-susceptible links:

d
dt ρI = βρSI − γρI ,

d
dt ρR = γρI ,

d
dt ρSI = −(β + γ + w)ρSI + βρSI

2ρSS−ρSI
1−ρI−ρR

,

d
dt ρSS = −2β ρSI ρSS

1−ρI−ρR
+ w

[
1−ρI−ρR
1−ρI

]
ρSI .

(2)

Herewemade use of node conservation and the notationρAB ≈ [AB]/N to emphasize
that we are working with approximate per-node densities after moment-closure has
been applied. As such, the Eq. (2) only cover the aspect of social self-distancing and
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Fig. 1 Sample paths for the adaptive SIRX model (thin line) and the Pair Approximation from (4) (thick
line). In a we depict the disease prevalence (ρI ) and in b we depict the cumulative size of the recovered
compartment (ρR ). The dynamical parameters are given by a recovery rate of γ = 0.025 and an infection
rate of β = 0.005. The intervention parameters for the quarantine and re-wiring rates are κ = w = 0.0025.
The release rate from the quarantined compartment is δ = 0.001. For the simulation we sampled from an
Erdõs-Rényi ensemble of size N = 2000 with mean degree μ = 15. We initialized 1% of nodes as infected
ρI (0) = 0.01 and ρSI (0) = μρI (0)

β

γ
w

κ

δ

Fig. 2 Rules for the adaptive SIRX model. The two left most rules are classical SIR with infection between
infected I (red) and susceptible S (green) nodes at rate β and removal/recovery to R nodes at rate γ . The
middle rule is the adaptive re-wiring due to social self-distancing at rate w, where re-wiring can take place
to susceptible or recovered nodes. The rightmost rules are quarantining to state X (blue) at rate κ and later
removal to R at rate δ (Color figure online)

take into account the complex adaptive network structure via a second-order closure
(Fig. 1).

We take into account quarantine effects, such as in the modelling of COVID-19 in
Maier and Brockmann (2020). There, network structure was not considered. Quaran-
tine effects lead to certain features of epidemic spreading that cannot be captured by
classical SIR models. We denote the quarantined compartment by X . The rules we
use are:

• (quarantine) infected I nodes are quarantined into a state X at a rate κ ≥ 0.
• (recovery of X ) quarantined nodes are released into the recovered compartment R
at rate δ > 0.

In particular, we consider quarantining and rewiring only for the infected com-
partment. This is a simplification of the present model and is not pursued like this in
many real contact tracing efforts. The expected release time from the X -compartment
is 〈T 〉 = 1/δ, since the rates are Poissonian. However, δ does not have an effect on
the amount of nodes in the infected compartment in this model and for any positive δ

the amount of nodes in the recovered compartment for t → ∞ is also independent of
δ. All the rules are summarized graphically in Fig. 2. With these quarantine rules, we
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obtain the non-closed moment equations:

d
dt [S] = −β[SI ],
d
dt [I ] = β[SI ] − (γ + κ)[I ],
d
dt [R] = γ [I ] + δ[X ],
d
dt [X ] = κ[I ] − δ[X ],
d
dt [SI ] = −(β + γ + w)[SI ] + β[SSI ] − β[I S I ] − κ[SI ],
d
dt [SS] = −β[SSI ] + w [S]

[R]+[S] [SI ].

(3)

More complicated variants of the rules are discussed in
appendix A. We see that the parameters appear linearly in the equations, so that

any one of them can be used to re-scale the time, e.g. t 
→ γ t . This leaves four
effective dynamical parameters β,w, κ and δ. The last one does not affect the infected
compartment or the recovered compartment at infinity and is therefore not part of the
subsequent analysis.

Using a moment-closure pair approximation, we get the closed system

d
dt ρS = −βρSI ,

d
dt ρI = βρSI − (κ + γ )ρI ,

d
dt ρR = γρI + δ(1 − ρS − ρI − ρR),

d
dt ρSI = −(β + γ + w + κ)ρSI + βρSI

2ρSS−ρSI
ρS

,

d
dt ρSS = −2β ρSI ρSS

ρS
+ w

ρS
ρS+ρR

ρSI ,

(4)

that allows us to compare the effects of social self-distancing and quarantine. We
compare this model with full network simulations in Fig. 1. The results show excellent
agreement for the vast majority of sample runs for a large part of the parameter space,
when w, κ > 0; see also

appendix B for additional comparisons, where even for the singular cases w = 0
or κ = 0 excellent agreement is observed.

3 Results

In contrast to SIS or SIRS, an epidemic eventually dies out for a standard SIR model.
Hence, three questions arise:

(I) Given an initial density of infected I (0) sufficiently close to the disease-free state,
does the epidemic spread, or does it die out almost immediately?

(II) How big is the cumulative size of the epidemic outbreak R∞ (we use r∞ for the
corresponding density)? R∞ measures the total number of nodes at t → ∞ in the
recovered compartment R (respectively r∞ is the corresponding density).
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Fig. 3 Comparison of the critical infection rate. We depict the rate β at which the epidemics surpasses a
threshold of r∞ = 0.05, which we take as a proxy for the critical point βc . We compare the simulations
(left) with the mean-field analysis from the pair approximation (right). The parameters are as before, except
for the size N = 500

(III) What is the maximum size of the epidemic, ˆ[I ] := maxt I (t), i.e., what is the
height of the highest peak?

To answer (I), the local calculation near the disease-free state is relatively simple if
we have a closed ODE model. For example, consider the adaptive SIR model without
quarantining (2) and use the disease-free state ρ∗ with

ρI = ρR = ρSI = 0 and ρSS = μ/2,

i.e., also all links are of type SS. Here μ is the average degree of the network, which
equals 2K/N for a network with K edges. Linearizing the vector field at ρ∗, we find
that for

β < β
adp
c = γ + w

μ − 1
, (5)

an epidemic dies out exponentially fast. A very similar calculation for the full model
(4) reveals:

β < β
qurt+adp
c = γ + w + κ

μ − 1
, (6)

as the critical threshold for the infection rate. We see that on a local level near ρ∗, the
effects of self-distancing and quarantine are comparable as the rates of both processes
lower the critical threshold in a linear way.

These results are
consistent with the numerics. Figure 3 shows the rate β at which we record an

epidemic outbreak/growth for direct network simulation, as well as for numerical inte-
gration of the mean-field ODEs. The linear level-set structured in the (w, κ)-diagram
expected from (6) is clearly visible on the network simulation and the ODE integra-
tion levels. This answers questions (I), and means that a combination of measures is
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Fig. 4 Comparison of the overall size of the epidemic r∞ for a fixed β = 0.0025 in the (κ, w)-parameter
plane. a Simulations. bMean-field analysis from the pair approximation.We also indicate the critical curve,
as calculated from (6). Again N = 500, μ = 15, γ = 0.025, δ = 0.01 and ρI (0) = 0.01

particularly effective to contain a disease early on. Since it is unrealistic to assume that
social self-distancing happens effectively in the situation of a new disease, our SIRX
model suggests that one has to compensate and focus more on quarantine measures
of infected individuals in the early phase.

However, the local structure near the disease-free state only yields a partial picture of
SIRmodels. In fact, one often does observe epidemic outbreaks for SIR-type dynamics.
For this case, we study r∞ to answer our second question (II). Figure 4 shows r∞
for a range of values near the epidemic transition in the (w, κ)-plane. We compare
numerical simulations that estimate 〈limt→∞ R(t)/N 〉 with the pair approximation
ρR,∞ := limt→∞ ρR(t) of Eq. (4).

The numerical results indicate another linear relation between the parameters w

and κ . In general, it is impossible to get an exact formula for the cumulative size of
the epidemic outbreak for an arbitrary model for SIR-type dynamics on complex
networks. Yet, we can arrive at an implicit formula starting with in our adaptive
SIRX model (3). We denote the expected final number of recovered individuals by
R∞ := limt→∞[R](t) and write it as

R∞ = R∞ − [R](0) =
∫ ∞

0

˙[R] dt,

where we used [R](0) = 0 and we have omitted the argument t of the last integrand
for brevity. Now we use the differential equation for [R] and insert it to get

R∞ = γ

∫ ∞

0
[I ] dt + δ

∫ ∞

0
[X ] dt .

We obtained two integrals, which would suffice to calculate r∞. Using the same idea
as for [R], we find for [I ] and [X ] that

0 − [I ](0) =
∫ ∞

0

˙[I ] dt = β

∫ ∞

0
[SI ] dt − (κ + γ )

∫ ∞

0
[I ] dt
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0 =
∫ ∞

0

˙[X ] dt = κ

∫ ∞

0
[I ] dt − δ

∫ ∞

0
[X ] dt,

as there cannot be any quarantined infected nodes in the beginning or at the end of the
epidemic. Using the ODE for [I ], we get

R∞ = γ

∫ ∞

0
[I ] dt + κ

∫ ∞

0
[I ] dt = β

∫ ∞

0
[SI ] dt + [I ](0).

Several crucial observations are evident in the formula. The procedure generically
does not terminate on the infinite network level as in generic cases, we expect that
all motifs could eventually occur. This means that without further assumptions only
an infinite series expression for R∞ is obtained or we could obtain upper or lower
bounds. Still, the infinite series and particularly upper bounds are very informative as
they display the influence of the different parameters and link them to higher-order
network motifs. Indeed, at the next step, the expected number of links comes into play.
We get

0 − [SI ](0) =
∫ ∞

0

˙[SI ] dt

= −(β + γ + w + κ)

∫ ∞

0
[SI ] dt + β

∫ ∞

0
[SSI ] dt − β

∫ ∞

0
[I S I ] dt,

and we obtain

R∞ = [I ](0) + β

β + γ + w + κ
[SI ](0) + β2

β + γ + w + κ

∫ ∞

0

(
[SSI ] − [I S I ]

)
dt .

(7)

The infinite sumwill yield newmotif terms involving infected nodes at every step at the
time t = 0. This demonstrates the importance of the network structure. For example,
a highly connected first cluster of infected nodes yields a large number of SI -links
and thereby a large final outbreak size. We could continue this procedure to obtain an
infinite series formally but this does not give any concrete quantitative approximations.
Instead, we aim for an upper bound of the total number of infected/recovered.

A new technical step is that we directly impose themoment-closure pair approxima-
tion directly on (7), using the approximate densities ρI , ρR, ρSI and ρSS of the closed
equations (4). We get an approximation for r∞ in terms of ρR,∞ := limt→∞ ρR(t),

r∞ ≈ ρR,∞ = ρI (0) + β

β + γ + w + κ
ρSI (0)

+ β

β + γ + w + κ

∫ ∞

0
β

ρSI

ρS

(
2ρSS − ρSI

)
dt . (8)
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Fig. 5 Approximations of r∞. In a we show three approximations of r∞ for the adaptive SIRX model via
the Pair Approximation (4), the implicit Eq. (9) and via repeated simulation of the stochastic dynamics.
The implicit equation is an inequality in r∞ and depends on the initial conditions, which are here chosen in
agreement with the other approximations, namely ρI (0) = 0.01 and ρSI (0) = μρI (0). The inequality is
achieved by a Hölder bound, which requires a positivity condition on ρ̇SI − 2ρ̇SS ≥ 0 at all times. In b we
show the shaded regions where the positivity condition holds for a range of infection rate β = 0.003 (blue,
upper set of lines), β = 0.0025 (black, middle set of lines) and β = 0.002 (red, lower set of lines). For each
infection rate we show the boundary for a set of initial conditions to illustrate the dependence on ρI (0) and
ρSI (0). For the initial SI -link densitywe choose amean-field scenario (dashed line)withρSI (0) = μρS(0),
a scenario (dash-dotted line)with dis-proportionallymany initial SI -linksρSI (0) = 6μρS(0) and a scenario
(dotted) with very few SI -links ρSI (0) = (μ/5)ρS(0). The mean-field transition lines (solid lines) are seen
at the respective infection rates in the respective colours. They all lie within the positivity region. All
parameters are as before, in particular μ = 15 (Color figure online)

Using βρSI = −ρ̇S and applying the logarithmic derivative gives

ρR,∞ ≈ K0 + β

β + γ + w + κ

∫ ∞

0
− d

dt
(ln(ρS))

(
2ρSS − ρSI

)
dt,

where K0 := ρI (0)+ β
β+γ+w+κ

ρSI (0) > 0. Integration byparts and ln(x) = −| ln(x)|
for x ∈ (0, 1] yields

ρR,∞ = K0 + β

β + γ + w + κ

(
− ln(ρS)

(
2ρSS − ρSI

)∣∣∣
∞
0

−
∫ ∞

0
| ln(ρS)|

(
2ρ̇SS − ρ̇SI

)
dt .

)

Next, we use | ln(ρS(t))| ≥ | ln(ρS,∞)| = − ln(1 − ρR,∞) and assume that 2ρ̇SS −
ρ̇SI ≤ 0 for all times (see the computations below for further justification of this
assumption). Then we obtain the bound

ρR,∞ ≤ K0 + β

β + γ + w + κ

(
− ln(ρS)

(
2ρSS − ρSI

)∣∣∣
∞
0

+ ln
(
1 − ρR,∞

) ∫ ∞

0

(
2ρ̇SS − ρ̇SI

)
dt

)
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= K0 + β

β + γ + w + κ

(
− ln

(
1 − ρR,∞

)
2ρSS(∞) + ln

(
1 − ρI (0)

)

(
2ρSS(0) − ρSI (0)

)
+ ln

(
1 − ρR,∞

)(
2ρSS(∞) − 2ρSS(0) + ρSI (0)

))

= K0 + β

β + γ + w + κ
ln

[
1 − ρI (0)

1 − ρR,∞

]
(2ρSS(0) − ρSI (0))

Simplifying yields the desired upper bound

ρR,∞ ≤ ρI (0) + β

β + γ + w + κ

[
ρSI (0) + (2ρSS(0) − ρSI (0)) ln

[
1 − ρI (0)

1 − ρR,∞

]]
.

(9)

The bound (9) is a transcendental inequality in ρR,∞. Regarding our assumption

ρ̇SI ≥ 2ρ̇SS, (10)

we find that it holds numerically for a broad ranges of parameters. In Fig. 5(b) we show
the domains of validity for the positivity assumption in the (w, κ)-plane for a range
of infection rates and initial conditions. The assumption holds in a neighbourhood
around the critical transition.

Note that our analysis is in sharp contrast to the classical three-dimensional SIR
ODEmodel, where an exact implicit functional relation for r∞ can be obtained. There-
fore, having an upper bound available such as (9) helps us to study the parameter
dependencies. The same linear combination of the two parameters w and κ appears as
in the local bifurcation case near the epidemic threshold. Now however, they occur via
an inverse. The same conclusions as for the local epidemic spreading near the outbreak
threshold are valid: we need a linear mix of quarantine and social self-distancing to
keep the total number of infected r∞ under control. Figure 5(a) shows a comparison
of the upper bound for with numerical simulations of the full network as well as simu-
lations of the pair approximation ODEs. Both capture the main trend well that occurs
when the infection rate is increased. When the total infected population is around the
10 percent level, our approximations show that employing a combination of quarantine
and social-distancing might be effective in practice, while going beyond this level, a
very steep increase of the total number of infected occurs.

Finally, we answer question (III) regarding the maximum peak ˆ[I ] of the number of
infected, i.e., ˆ[I ]/N is the maximal fraction across the entire duration of the epidemic.
Figure 6 shows the corresponding results comparing direct network simulations in
Fig. 6(a) with mean-field approximations in Fig. 6(b). The structure of the results is
familiar in the sense that a linear dependence betweenw and κ emerges for our studied
parameter ranges. Therefore, one can conclude that using a well-tuned combination
of quarantine and social self-distancing outside of a triangular region in (w, κ)-space
is likely to be not only effective in preventing outbreaks, or reducing the total number
of infected during epidemic, but also to prevent high peaks. This conclusion is also
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Fig. 6 Comparison of the maximal disease prevalence. a Simulation. b Mean-field from the Pair Approx-
imation. We also indicate the critical curve, as calculated from (6). We can see here a slight deviation,
which can be explained by the fact that the simulations are random processes. The average of sample path
maxima over many sample paths is not the same as themaximum of the average of sample paths. The former
overestimates the expectation value of ρI . Again N = 500, μ = 15, γ = 0.025, β = 0.0025, δ = 0.01,
ρI (0) = 0.01 and ρSI (0) = μρI (0)

very robust over a wide variety of parameter ranges and we provide further numerical
results in Appendix C to support this claim.

4 Conclusion & Outlook

In this work, we provided three contributions. First, we developed a new type of
adaptive network models that include two of the most important epidemic control
measures: quarantine and social self-distancing. We derived mean-field models via
pair approximation; even more detailed approximation schemes are discussed in the
appendix. Second, we analyzed the new model via a numerical combination of direct
network simulations and mean-field ODEs, which show excellent agreement. We
focused on three questions regarding (I) the epidemic threshold, (II) the total num-
ber of infected individuals, and (III) the maximum peak of the epidemic. In all three
cases, we demonstrated for a broad range that the parameters controlling quarantine
and social-distancing enter in a comparable linear combination to control the epidemic
spread. This has the practical implication that a suitable combination of these twomea-
sures outside of a well-defined triangular region in parameter space is the best choice
as one cannot expect either measure to be executed perfectly in practice. Third, on a
technical level, we have shown a new way to provide estimates for the total infected
population during an epidemic by using pair approximation and integral estimates
directly on the level of the final infected number observable. This provides a new
technical tool for broad classes of epidemic models on networks since one can now
aim to employ moment-closure on many other observables directly. Yet, it remains an
open conjecture, whether one can give an analytical proof of the parametrically linear
trade-off relationship between quarantine and social-distancing on a global dynamical
systems level. We anticipate that this problem is challenging as it would require full
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control of nonlinear dynamics in phase space, which is usually difficult to achieve –
even for simple dynamical systems.

Many generalizations of the presented model are possible. For example, one could
try to use slightly different rules for the link dynamics allowing for link deletion Ball
et al. (2019); Tufekci and Wilson (2013). Yet, we conjecture that the same analysis
principles we have developed here still apply. Furthermore, it would be desirable to
not only consider the mitigation of the epidemic itself but also whether quarantine
and social self-distancing can help us or are detrimental to detect early-warning signs
for large epidemic outbreaks O’Regan and Drake (2013); Widder and Kuehn (2016);
Brett et al. (2018). This line of research has already been started in recent years for
epidemics on adaptive networks Kuehn et al. (2015); Horstmeyer et al. (2018) but the
interplay between pre-epidemic mitigation measures and warning signs has remained
unexplored. Another important generalization would be to consider non-Markovian
network epidemic models Van Mieghem and Van de Bovenkamp (2013); Sherborne
et al. (2018); Clauß and Kuehn (2022). This could account for behavioral changes
based upon historical NPI data or allow for re-establishing a social network that has
been broken due to self-distancing.
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Appendix

AMore onMoment Equations for Adaptive Epidemics with
Quarantine

In this appendix, we provide more details on moment-closure schemes and the deriva-
tion of our reduced system. Beyond the pair approximation (4), refined approximation
schemes are possible, which we present in this appendix in more detail.
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A.1 Full Closed Quations up to Second Order Motifs

First, we write down the full closed equations up to second-order motifs, which are
given by

d

dt
[S] = − β[SI ], (11)

d

dt
[I ] =β[SI ] − (γ + κ)[I ], (12)

d

dt
[R] =γ [I ] + δ[X ], (13)

d

dt
[X ] =κ[I ] − δ[X ], (14)

d

dt
[SI ] = − (β + γ + w + κ)[SI ] + β[SSI ] − β[I S I ] (15)

d

dt
[SS] = − β[SSI ] + w

[S]
[R] + [S] [SI ] (16)

d

dt
[SR] = + γ [SI ] + δ[SX ] − β[I SR] + w

[R]
[R] + [S] [SI ] (17)

d

dt
[SX ] = − δ[SX ] − β[I SX ] + κ[SI ] (18)

d

dt
[I I ] = − 2γ [I I ] + β[SI ] + β[I S I ] − 2κ[I I ] (19)

d

dt
[I R] = + 2γ [I I ] − γ [I R] + δ[I X ] + β[I SR] − κ[I R] (20)

d

dt
[I X ] = − γ [I X ] − δ[I X ] + β[I SX ] + 2κ[I I ] − κ[I X ] (21)

d

dt
[RR] = + γ [I R] + δ[RX ] + κ[RX ] (22)

d

dt
[RX ] = + γ [I X ] − δ[RX ] + 2δ[XX ] + κ[RI ] (23)

d

dt
[XX ] = − 2δ[XX ] + κ[X I ] (24)

We see that Eqs. for the nodes (11)-(14) depend only through [SI ] on the equations
of the links. Equation (15) depends on itself, on [SSI ] and on [I S I ]. After pair
approximation there is another dependence on [SS] entering, so we need (16). The
resulting equations are self-contained.

If we now add further equations for the other link densities we obtain Eqs. (17)-(24).
Wealso see fromEqs. (11)-(24), that there is node and link conservation.Note that there
is no dependence on the average degree. And there should not be. We could enforce
it, by redefining the variables. So for instance if we have ρS := [S]/N ∈ [0, 1] for the
per-capita density of susceptibles in the population and ρSI := [SI ]/N ∈ [0, μ/2] for
the average number of [SI ]-links per node, then we could redefine ˆρSI := [SI ]/L ∈
[0, 1] as an actual density (with ˆρSI = (2/μ)ρSI ) and Eqs. (11) would then read
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d
dt ρS = −β(μ/2) ˆρSI . Yet, this explicit dependence on the degree is not necessary, so
we have decided to employ the equations without this additional parameter.

Starting from the second-order, we can also write down the third-order equations:

d

dt
[SSI ] = − r [SSI ] − κ[SSI ] − w[SSI ] + w

[S]
[S] + [R] [SI ]

[SI ]
[S]

− β[SSI ] − β
[
S

I
S I

] − β[I SSI ]
d

dt
[I S I ] = − 2r [I S I ] − 2κ[I S I ] − 2w[I S I ] − 2β[I S I ] − β

[
I

I
S I

]
.

These equations can also be written in the alternative form via pair approximation
densities as follows

d

dt
ρSSI = − rρSSI − κρSSI − wρSSI + w

ρS

ρS + ρR
ρSI

ρSI

ρS
− βρSSI

− βρSI
ρI S I

ρS
− βρSI

ρSSI

ρS

d

dt
ρI S I = − 2rρI S I − 2κρI S I − 2wρI S I − 2βρI S I − βρSI

ρI S I

ρS
.

Now the procedure to develop higher-order moment-closures could be pursued Kiss
et al. (2017) but we have not found that the resulting equations add significant practical
insight in our context. Instead, we are going to derive to interesting variations of the
equations we have analyzed.

A.2 Adaptive SIR with Infinite Quarantine

Following Maier and Brockmann (2020), we consider the modification that not the
links are removed but that there is a state [X ]which represents the quarantined state. In
that state, the disease cannot be transmitted along the link. So all those links attached
to that node are removed from the pool of transmittable links. Effectively this behaves
like link-removal. Hence, we obtain the equations

d

dt
[S] = −β[SI ] − κ0[S]

d

dt
[I ] = β[SI ] − γ [I ] − (κ0 + κ)[I ]

d

dt
[R] = γ [I ]

d

dt
[X ] = κ0[S] + (κ0 + κ)[I ]

d

dt
[SI ] = −(β + γ + w)[SI ] + β[SSI ] − β[I S I ] − 2κ0[SI ] − κ[SI ]

d

dt
[SS] = −β[SSI ] + w ∗ [S]

[R] + [S] [SI ] − 2κ0[SS]
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This latter model has the following density representation:

d

dt
ρS = −βρSI − κ0ρS

d

dt
ρI = βρSI − γρI − (κ0 + κ)ρI

d

dt
ρR = γρI

d

dt
ρSI ≈ −(β + γ + w + 2κ0 + κ)ρSI + βρSI

2ρSS − ρSI

ρS

d

dt
ρSS ≈ −2β

ρSIρSS

ρS
+ w

[
ρS

ρS + ρR

]
ρSI − 2κ0ρSS

A.3 Adaptive SIR with Quarantine and a Return Rate

Lastly, let us consider, as before, that there is a quarantined compartment, but quar-
antine does not last forever and there is a return rate δ > 0. We still allow for both,
the susceptible population as well as the infected population to be quarantined at a
rate κ0 and κ0 + κ respectively. If they are healthy quarantined individuals, then they
are transferred back into the susceptible compartment. If they are infected, they tran-
sition into the recovered compartment, respectively, at the aforementioned rate δ. In
summary, this yields the equations

d

dt
[S] = − β[SI ] − κ0[S] + δ[XS]

d

dt
[I ] =β[SI ] − γ [I ] − (κ0 + κ)[I ]

d

dt
[R] =γ [I ] + δ[XI ]

d

dt
[XS] =κ0[S] − δ[XS]

d

dt
[XI ] =(κ0 + κ)[I ] − δ[XI ]

d

dt
[SI ] = − (β + γ + w)[SI ] + β[SSI ] − β[I S I ] − 2κ0[SI ] − κ[SI ] + δ[XS I ]

d

dt
[SS] = − β[SSI ] + w ∗ [S]

[R] + [S] [SI ] − 2κ0[SS] + δ[XSS]
d

dt
[XSS] = − δ[XSS] + 2κ0[SS] − β[XSSI ]

d

dt
[XS I ] = − δ[XS I ] − γ [XS I ] − (κ0 + κ)[XS I ] + κ0[SI ]

After the usual reduction steps, we obtain a closed system of eight ODEs for the
densities
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d

dt
ρS = − βρSI − κ0ρS + δρXs

d

dt
ρR = + γ (1 − ρR − ρS − ρXs − ρXi ) + δρXi

d

dt
ρXs = + κ0ρS − δρXs

d

dt
ρXi = + (κ0 + κ)(1 − ρS − ρR − ρXs − ρXi ) − δρXi

d

dt
ρSI = − (β + γ + w + 2κ0 + κ)ρSI + βρSI

2ρSS − ρSI

ρS
+ δρI Xs

d

dt
ρSS = − 2β

ρSIρSS

ρS
+ w

ρS

ρS + ρR
ρSI − 2κ0ρSS + δρSXs

d

dt
ρSXs = − δρSXs + 2κ0ρSS − βρSXs

ρSI

ρS

d

dt
ρI Xs = − δρI Xs − γρI Xs − (κ0 + κ)ρI Xs + κρSI .

In future work, it could be interesting to study the differences between the slight
variations of adaptive social self-distancing epidemic networks with quarantine we
presented in this appendix. Yet, we conjecture that the key major effects to under-
stand the control of the disease are already displayed by our five-dimensional main
system (4).

B Additional Comparisons between Network Simulations and the
Moment Equations

In this appendix, we collect several additional examples of comparisons between
direct network simulations and the moment-closure Eq. (4). As outlined in the main
part of the paper, we are particularly interested in the parameters w controlling the
re-wiring of social self-distancing and the quarantine rate κ . We have already shown
a comparison in Fig. 1, where κ > 0 and w > 0, which showed very good agreement
between network dynamics and the moment-closure approximation. To check the
robustness of the approximation, we provide here also in Fig. 7 the case w = 0 and
κ > 0, while in Fig. 8 we consider κ = 0 and w > 0. Even for these quite singular
cases, the approximation via second-order moment-closure works extremely well.

C Additional Parameter Robustness Results

In this appendix, we collect additional parameter robustness studies for our results
presented in Sect. 3. In particular, we have selected parameters within a range roughly
compatible with the COVID-19 pandemic. Although it is clear that we cannot model
the epidemic dynamics exactly with our adaptive SIR model (in fact, no model will
give a fully accurate description), we are primarily interested in whether make major
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Fig. 7 Sample paths for the adaptive SIRX model (thin line) and the Pair Approximation from (4) (thick
line). In a we depict the disease prevalence (ρI ) and in b we depict the cumulative size of the recovered
compartment (ρR ). The dynamical parameters are given by a recovery rate of γ = 0.025 and an infection
rate of β = 0.005. The intervention parameters for the quarantine and re-wiring rates are κ = 0.0025 and
w = 0. The release rate from the quarantined compartment is δ = 0.001. For the simulation we sampled
from an Erdõs-Rényi ensemble of size N = 2000 with mean degree μ = 15. We initialized 1% of nodes
as infected ρI (0) = 0.01 and ρSI (0) = μρI (0)

Fig. 8 Sample paths for the adaptive SIRX model (thin line) and the Pair Approximation from (4) (thick
line). In a we depict the disease prevalence (ρI ) and in b we depict the cumulative size of the recovered
compartment (ρR ). The dynamical parameters are given by a recovery rate of γ = 0.025 and an infection
rate of β = 0.005. The intervention parameters for the quarantine and re-wiring rates are κ = 0 and
w = 0.0025. The release rate from the quarantined compartment is δ = 0.001. For the simulation we
sampled from an Erdõs-Rényi ensemble of size N = 2000 with mean degree μ = 15. We initialized 1% of
nodes as infected ρI (0) = 0.01 and ρSI (0) = μρI (0)

changes in the parameters still lead to the main observed trade-off between quarantine
and social self-distancing. Indeed, Figs. 9-11 confirm that the observations we have
made above regarding mean-field accuracy and trade-off between the quarantine and
social distancing remain even for very different sets of parameters.
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Fig. 9 We depict the rate β at which the epidemics surpasses a threshold of r∞ = 0.05, which we take
as an indication for the critical point βc . We compare the simulations (left) with the mean field analysis
(right). The paramters are N = 500, μ = 15, γ = 1/14, δ = 1/10 and I (0) = 5

Fig. 10 We depict the final fraction of recovered individuals r∞ at an infection rate of β = 0.02. We
compare the simulations (left) with the mean field analysis (right) and indicate the critical curve. Again
N = 500, μ = 15, γ = 1/40, δ = 1/10 and I (0) = 5

Fig. 11 We depict the maximal fraction of infected individuals [̂I ]/N at an infection rate of β = 0.02.
We compare the simulations (left) with the mean field analysis (right) and indicate the critical curve, as
calculated from (6). We see here a strong difference. This can be explained by the fact that the simulations
are random processes. The average of sample path maxima over many sample paths is not the same as the
maximum of the average of sample paths. The former overestimates the expectation value of ρI . Again
N = 500, μ = 15, γ = 1/14, δ = 1/10 and I (0) = 5
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