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Abstract
Introduction:	 Dynamic	 functional	 network	 connectivity	 (dFNC),	 derived	 from	mag-
netic	resonance	imaging	(fMRI),	is	an	important	technique	in	the	search	for	biomarkers	
of	brain	diseases	such	as	mild	 traumatic	brain	 injury	 (mTBI).	At	 the	 individual	 level,	
mTBI	can	affect	cognitive	functions	and	change	personality	traits.	Previous	research	
aimed	at	detecting	significant	changes	in	the	dFNC	of	mTBI	subjects.	However,	one	of	
the	main	concerns	in	dFNC	analysis	is	the	appropriateness	of	methods	used	to	correct	
for	subject	movement.	In	this	work,	we	focus	on	the	effect	that	rearranging	movement	
correction	at	different	points	of	the	processing	pipeline	has	in	dFNC	analysis	utilizing	
mTBI	data.
Methods:	The	sample	cohort	consists	of	50	mTBI	patients	and	matched	healthy	con-
trols.	A	5-	min	resting-	state	run	was	completed	by	each	participant.	Data	were	pre-
processed using different pipeline alternatives varying with the place where 
motion-	related	variance	was	removed.	In	all	pipelines,	group-	independent	component	
analysis	(gICA)	followed	by	dFNC	analysis	was	performed.	Additional	tests	were	per-
formed	varying	the	detection	of	 temporal	spikes,	 the	number	of	gICA	components,	
and	the	sliding-	window	size.	A	linear	support	vector	machine	was	used	to	test	how	
each pipeline affects classification accuracy.
Results:	Results	suggest	that	correction	for	motion	variance	before	spatial	smoothing,	
but	leaving	correction	for	spiky	time	courses	after	gICA	produced	the	best	mean	clas-
sification	performance.	The	number	of	gICA	components	and	the	sliding-	window	size	
were also important in determining classification performance. Variance in spikes cor-
rection affected some pipelines more than others with fewer significant differences 
than the other parameters.
Conclusion:	The	sequence	of	preprocessing	steps	motion	regression,	smoothing,	gICA,	
and	despiking	produced	data	most	suitable	for	differentiating	mTBI	from	healthy	sub-
jects.	However,	the	selection	of	optimal	preprocessing	parameters	strongly	affected	
the final results.
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1  | INTRODUCTION

Traumatic	 brain	 injury	 (TBI)	 has	 a	 significant	 impact	 in	 our	 society.	
Although	 traffic	 laws	 in	 several	 countries	 have	 reduced	 the	 occur-
rence	of	TBI	(Redelmeier,	Tibshirani,	&	Evans,	2003),	the	world	health	
organization	considers	traffic	accidents	among	the	three	major	global	
concerns	for	disease	and	injury	(Finfer	&	Cohen,	2001).	In	many	cases	
TBI	 leads	 to	 serious	 short-		 and	 long-	term	effects	 that	 impair	 cogni-
tive	abilities	of	the	patient.	Dangers	of	TBI	are	observed	even	in	mild	
cases.	Suicidality,	depression,	and	posttraumatic	stress	disorder	symp-
toms	are	among	the	deleterious	effects	experienced	by	mTBI	patients	
(Bryan,	Clemans,	Hernandez,	&	Rudd,	2013).	The	wide	spectrum	of	TBI	
symptoms	motivates	the	search	for	new	unexplored	technologies	that	
might	improve	the	detection	of	mTBI.

Functional	magnetic	resonance	imaging	(fMRI)	is	one	of	the	import-
ant	modalities	in	mTBI	research	(Mayer,	Mannell,	Ling,	Gasparovic,	&	 
Yeo,	2011).	Several	studies	provide	evidence	that	point	to	static	func-
tional	connectivity,	a	data	modality	derived	from	fMRI,	as	promising	
biomarker. We call static functional connectivity the measure of co-
herence between brain areas evaluated over the whole period of fMRI 
acquisition.	The	potential	 of	 static	 functional	 connectivity	 to	 detect	
mTBI	after	concussions	has	been	explored	by	Zhu	et	al.	(2014).	Vakhtin	
et	al.	 (2013)	 found	 that	 the	 connectivity	 of	 the	 brain	 default-	mode	
network	 (DMN)	 (Buckner,	Andrews-	Hanna,	&	Schacter,	2008)	might	
be	disrupted	 in	mTBI	patients.	Zhou	et	al.	 (2012)	found	a	pattern	of	
decreased	connectivity	in	the	posterior	cingulate	cortex	and	parietal	
regions,	but	 increased	connectivity	within	the	medial	prefrontal	cor-
tex.	Connectivity	changes	 in	 the	supplementary	motor	area	and	 the	
cerebellum	have	been	reported	by	Nathan	et	al.	(2014)	using	a	seed-	
based	approach.	While	 changes	 in	 the	DMN	of	mTBI	patients	were	
found	in	the	study	by	Vakhtin	et	al.	(2013),	no	significant	differences,	
following multicomparison correction for false positives could be 
observed	 in	 another	work	 by	Mayer	 et	al.	 (2014).	 Similar	 functional	
connectivity methods might deliver inconclusive results and more re-
search is needed.

Static	 connectivity	 is	 a	 measure	 obtained	 over	 sufficiently	 long	
periods	of	time	(Allen	et	al.,	2011).	Such	measurements	assume	tem-
poral	stationarity	that	could	result	in	an	oversimplified	analysis	(Allen	
et	al.,	2012).	More	detail	can	be	obtained	through	the	dynamic	func-
tional	network	connectivity	(dFNC)	method	(Allen	et	al.,	2012;	Sakoğlu	
et	al.,	2010)	that	attempts	to	analyze	connectivity	 in	relatively	short	
periods	of	time.	Few	studies	have	investigated	dFNC	in	mTBI	patients,	
but	 results	 indicate	 a	 trend	 of	 dFNC	 differences	 in	 mTBI	 patients	
(Mayer	et	al.,	2014).	However,	the	ability	to	detect	group	differences	
in fMRI data might be dependent on the data preprocessing pipeline 
used	(Damaraju,	Allen,	&	Calhoun.,	2014;	Power	et	al.,	2014;	Vergara	
et	al.,	2015).	In	static	functional	network	connectivity,	removing	mo-
tion variance early in the preprocessing pipeline leads to better de-
tection	of	group	differences	(Vergara	et	al.,	2015).	Originally	in	dFNC,	
motion variance has been considered as a preprocessing step to be 
implemented	 after	 group-	independent	 component	 analysis	 (gICA)	
(Allen	et	al.,	2012).	However,	 studies	of	 functional	connectivity	pre-
processing provide evidence in favor of processing motion variance 

early	 in	 the	pipeline	 (Power	et	al.,	 2014).	One	 important	 concern	 in	
gICA	is	the	data	reduction	step	usually	implemented	through	principal	
component	 analysis	 (Calhoun,	Adali,	 Pearlson,	&	Pekar,	 2001).	Data	
reduction introduces nonlinear effects that have not been yet char-
acterized	in	the	context	of	gICA.	Another	important	difference	is	that	
processing	motion	variance	after	gICA	works	on	aggregated	temporal	
information. The aggregated temporal information has been separated 
from	corresponding	spatial	maps.	In	contrast,	motion	variance	has	to	
be	processed	for	each	voxel	and	may	produce	effects	on	the	four	fMRI	
dimensions.	 In	contrast	to	static	connectivity,	dFNC	is	based	 in	cor-
relations	estimated	over	a	short	period	of	time.	For	this	reason,	dFNC	
may be more sensitive to movement or spikes than the static connec-
tivity analysis. Mentioned characteristics of data preprocessing may 
have	an	impact	in	dFNC	analysis.

In	this	work	we	hypothesize	that	dFNC	will	be	affected	by	the	se-
lected	preprocessing.	The	estimation	of	dFNC	is	preceded	by	the	use	
of	a	gICA	as	described	by	Allen	et	al.	(2012).	In	our	analysis,	gICA	de-
composes the data in a set of spatial regions and corresponding time 
courses.	As	the	dFNC	analysis	utilizes	the	time	courses	obtained	from	
gICA,	we	will	focus	on	the	temporal	rather	than	the	spatial	 informa-
tion. One of the major concerns is whether preprocessing pipelines 
should	attempt	to	correct	for	motion	variance	in	a	voxel-	wise	manner	
before	 gICA	 (Power	 et	al.,	 2014),	 as	 opposed	 to	 performing	 the	 re-
gression	in	aggregated	time	courses	obtained	after	gICA	(Allen	et	al.,	
2011;	Mayer	et	al.,	2014).	This	work	explores	different	dFNC	results	
obtained from different options for handling subject head motion in 
fMRI preprocessing pipelines.

2  | MATERIALS AND METHODS

2.1 | Subjects

A	total	of	100	subjects,	50	mTBI	patients	 (25	females),	plus	50	age	
(within	3	years),	and	gender-	matched	healthy	controls	(HC),	were	in-
cluded	in	this	study.	The	50	mTBI	patients	(mean	age	27.9	±	9.2)	were	
recruited	from	local	emergency	rooms.	Subjects	classified	as	mTBI	had	
a	Glasgow	Coma	Scale	 (Teasdale	&	Jennett,	1974)	between	13	and	
15	 at	 first	 contact	with	medical	 staff,	 no	more	 than	30	min	 loss	 of	
consciousness	(if	present),	and	no	more	than	24	hr	posttraumatic	am-
nesia	(if	present).	The	inclusion	criterion	was	based	on	the	American	
Congress of Rehabilitation Medicine as described in Mayer et al. 
(2014).	HC	and	mTBI	subjects	were	excluded	if	there	was	a	prior	his-
tory	of	neurological	disease,	major	psychiatric	disturbance,	and	addi-
tional	closed	head	injuries	with	more	than	5	min	of	lost	consciousness,	
additional	closed	head	injury	within	the	past	year,	 learning	disorder,	
ADHD,	or	a	history	of	substance	abuse/dependence	including	alcohol.	
All	participants	provided	informed	consent	in	accord	with	institutional	
guidelines	at	the	University	of	New	Mexico.

2.2 | Imaging

All	 images	 were	 collected	 on	 a	 3	 Tesla	 Siemens	 Trio	 scanner	 lo-
cated	at	the	Mind	Research	Network.	A	5-	min	resting-	state	run	was	
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completed	by	each	participant	using	a	single-	shot,	gradient-	echo	echo	
planar	 pulse	 sequence	 [TR	=	2000	ms;	 TE	=	29	ms;	 flip	 angle	=	75⁰;	
FOV	=	240	mm;	matrix	size	=	64	×	64].	Foam	padding	and	paper	tape	
were used to restrict motion within the scanner. Thirty- three contigu-
ous,	axial	4.55-	mm-	thick	slices	were	selected	to	provide	whole-	brain	
coverage	 (voxel	 size:	 3.75	×	3.75	×	4.55	mm).	 The	 first	 five	 images	
were	eliminated	to	account	for	T1	equilibrium	effects.	A	total	of	145	
images	 were	 selected	 for	 further	 analysis.	 Presentation	 software,	
Neurobehavioral	Systems	(RRID:	SCR_002521),	was	used	for	stimulus	
presentation	 and	 synchronization	of	 stimuli	with	 the	MRI	 scanners.	
Subjects	were	instructed	to	stare	at	a	foveally	presented	fixation	cross	
(visual	angle	=	1.02⁰)	 for	approximately	5	min	and	to	minimize	head	
movement.

2.3 | Preprocessing pipelines

This work focuses on preprocessing pipelines that differ on the order 
of	 the	 preprocessing	 steps	 implemented.	Here,	 the	words	 preproc-
essing	and	pipeline	are	not	used	to	designate	a	specific	toolbox.	The	
goal	was	not	to	test	differences	among	known	toolboxes.	Instead,	the	
focus	is	in	the	effects	that	preprocessing	ordering	has	on	subsequent	
analysis. The specific variations of the preprocessing order are de-
scribed in this section as well as the definition of each pipeline.

Resting- state fMRI data were preprocessed using statistical para-
metric	mapping	version	5	(SPM	5;	RRID:SCR_007037;	http://www.
fil.ion.ucl.ac.uk/spm)	 (Friston,	 2003)	 including	 slice-	timing	 correc-
tion,	realignment,	coregistration,	spatial	normalization,	and	transfor-
mation	to	the	Montreal	Neurological	Institute	(MNI)	standard	space.	
These	preprocessing	steps	will	be	designated	as	“STRCoN”	for	nota-
tion	purposes.	The	voxel	size	after	STRCoN	was	3	×	3	×	3	millime-
ters. We established four different preprocessing pipelines based on 
the	order	of	steps,	especially	the	motion	artifact	correction.	Figure	1	
presents	a	description	of	each	pipeline.	The	despiking	 step,	desig-
nate	 as	 “SpkReg”,	 consisted	 on	 the	 orthogonalization	with	 respect	
to spike regressors. Each spike is represented by an independent 
regressor valued 1 at the spike time point and 0 everywhere else. 
The	DVARS	method	(Power,	Barnes,	Snyder,	Schlaggar,	&	Petersen,	
2012)	was	used	to	detect	spikes	and	build	corresponding	regressors.	
Three	 different	 thresholds	 (2.5,	 3.0,	 and	 4.0	 standard	 deviations)	
were considered each creating differently preprocessed datasets. 
There was no group difference (p >	.50)	 in	the	number	of	spike	re-
gressors	identified	between	HC	and	mTBI	groups	on	any	of	the	three	
thresholds.	 In	 the	step	designated	as	 “MotReg”,	 time	courses	were	
orthogonalized	with	respect	to	i)	linear,	quadratic,	and	cubic	trends;	
ii)	 the	 six	 realignment	 parameters;	 and	 iii)	 realignment	 parameters	
derivatives.	 In	 two	of	 the	 pipelines,	 correction	 for	 spikes	 and	mo-
tion variance are performed together using one regression analysis. 
This	 joint	 step	 is	 denoted	 as	 “SpkMotReg”.	 Smoothing	 and	 group-	
independent	component	analysis	(gICA)	are	performed	one	after	the	
other	 in	all	 four	pipelines.	A	FWHM	Gaussian	kernel	of	6	mm	was	
used	 for	 the	 “Smoothing”	 step.	The	 “gICA”	 step	 (Calhoun	&	Adali,	
2012;	Calhoun	et	al.,	2001)	was	performed	using	GIFT	(version	4.0a;	
RRID:SCR_001953;	 http://mialab.mrn.org/software/gift/)	 to	 obtain	
a	set	of	functionally	independent	resting-	state	networks	(RSN)	each	
one	 composed	 of	 a	 temporal	 and	 a	 spatial	 part	 (Calhoun	&	Adali,	
2012).	As	 this	 study	deals	with	dFNC,	 performed	 analysis	 focuses	
mainly on the temporal information.

The	optimal	number	of	gICA	components	was	determined	to	be	
70	using	a	modified	version	of	ICASSO	(RRID:SCR_014981;	ICASSO	
was	 included	 in	 the	GIFT	v4.0a	package;	http://mialab.mrn.org/soft-
ware/gift/)	 (Himberg,	Hyvärinen,	&	Esposito,	2004;	Ma	et	al.,	2011)	
such	that	the	overall	R-	index	is	close	to	the	minimum	and	the	index	
quality	 of	 at	most	 two	 components	 falls	 below	0.7.	The	R-	index	 as	
defined	 in	Himberg	et	al.,	 (2004)	 is	a	cluster	validity	 index	 (Levine	&	
Domany,	2001)	that	constitutes	a	measure	of	compactness	and	sepa-
ration of independent components. This setup was considered a good 
consistency	 trade-	off	 between	 RSN	 quality	 and	 clustering	 validity	 
(R-	index)	 considering	 the	 differences	 among	 all	 four	 pipelines.	
However,	 the	 three	 numbers	 of	 components	 60,	 70,	 and	 80	 were	
considered to study the effects caused by varying this parameter. 
The	combined	steps	“SpkMotReg”	are	applied	before	smoothing	and	
gICA	in	pipeline	A	(PA),	but	after	gICA	in	pipeline	D	(PD).	In	pipeline	
B	(PB)	only	motion	parameters	“MotReg”	are	processed	before	gICA.	
In	pipeline	C	(PC)	only	spike	regression	“SpkReg”	is	performed	before	
smoothing	and	gICA.	PC	is	similar	to	the	pipeline	commonly	followed	
in	previous	mTBI	FNC	studies	(Mayer	et	al.,	2014)	and	thus	represents	

F IGURE  1 Preprocessing	pipelines	considered	for	dFNC.	The	
main difference is the position on the pipeline where despiking 
(SpkReg)	and	motion	parameters	(MotReg)	were	regressed.	
SpkMotReg	correspond	to	the	combination	SpkReg	and	MotReg.	
STRCoN	correspond	to	the	initial	steps:	slice-	timing	correction,	
realignment,	coregistration,	and	spatial	normalization.	The	figure	does	
not	show	variations	in	other	parameters	considered	and	explained	in	
the	main	text
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our baseline. The order of steps in PD has been also considered in the 
literature	(Allen	et	al.,	2011).

The last two steps correspond to interpolation and filtering. 
Interpolation in this work corresponds to the replacement of spike 
time	courses	by	values	calculated	using	a	cubic	spline.	For	some	pipe-
lines	spikes	were	also	processed	using	a	regression,	which	simply	set	
spike	time	courses	to	zero.	In	static	connectivity	it	is	possible	to	simply	
censure	spiky	time	courses	(Vergara	et	al.,	2015),	but	dFNC	requires	
the use of interpolation to avoid discontinuities in small time windows 
(Allen	 et	al.,	 2012).	 Filtering	 was	 implemented	 using	 a	 fifth-	order	
Butterworth	filter	with	bandwidth	[0.01	0.15]	Hz	as	it	has	been	sug-
gested	in	previous	dFNC	literature	(Allen	et	al.,	2011,	2012).

2.4 | Dynamic functional network connectivity

Spatial	maps	were	z-	transformed	and	thresholded	at	|z|	>	3.5	to	iden-
tify	brain	areas	of	relevance	in	each	RSN.	Artifactual	RSNs	were	de-
tected	and	discarded	based	on	their	frequency	content	following	the	
method	proposed	in	Allen	et	al.	(2011).	RSNs	were	also	manually	in-
spected	and	validated	by	three	experts	who	discarded	RSNs	 if	their	
main activation occurs in areas of white matter or cerebrospinal fluid. 
In	addition,	RSNs	that	could	not	be	replicated	in	all	four	pipelines	were	
not	considered.	RSN	matching	was	performed	by	considering	spatial	
correlations	larger	than	0.5	and	by	visual	inspection.	A	total	of	29	non-
artifactual	RSNs	were	selected	for	further	analysis.

Functional	 relevance	 of	 each	 RSN	was	 determined	 by	 assessing	
spatial	 overlap	with	 the	 90	 functional	 regions	 of	 interest	 (ROI)	 de-
fined	by	 Shirer,	 Ryali,	 Rykhlevskaia,	Menon,	&	Greicius	 (2012).	 RSN	
groups	include	subcortical	(SBC),	auditory	(AUD),	sensorimotor	(SEN),	
cerebellum	(CER),	visual	(VIS),	salience	(SAL),	executive	control	(ECN),	
DMN,	 and	 language	 (LAN)	 brain	 regions.	 Thalamus	 and	 putamen	
constitute	the	SBC	group.	There	is	only	one	auditory	RSN	in	the	left	
superior	 temporal	 region.	 The	 SEN	 group	 embraces	 regions	 of	 the	
supplementary	motor	area	and	the	postcentral	gyrus.	The	VIS	group	
includes	calcarine,	cuneus,	occipital,	and	fusiform	giri.	Right	insula	and	
supramarginal	gyrus	were	classified	 in	the	SAL	group.	Frontoparietal	
networks	(van	den	Heuvel,	Mandl,	Kahn,	Pol,	&	Hilleke,	2009)	consti-
tute	the	ECN	group.	The	DMN	is	represented	by	angular	gyrus,	ante-
rior	and	posterior	cingulate	cortexes.	The	LAN	group	consisted	of	left	
and right middle temporal gyrus.

The	dFNC	was	estimated	using	the	sliding	time	window	correlation	
approach	(Allen	et	al.,	2012).	Three	different	window	sizes	15,	30,	and	
45	TRs	 rectangle	width	convolved	with	a	Gaussian	 (σ	=	3	TRs)	were	
considered,	each	slid	 in	steps	of	1	TR.	The	 information	collected	for	
each window consists of windowed correlations between the time 
courses	of	all	RSN	pairs.	Obtained	windows	were	clustered	using	the	
k-	means	method	with	 a	 L1-	norm	 distance	 to	 obtain	 a	 set	 of	 dFNC	
states,	one	for	each	cluster.

2.5 | Difference between mTBI and healthy controls

Before	 analyzing	 the	 influence	 of	 preprocessing	 on	 classification	
performance	 it	 is	 important	 to	 gather	 evidence	 of	 the	 existence	 of	

differences	between	the	sample	groups	mTBI	and	HC.	This	is	impor-
tant	as	the	baseline	is	based	on	mTBI	diagnosis,	but	not	on	functional	
connectivity.	In	the	case	of	dFNC,	there	are	a	finite	set	of	states	that	
the	 brain	 can	momentarily	 occupy.	One	 simple	 analysis	 in	 dFNC	 is	
to	tests	occupancy	rate	differences	between	HC	and	mTBI.	The	oc-
cupancy	rates	are	represented	by	the	percentage	of	dFNC	windows	
found	on	each	state	and	for	each	subject.	An	unpaired	t- test was used 
to find significant differences in occupancy rates.

2.6 | Pipeline assessment

The	first	step	for	this	section	was	to	examine	the	windows	for	each	
subject,	identify	windows	belonging	to	the	same	state,	and	calculating	
a	mean	connectivity	matrix	 for	 each	 state	 and	pipeline.	The	 frame-	
wise	displacement	(FWD)	measure	of	movement	noise	introduced	by	
Power	et	al.	(2012)	was	calculated	subject	wise	and	separated	in	two,	
one corresponding to the temporal mean taken over the three trans-
lations	(TRN	=	mean[|△dx| + |△dy| + |△dz|])	and	one	temporal	mean	
for	 the	 three	 rotations	 (ROT	=	mean[|△dpitch| + |△dyaw| + |△droll|]).	 
An	additional	vector	containing	the	number	of	detected	spikes	(spk)	
was	also	utilized.

The first objective was to assess differences in functional connec-
tivity	 among	 pipelines.	 A	 MANOVA	 analysis	 was	 performed	within	
each cluster to determine if there were significant differences among 
pipelines.	As	a	second-	level	analysis,	an	ANOVA	test	was	performed	
for	each	dFNC	within	the	state.	The	analysis	was	repeated	with	the	
inclusion of a nuisances regression step to study the possible influence 
of known variability sources on functional connectivity differences 
among	pipelines.	The	covariates	included	diagnosis,	gender,	age,	TRN,	
ROT,	and	spk.

The	second	analysis	seeks	to	find	relationships	between	dFNC	and	
covariates	of	interest	(diagnosis,	TRN,	ROT,	and	spk)	for	each	pipeline.	
This time the data were segregated in 16 datasets corresponding to 
the combinations of pipelines and states. The strength of the relation-
ship	between	each	dFNC	and	the	covariates	was	taken	as	the	abso-
lute value of the regression coefficient |β| of each covariate. The linear 
model	included	vectors	for	diagnosis,	gender,	age,	TRN,	ROT,	and	spk	
covariates. The set of coefficients |β| were compared for each state 
and	among	pipelines	utilizing	ANOVA	tests.

A	 classification	 procedure	 was	 performed	 utilizing	 machine	
learning	 classification	 and	 cross	 validation.	 The	 same	 covariates,	
except	 for	diagnosis,	were	 regressed	out	before	classification	and	
cross validation. The regression was performed separate for each 
pipeline	 and	 state.	A	 linear	 Support	Vector	Machine	 (SVM)	 based	
on	 least	 squares	 with	 soft	 margin	 parameter	 C	=	0.01	 was	 uti-
lized	 to	 classify	 subjects	 in	mTBI	 and	HC.	 Classification	 accuracy	
was	measured	using	area	under	the	curve	(AUC).	The	overall	SVM	
performance was assessed using leave- one- out cross validation 
(LOOCV).	This	way	one	AUC	measure	was	obtained	for	each	pipe-
line separately.

High	AUC	suggests	the	preference	of	one	pipeline	over	the	oth-
ers.	Pipelines	acts	 as	different	models	of	data	preprocessing,	but	 at	
this point model selection has not been cross validated. Problems with 
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overfitting	model	selection	have	been	described	 in	Cawley	&	Talbot	
(2010).	A	nested	optimization	loop	as	displayed	in	Figure	2	was	used	
to select the pipeline model and deal with model selection overfitting. 

The	 nested	 loop	 measured	 the	 AUC	 performance	 of	 each	 pipeline	
using	a	second	LOOCV	and	the	remaining	samples,	that	is,	those	left	
after	 leaving	 the	one	sample	out	 from	the	 first	LOOCV.	 In	 this	 sec-
ond	loop,	the	95	remaining	samples	are	subject	to	four	independent	
LOOCV	corresponding	to	each	pipeline.	The	LOOCV	with	the	highest	
AUC	designate	the	pipeline	with	higher	chance	of	correctly	classifying	
the	first	left	out	sample.	These	four	AUC	are	saved	for	further	analysis.	
The pipeline choice is also recorded.

3  | RESULTS

Two subjects were identified as outliers with more than 3 standard 
deviations on at least two frame- wise displacement measures. These 
subjects	and	their	respective	matched	control	subjects	were	excluded	
from	the	analysis	 (Mayer	et	al.,	2014).	The	 final	number	of	 subjects	

F IGURE  2 Nested	LOOCV	loop	used	to	assess	pipeline	
performances.	AUC	measures	are	obtained	using	an	independent	
LOOCV	for	each	pipeline	after	leaving	one	sample	out.	The	SVM	
is	then	trained	using	data	from	the	pipeline	with	largest	AUC.	On	
each inner loop there were 108 different options corresponding to 
the	combination	of	four	pipelines,	three	different	spike	detection	
thresholds,	three	different	numbers	of	gICA	components,	and	three	
different	sliding-	window	sizes.	The	three	dots	on	the	figure	indicate	
the	existence	of	parameter	pipeline	variations.	AUCs	obtained	for	
each sample left out were stored and used for further analysis
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F IGURE  3 dFNC	centroids	obtained	for	each	of	the	four	clusters	
obtained using the k- means algorithm. Each cluster represents a 
particular	dFNC	state.	The	picture	displays	two	patterns	of	each	
strongly	and	weakly	connected	dFNC	states
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was	96.	The	spatial	maps	of	 resulting	RSNs	can	be	observed	 in	 the	
provided	Figure	S1.

One hundred and eight different datasets were available after the 
preprocessing steps. These datasets are the results of the four differ-
ent	pipelines	 (PA,	PB,	PC,	 and	PD)	and	 the	variation	of	parameters:	
three	different	spike	detection	thresholds	(2.5,	3.0,	and	4.0	standard	
deviations),	 three	different	 gICA	 total	 components	 (60,	70,	 and	80),	
and	three	different	dFNC	sliding-	window	sizes	(15,	30,	and	45	TRs).	
Each	spike	detection	threshold,	based	on	different	standard	deviations	
(σ),	detected	a	different	ratio	of	spikes	per	subject:	2.28	for	2.5σ,	1.46	
for 3.0σ,	and	0.68	for	4.0σ.

The	application	of	k-	means	clustering	required	the	estimation	of	
the	number	of	clusters.	A	cluster	validity	index	was	obtained	repeating	
the	k-	means	clustering	and	requesting	a	different	number	of	clusters	
in the range from 2 to 8. We choose four clusters based on the elbow 

criteria	as	described	in	Allen	et	al.	(2012).	Centroids	of	obtained	clus-
ters	are	depicted	in	Figure	3.	Clusters	were	matched	among	all	data-
sets	using	correlation	between	centroids.	This	way,	each	dFNC	state	is	
represented by one corresponding cluster matched among pipelines. 
State	1	has	the	basic	structure	of	a	resting-	state	matrix	as	it	has	been	
described	before	(Allen	et	al.,	2011).	State	2	is	similar	to	State	1	with	
the	exception	of	a	stronger	correlation	between	different	RSN	groups.	
State	3	is	similar	to	State	2	except	that	subcortical	RSNs	are	negatively	
correlated	with	the	rest	of	the	brain.	State	1	and	State	4	have	few	dif-
ferences	and	are	states	of	very	low	connectivity	between	RSN	groups.	
The	RSN	groups	 SEN,	CER,	 and	VIS	 are	 slightly	more	 connected	 in	
State	1	than	State	4.

3.1 | Occupancy rate results

Figure	4	shows	the	occupancy	rate	results.	Data	from	all	parameter	
variations	were	considered,	but	the	analysis	was	focused	on	the	dif-
ference	between	pipelines	and	dFNC	states.	More	strongly	connected	
states have lower occupancy and more weakly connected states have 
larger	occupancy.	In	HC,	PA	and	PD	exhibited	no	significant	difference	
in	occupancy	rates	between	State	1	and	State	4,	all	other	occupancy	
rates	are	different	between	dFNC	states.	In	mTBI,	occupancy	rates	are	
different	between	states	except	for	pipelines	PB	and	PC	where	State	
1	and	State	4	are	not	different.

The t-	test	 results	 show	 the	 difference	 between	 HC	 and	 mTBI	
samples.	State	2	exhibits	the	 largest	t-	values.	Significant	differences	
(p <	.05)	are	found	for	all	pipelines	in	State	1	and	State	2.	 In	State	3	
only	 pipelines	 PA	 and	 PB	 had	 significant	 differences.	Although	 dif-
ferences	between	State	1	and	State	4	are	not	easily	visible	from	the	
clusters	in	Figure	3,	the	difference	is	evident	after	considering	the	oc-
cupancy	rate	results	where	mTBI	versus	HC	differences	were	detected	
in	State	1,	but	not	 in	State	4.	Significant	t-	values	 indicate	that	State	
2	increases	its	occupancy	in	mTBI	compared	to	HC	samples,	but	de-
creases	in	State	1	and	in	State	3	only	for	PA	and	PB.	This	t- test pattern 
is similar to that observed in occupancy rates.

3.2 | Functional connectivity

In	 this	 analysis	we	 utilized	 a	mean	 dFNC	matrix	 per	 state	 for	 each	
subject.	Differences	in	dFNC	among	the	four	pipelines	were	detected	
on	all	states	after	a	MANOVA	analysis.	The	largest	Wilk’s	λ was 0.66 
with the smallest χ2	as	2284.3	(1218	degrees	of	freedom).	As	signifi-
cant	differences	were	detected	on	 all	 states,	we	proceeded	 to	 find	
those	differences	by	second-	level	ANOVA	tests	and	summarize	 the	
results.	Figure	5	displays	the	mean	absolute	value	of	the	correlation	
over	all	dFNCs	on	each	state.	The	connectivity	of	PD	was	 larger	 in	
State	1	compared	to	the	other	three	pipelines.	State	2	exhibited	no	
difference.	In	State	3,	PC	and	PD	were	characterized	by	smaller	con-
nectivity	compared	to	PA	and	PB.	State	4	shows	the	weakest	connec-
tivity	magnitude	with	no	dFNC	strength	difference	among	pipelines.	
The comparison among the three spike detection thresholds indi-
cated no significant differences among the pipelines. The number of 
components produced significant differences in all four states. The 

F IGURE  5 Summarized	functional	connectivity.	The	summary	
includes	the	dFNC	mean	of	each	pipeline	and	state.	In	the	case	
of	preprocessing	parameters	the	results	are	organized	by	state.	
Significant	results	(p <	.05)	are	marked	with	asterisk	(*)
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dFNC	strength	was	in	general	larger	when	70	total	components	were	
selected.	 Differences	 in	 sliding-	window	 size	 had	 the	 same	 pattern	
on	 each	 state	 with	 decreasing	 dFNC	 strength	 as	 the	 window	 size	
increases.

Figure	6	display	results	for	the	strength	of	regression	coefficients	
from	covariates	of	interest.	Correlation	(Corr)	between	diagnosis	and	
head movement covariates was calculated to see if these two signifi-
cant	effects	might	be	related,	but	no	significant	correlation	was	found.	
These	measurements	 are	 as	 follows:	 Corr(dia,TRN)	 	=	0.16	 (p =	.12),	
Corr(dia,ROT)		=	0.16	(p =	.13),	Corr(dia,spk	=	2.5σ)		=	−0.05	(p =	.61),	
Corr(dia,spk	=	3.0σ)	 	=	0.01(p =	.89),	 and	 Corr(dia,spk	=	4.0σ)	 	=	0.0	

(p =	1.0).	PA	showed	a	significantly	higher	strength	compared	to	the	
other	pipelines	in	State	3.	However,	PA	also	exhibit	significantly	higher	
strength	with	TRN	in	State	3.	PC	and	PD	exhibited	significantly	higher	
strength	than	the	other	pipelines.	However,	PD	was	significantly	af-
fected	by	the	number	of	spikes	in	State	2.	PA	and	PB	were	more	af-
fected	by	the	TRN	covariate,	and	PD	by	ROT	and	spikes.	PC	was	the	
only pipeline that lacked significant results with nuisance covariates 
in	Figure	6.

Further	analysis	was	performed	on	the	different	parameters	by	re-
stricting the data to a specific state or pipeline. The significant results 
are	presented	in	Figure	7.	The	parameter	producing	more	differences	
across	the	different	tests	was	the	sliding-	window	size.	The	observed	
trends	were	decrements	of	the	mean	dFNC	strength	(see	Figure	5)	and	
the	diagnosis	coefficient	magnitude	(see	Figure	7)	linked	to	increments	

F IGURE  6 Regression coefficient strength. Results used the 
absolute value of the regression coefficients averaged over all 406 
(29*28/2)	connectivity	values.	The	mean	coefficients	were	compared	
using	ANOVA	tests.	Asterisks	indicate	significantly	higher	(p <	.05)	
coefficient magnitude within the state comparison
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of	window	size.	In	addition,	the	number	components	affected	the	TRN	
covariant	for	the	PD	pipeline.	However,	PD	did	not	show	this	trend	in	
Figure	6.

3.3 | Classification results

The	 classification	 results	 for	 the	 separate	 single	 LOOCV	 pipelines	
were	 as	 follows:	 PA(63%),	 PB(71%),	 PC(66%),	 and	 PD(66%).	 These	
results	were	obtained	by	applying	an	 independent	LOOCV	for	each	
pipeline	resulting	in	four	values	where	variability	cannot	be	studied.	At	
first	it	seems	that	PB	achieves	the	highest	classification,	but	this	result	
must	be	cross	validated	to	study	the	stability	of	picking	PB.

At	this	point	there	are	dFNC	features	available	from	108	differ-
ent datasets representing different pipelines and parameter settings. 
Although	one	LOOCV-	SVM	can	be	run	for	each	dataset,	results	ob-
tained this way are not suitable for comparing the different datasets. 
The	nested	double	LOOCV	in	Figure	2	was	designed	to	measure	these	
characteristics	as	on	each	outermost	LOOCV	loop	the	datasets	enter	
a contest and the best is chosen to then classify. The number of times 
each dataset was selected as the best to use for training was counted 
for	each	of	the	96	subjects.	As	a	result	the	dataset	with	PA	as	pipe-
line,	a	threshold	of	3.0,	a	number	of	components	of	80,	and	a	sliding-	
window	size	of	45	TRs	was	chosen	93	times.	The	dataset	with	PB	as	
pipeline,	 a	 threshold	 of	 4.0,	 a	 number	 of	 components	 of	 80,	 and	 a	
sliding-	window	size	of	15	TRs	was	chosen	for	the	remaining	three	iter-
ations. No other dataset was chosen as the best on any iteration. The 
final	classification	had	an	AUC	of	73%.	This	result	indicates	high	model	
stability	for	the	dataset	chosen	93	times.	After	this	analysis,	a	total	of	
96	AUC	measurements	were	available	 for	each	of	 the	108	datasets	

given	the	way	the	nested	LOOCV	in	Figure	2	works.	Figure	8	displays	
plots	of	mean	AUC	obtained	from	the	LOOCV	implementation	shown	
in	Figure	2.	After	bootstrapping	the	10368	(108	datasets	X	96	sub-
jects/LOOCV	 loops)	AUC	values	to	estimate	a	null	model	we	found	
five	significant	AUCs.	Each	pipeline	has	at	least	one	AUC	result	higher	
than	chance,	being	PD	the	smallest	one	with	63.4%.	Coincidentally	
the	 same	dataset	 that	was	 chosen	93	 times	by	 the	nested	LOOCV	
also	exhibited	the	highest	mean	AUC	of	72.5%.	Further	analyses	were	
performed to investigate differences solely for pipeline and parame-
ters.	This	 time	PB	showed	the	highest	mean	AUC	after	considering	
only	pipeline	differences.	Although	a	specific	combination	of	parame-
ters	using	PA	resulted	in	the	highest	AUC,	PB	achieved	higher	perfor-
mance	after	averaging	AUCs	from	different	parameter	combinations.	
PC	and	PD	had	similar	performance,	but	smaller	than	the	other	two	
pipelines.	Results	for	despike	threshold	indicate	that	2.5σ,	the	small-
est	threshold,	also	resulted	in	lower	AUC.	The	AUC	was	significantly	
higher	when	using	70	total	components.	Finally,	the	AUC	significantly	
decreases	as	the	sliding-	window	size	 increases.	The	AUC	trends	for	
number	of	components	and	sliding-	window	size	are	similar	to	those	
found	 in	 Figure	5,	 but	 the	 despike	 threshold	 followed	 a	 different	
pattern.

4  | DISCUSSION

This work tested different preprocessing pipelines observing the 
effect	 produced	 in	 dFNC	 results.	 In	 addition,	 pipelines	were	 tested	
using	differences	among	important	parameters	of	the	dFNC	analysis.	
Just	as	 it	was	observed	for	static	connectivity	 (Vergara	et	al.,	2015)	

F IGURE  8 Classification performance 
results. Data obtained from the nested 
LOOCV	scheme	depicted	in	Figure	2	
allow the estimation of classification 
performance	variability	by	subject.	An	
AUC	value	was	calculated	for	each	subject	
left	out.	This	figure	shows	the	mean	AUC	
values averaged on the subject dimension. 
After	a	bootstrapped	null	model	only	five	
AUC	were	determined	to	be	significantly	
larger	than	chance.	These	AUC	values	were	
labeled	in	this	figure.	Four	extra	ANOVA	
tests were used to study the effect that 
each variation of pipeline and parameters 
has	on	the	mean	AUC.	The	significant	
differences (p <	.05)	are	indicated	by	an	
asterisk	(*)
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preprocessing	 impacts	 the	results	obtained	 in	dFNC.	To	the	best	of	
our	knowledge,	this	is	the	first	time	preprocessing	have	been	tested	
in	dFNC	analysis.	This	work	provides	further	evidence	that	pipelines	
where	 motion	 variance	 is	 processed	 before	 gICA	 tend	 to	 deliver	
stronger group differences. These results agree with suggestions 
for ROIs preprocessing where motion variance is removed before 
smoothing	and	ROI	processing	 (Power	et	al.,	2012,	2014).	Although	
gICA	and	ROI	are	different	techniques	for	time-	series	estimation,	re-
sults are in favor of following the recommendation for ROI where rea-
lignment parameters are regressed early in the preprocessing.

One	of	the	first	assumptions	in	this	work	is	that	dFNC	differs	be-
tween	HC	and	mTBI	subjects.	Static	FNC	difference	has	been	utilized	
in the past to classify these two sample groups indicating that con-
nectivity	differences	actually	exist	(Vergara,	Mayer,	Damaraju,	Kiehl,	&	 
Calhoun,	 2017).	 In	 the	 present	 analysis,	 occupancy	 rate	 differences	
provided	 evidence	 that	 dFNC	 data	 also	 differs	 between	 these	 two	
sample groups. In addition to the numerical observations presented 
here,	there	are	several	studies	that	support	the	assumption	of	func-
tional	connectivity	differences.	We	can	find	in	the	literature	examples	
where	mTBI	subjects	exhibit	 increased	functional	connectivity	when	
compared	to	controls.	Sours	et	al.	(2013)	reported	increased	connec-
tivity between salience and task- positive networks. The connectivity 
between	cerebellum	and	the	SMA	has	been	found	to	be	stronger	 in	
mTBI	patients	(Nathan	et	al.,	2014;	Vergara	et	al.,	2015).	The	evidence	
points	to	a	pattern	of	 increased	connectivity	involving	salience,	sen-
sorial,	auditory,	and	visual	areas	(Mayer	et	al.,	2011,	2014).	Given	that	
State	2	represents	a	state	with	strong	connectivity	across	the	brain,	
increased	 occupancy	 rates	 for	 this	 state	 could	 explain	 why	 higher	
connectivity	 is	 observed	 in	 static	 functional	 connectivity.	 Another	
important characteristic is that larger occupancy rates for the state 
represented	by	State	2	decreases	the	occupancy	in	all	the	other	states.	
Decreased	occupancy	for	State	3,	where	subcortical	networks	had	a	
more	negative	dFNC	value,	might	 affect	overall	 subcortical	 connec-
tivity. This provide evidence for a thalamic abnormality based on in-
creased functional connectivity as it has been previously reported 
in	the	literature	(Sours,	George,	Zhuo,	Roys,	&	Gullapalli,	2015;	Tang	
et	al.,	2011).	This	is	reflected	in	State	2	where	the	thalamus	has	pos-
itive	correlations	with	other	RSNs	in	the	default	mode	and	the	cere-
bellum	groups.	This	 correlation	enhancement	can	be	explained	by	a	
compensatory	mechanism	for	detrimental	sensorial	symptoms	in	mTBI	
patients	(Sours	et	al.,	2015).	Structural	corticothalamic	abnormalities	
of	white	matter	in	TBI	patients	are	linked	to	more	serious	symptoms	
including	 posttraumatic	 stress	 disorder	 (Yeh	 et	al.,	 2014).	 Obtained	
results	 cannot	 directly	 explain	 decreased	 connectivity	 linked	 to	 the	
DMN	reported	by	previous	studies	(Bonnelle	et	al.,	2011;	Sharp,	Scott,	
&	Leech,	2014;	Sharp	et	al.,	2011).	Our	analysis	is	in	favor	of	a	stron-
ger anticorrelation relationship between DMN and other cortical re-
gions.	If	the	DMN	interference	hypothesis	is	correct	(Sonuga-	Barke	&	 
Castellanos,	 2007),	 this	 connectivity	 enhancement	might	 indicate	 a	
rupture of the balance between DMN and task- positive networks af-
fecting	goal-	directed	attention.	Based	on	this	discussion,	we	assume	
that	diagnosis	information	is	effectively	related	to	dFNC	contrast	be-
tween	mTBI	 and	HC	 samples.	 Furthermore,	 our	 focus	 is	 to	 identify	

the	 preprocessing	 pipeline	 sensitive	 to	 this	 dFNC	 contrast	 and	 less	
sensitive to parameter selection and nuisance signals.

The	results	for	the	dFNC	strength	in	Figure	5	suggest	that	resid-
ual head movement variance may have a significant effect on some 
dFNC	state.	This	 can	be	deducted	 from	 the	 fact	 that	preprocessing	
motion	 parameters	 before	 gICA	 resulted	 in	 a	 trend	 of	 higher	 abso-
lute	value	 of	 dFNC	 strength	 for	 PA	 and	 PB	 in	 State	 2	 and	 State	 3.	
These	two	states	also	exhibit	higher	occupancy	rates	and	occupancy	
rate	differences	between	mTBI	and	HC.	Together,	these	observations	
suggest	 that	 PA	 and	PB	 are	 appropriate	 pipelines	 for	 the	 detection	
of	 increased	 static	 connectivity	 in	mTBI	 samples	 (Sours	et	al.,	 2013;	
Vergara,	Mayer,	Damaraju,	Hutchison,	&	Calhoun,	2017;	Vergara	et	al.,	
2015)	previously	mentioned.	However,	this	panorama	is	not	fully	clear	
for	the	results	in	Figure	6.	The	relationship	between	dFNC	and	diag-
nosis	was	higher	for	PC	and	PD	in	State	2,	but	higher	for	PA	in	State	3.	
Although	PC	and	PD	exhibited	increased	relationship	with	diagnosis	in	
State	2,	the	occupancy	rate	is	smaller	for	this	state	which	explains	why	
this increased sensitivity with diagnosis is not similarly observed in 
static	connectivity	(Vergara,	Mayer,	Damaraju,	Hutchison,	et	al.,	2017).	
These results suggest that the difference between static and dynamic 
connectivity is rooted on the difference in occupancy rate instead of 
connectivity	strength.	In	contrast,	the	results	from	classification	per-
formance suggest that PC and PD contain less information useful to 
distinguish	HC	from	mTBI.	The	AUC	results	in	Figures	8	and	4	agree	
that	regressing	motion	parameters	before	gICA,	as	was	performed	in	
pipelines	PA	and	PB,	creates	better	sensitivity	to	diagnosis,	but	with-
out pointing to a specific state. Classification results suggest that a 
particular	parameter	combination	in	PA	produced	a	very	stable	model	
selected	96.8%	of	the	times	by	the	nested	LOOCV.	Although	the	max-
imum	AUC	result	was	obtained	in	PA	for	a	specific	combination	of	pa-
rameters,	PB	had	a	higher	mean	AUC	than	PA	after	averaging	results	
from	considered	parameter	combinations.	In	general,	PB	allowed	the	
best	differentiation	between	HC	and	mTBI	 in	case	variations	of	pre-
processing parameters cannot be cross validated as is the case of most 
studies and applications.

Differences	 in	 preprocessing	 parameters	 exhibited	 different	
trends. The threshold used for spike detection was the parameter that 
resulted in the fewest number of observed effects. The most notable 
observation	was	a	reduction	in	the	AUC	when	using	2.5σ compared to 
the other two thresholds. This difference does not seem to be related 
to	the	difference	in	number	of	spikes	between	HC	and	mTBI	subjects	
as the correlation with diagnosis was not significant and lower than 
0.05.	The	difference	 could	 be	 explained	by	 particular	 differences	 in	
the	spike	magnitude	and	their	effect	on	connectivity	(Damaraju	et	al.,	
2014).	However,	results	in	Figure	5	indicate	this	effect	on	connectiv-
ity is not a major source of differences and was observed in only one 
state.	It	is	possible	that	the	SVM	was	better	at	detecting	the	difference	
caused	by	spikes	than	the	other	analyses	considered	in	this	work.	As	a	
parameter,	the	total	number	of	independent	components	had	a	consis-
tent	pattern	through	all	analyses.	Results	for	70	components	exhibited	
higher mean connectivity and higher mean classification performance 
than the other two options. These results indicate an optimal number 
of	gICA	components	as	70,	such	as	 it	was	 initially	determined	using	
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ICASSO.	There	was	 only	 one	 unfavorable	 relationship	with	 transla-
tional	head	motion	affecting	PD,	as	displayed	 in	Figure	7.	However,	
the effect was not detected on the other three pipelines. The pattern 
for	sliding-	window	sizes	was	also	very	consistent.	Smaller	sizes	pro-
duced	increases	in	several	measures	including	mean	dFNC,	diagnosis	
regression	coefficient,	and	mean	classification	performance.	Windows	
with a shorter temporal span might allow for the detection of dif-
ferences	 in	 temporal	variations	between	mTBI	and	HC.	 In	summary,	
evidence	 indicates	that	an	optimal	number	of	gICA	component	esti-
mation	and	shorter	sliding-	window	sizes	allow	for	a	higher	sensitivity	
of group differences.

Besides	the	different	parameters	tested,	the	pipelines	considered	
in	this	work	varied	only	on	the	position	that	spikes	(SpkReg)	and	re-
sidual	motion	variance	(MotReg)	preprocessing	steps	occupy	on	each	
pipeline.	Specifically,	the	order	of	steps	varied	according	to	the	posi-
tion	of	SpkReg	and	MotReg	before	or	after	smoothing	and	gICA.	The	
implementation	of	SpkReg	utilized	was	to	censor	spiky	time	courses.	
We proceeded with spike censoring following previous suggestion in 
the	 literature	 (Grouiller	et	al.,	2011;	Lemieux,	Salek-	Haddadi,	 Lund,	
Laufs,	&	Carmichael,	2007).	In	contrast,	other	studies	suggest	to	re-
move spike time points by replacing the spike point with an interpo-
lated	value	extracted	from	surrounding	(no	spike)	times	values	(Allen	
et	al.,	2011).	This	second	approach	seems	necessary	for	dFNC	anal-
ysis	(Allen	et	al.,	2012).	The	effect	of	the	SpkReg	step	in	PB	and	PD	
might have been redundant as applied interpolation step obliterated 
spike	 censoring.	Nevertheless,	 testing	SpkReg	before	 smoothing	 in	
PA	and	PC	allowed	us	 to	observe	how	 it	would	affect	 the	 final	 re-
sults.	The	main	difference	for	PA	and	PC	is	that	spikes	censoring	was	
performed	in	a	voxel-	wise	manner	thus	removing	larger	quantities	of	
information	than	in	PB	and	PD.	The	best	classification	result	was	ob-
served	within	the	set	of	PA	datasets.	In	general,	PA	and	PB	achieved	
the	best	classification	performances	with	PB	being	best	in	the	mean	
AUC,	but	PC	and	PD	gave	a	 similar	 and	 smaller	performance.	This	
result agrees with previous observation in static functional connec-
tivity	 indicating	 that	 PA	 achieves	 the	 highest	 classification	 perfor-
mance,	followed	by	PB,	for	the	same	dataset	utilized	here	 (Vergara	
et	al.,	2015).	Both	PA	and	PB	are	pipelines	with	MotReg	performed	
before	 smoothing	 and	 gICA	 (see	 Figure	1)	 consistently	 suggesting	
that	motion	variance	should	be	dealt	with	before	gICA.

One	 limitation	 in	 our	 study	 was	 the	 scan	 duration	 of	 5	min.	
Several	 studies	utilize	 larger	scan	 time	which	may	provide	a	better	
chance	 of	 observing	 dFNC	 patterns	 per	 subject	 (Hutchison	 et	al.,	
2013).	However,	evidence	suggests	that	5	min	is	enough	to	acquire	
a	stable	connectivity	signal	(van	Dijk	et	al.,	2010)	and	is	thought	as	
minimum	necessary	(Allen	et	al.,	2012).	Another	limitation	is	that	we	
preferred a spike preprocessing method where spike repressors can 
be	included	with	FWD	repressors	in	one	linear	model.	However,	other	
methods to handle spikes information may have different effects.

In	conclusion,	the	choice	of	preprocessing	steps	order	significantly	
affects final results. Removing motion variance before smoothing and 
gICA,	but	handling	spikes	information	after	gICA	as	in	PB	might	be	the	
best	bet	to	provide	higher	sensitivity	to	diagnosis	contrasts	in	dFNC.	This	
sensitivity is highly dependent on preprocessing parameters selected 

with a trend of better classification performance for smaller sliding- 
window	sizes	and	an	optimal	number	of	gICA-	independent	components.
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