
INSPIRE: interpretable, flexible and spatially-aware

integration of multiple spatial transcriptomics datasets

from diverse sources

Jia Zhao1, Xiangyu Zhang1, Gefei Wang1, Yingxin Lin1, Tianyu Liu1,2, Rui B.

Chang3,4, Hongyu Zhao1,2∗

1Department of Biostatistics, School of Public Health, Yale University, New

Haven, CT, USA

2Interdepartmental Program in Computational Biology and Bioinformatics,

Yale University, New Haven, CT, USA

3Department of Neuroscience, School of Medicine, Yale University, New Haven,

CT, USA

4Department of Cellular and Molecular Physiology, School of Medicine, Yale

University, New Haven, CT, USA

Abstract

Recent advances in spatial transcriptomics technologies have led to a growing number of diverse1

datasets, offering unprecedented opportunities to explore tissue organizations and functions2

within spatial contexts. However, it remains a significant challenge to effectively integrate and3

interpret these data, often originating from different samples, technologies, and developmental4

stages. In this paper, we present INSPIRE, a deep learning method for integrative analyses5

of multiple spatial transcriptomics datasets to address this challenge. With designs of graph6

neural networks and an adversarial learning mechanism, INSPIRE enables spatially informed7

and adaptable integration of data from varying sources. By incorporating non-negative matrix8

factorization, INSPIRE uncovers interpretable spatial factors with corresponding gene programs,9

revealing tissue architectures, cell type distributions and biological processes. We demonstrate10

the capabilities of INSPIRE by applying it to human cortex slices from different samples,11

∗Correspondence: hongyu.zhao@yale.edu.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.23.614539doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.23.614539
http://creativecommons.org/licenses/by-nc-nd/4.0/


mouse brain slices with complementary views, mouse hippocampus and embryo slices generated12

through different technologies, and spatiotemporal organogenesis atlases containing half a13

million spatial spots. INSPIRE shows superior performance in identifying detailed biological14

signals, effectively borrowing information across distinct profiling technologies, and elucidating15

dynamical changes during embryonic development. Furthermore, we utilize INSPIRE to build16

3D models of tissues and whole organisms from multiple slices, demonstrating its power and17

versatility.18

Introduction19

Spatial transcriptomic (ST) technologies enable spatially resolved transcriptomic studies by20

profiling gene expressions with spatial information in intact tissues [1, 2]. Recently, various ST21

technologies have been developed with complementary strengths [3, 4]. For example, widely22

used next-generation sequencing-based methods, such as 10x Visium [5], Slide-seq [6, 7] and23

Stereo-seq [8], allow for transcriptome-wide gene expression profiling. While technologies based24

on in situ hybridization (e.g., seqFISH [9, 10] and MERFISH [11]) and in situ sequencing (e.g.,25

STARmap [12, 13]) require panel designs for target genes with prior knowledge, they offer single-26

cell and subcellular resolution that is essential in characterizing cellular communications. These27

diverse ST approaches provide great opportunities for deciphering complex tissue architecture28

[14, 15], understanding how cells interact with each other [16, 17], and identifying spatial29

developmental trajectories in tissues [18, 19].30

Non-negative matrix factorization (NMF) has proven an appealing approach for analyzing31

transcriptomic count matrices [20, 21, 22]. For instance, in the context of single-cell RNA-32

sequencing (scRNA-seq) data analyses, NMF-based methods have the ability to decompose33

gene expression in individual cells into a set of interpretable gene programs associated with34

cell-type identities and cellular activities [23, 24]. These methods offer valuable insights, such35

as unraveling cell states that arise in various perturbations [25, 26]. Most recently, two NMF-36

based dimension reduction methods, SpiceMix [27] and NSFH [28], were proposed for analyzing37

complex ST data by capturing spatial dependence of cells. Owing to the decomposition nature38

of NMFs [29], SpiceMix and NSFH are powerful in deciphering signals within ST data by39

decomposing them into a collection of interpretable spatial factors, each encoding a unique40

spatial pattern [27, 28]. These methods excel at uncovering spatial organization of cell identities,41
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identifying spatially variable features, and revealing important biological processes. However,42

these methods are designed only for interpreting a single ST dataset. The development of43

interpretable and spatially-aware analytical methods that can effectively integrate multiple44

diverse ST datasets is in great need and remains a challenge.45

With advancements in ST technologies, numerous ST studies utilizing different technologies46

have been conducted, each often generating multiple slices [3, 4]. For instance, ST profiles have47

been characterized in multiple sagittal and coronal sections from mouse brains [30, 31, 32],48

and in multiple parallel slices along the left-right axis from a late-stage mouse embryo [8].49

Multiple ST slices have also been created from mouse embryos at varying developmental50

time points [8, 33]. Effectively interpreting these diverse ST datasets, both within and across51

studies, is crucial for establishing a comprehensive understanding of tissue architectures and52

their developmental dynamics. However, unwanted variations across samples, batches, ST53

technologies and developmental time points can introduce confounding factors that hinder the54

discovery of biologically meaningful spatial signals [34, 35]. Consequently, while methods like55

SpiceMix and NSFH can unveil meaningful spatial factors in a single ST dataset, they face56

difficulties in distinguishing shared biological signals among datasets from the heterogeneous57

unwanted variation when applied to multiple ST datasets. This task can become even more58

challenging if certain datasets contain unique biologically meaningful spatial factors that need59

to be accurately identified and separated from the unwanted variation [36]. Therefore, there60

remains a need for computational methods that are specifically designed for joint analyses of61

multiple diverse ST datasets.62

Here, we develop INSPIRE, a deep learning-based method that unifies NMF and adversarial63

learning [37] to achieve interpretable, flexible and spatially-aware integration of ST datasets.64

INSPIRE leverages graph neural networks [38, 39] to perform spatially informed analyses of ST65

slices, by accounting for local microenvironments of cells or spatial spots. For joint analyses of66

multiple datasets, INSPIRE incorporates a tailored adversarial learning mechanism to adaptively67

distinguish complex unwanted variations across multiple batches, samples, technical platforms68

and developmental stages from intrinsic biological variations, even when certain datasets present69

unique biological signals. Hence, INSPIRE can reliably eliminate heterogeneous unwanted70

variations in its analyses. By seamlessly integrating this adversarial learning mechanism with71

NMF, INSPIRE enables a harmonized NMF for multiple diverse ST datasets. It allows for72
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the discovery of spatial factors among multiple datasets without confounded by unwanted73

variations, deciphering detailed spatial organizations in diverse datasets. For these spatial74

factors, INSPIRE also explicitly models their gene signatures, enabling the interpretation of75

their biological meanings and the identification of gene programs associated with them.76

Through the application of INSPIRE to various ST datasets, including human cortex slices77

from different samples, mouse brain slices prepared at different orientations and resolutions, as78

well as a collection of whole mouse embryo slices, we demonstrate that INSPIRE can flexibly79

integrate diverse ST datasets from multiple samples, created by different ST technologies80

and at varying developmental time points. In these diverse integrative analyses, INSPIRE81

shows its power to decipher fine-grained spatial architecture with biological meanings, elucidate82

spatial cell-population distributions, and uncover biological processes organized in complex83

tissues. Through these applications, we show that INSPIRE is a versatile analytical approach84

that allows for various downstream analyses. For instance, it enables pathway enrichment85

analysis, identification of spatially variable genes, detection of spatial trajectories, imputation86

of spatial gene expressions as well as 3D reconstruction of tissue structures using multiple87

parallel slices along an axis. Of note, INSPIRE is also scalable to handle large-scale datasets.88

As a demonstration, we applied INSPIRE to spatiotemporal atlases of mouse organogenesis,89

comprising half a million high-resolution spatial spots. INSPIRE effectively modeled these90

atlases, deciphering dynamical changes during mouse embryonic development. INSPIRE is91

publicly available as a Python package (https://github.com/jiazhao97/INSPIRE), offering92

an efficient and reliable tool for ST data analyses.93

Results94

Method overview.95

INSPIRE takes gene expression count matrices and spatial coordinates from multiple ST slices96

as inputs. It effectively integrates information across slices in a shared latent space. In this space,97

meaningful biological variations from the input slices are preserved, while complex unwanted98

variations are eliminated (Fig. 1a and panel a1). Utilizing this shared latent space, INSPIRE99

achieves an integrated NMF on gene expressions across slices, decomposing biological signals in100

different slices into consistent and interpretable spatial factors with associated gene programs101

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.23.614539doi: bioRxiv preprint 

https://github.com/jiazhao97/INSPIRE
https://doi.org/10.1101/2024.09.23.614539
http://creativecommons.org/licenses/by-nc-nd/4.0/


C
e
lls

/s
p
o

ts

Genes

Gene expression matrices

(𝒀𝑠)
C

e
lls

/s
p
o

ts

x, y

Spatial graphs

(𝑨𝑠)

Latent representations

(𝒁𝑠)

C
e
lls

/s
p
o

ts

Factors

Factors

(𝜷𝑠)

×

F
a
c
to

rs

Genes

Shared

gene loadings

(𝝁)

Non-negative matrix factorization

C
e
lls

/s
p
o

ts

Latent dims

𝒛1 Slice 1

Samples

𝒛2

𝒛3

Classification

Slice 2

Slice 2
Slice 3

Feedback

Integrated latent

Adversarial learning mechanism

Slice 1
Slice 2
Slice 3

Slice-and-gene-specific effects

(𝜸𝑠)

𝜆𝑖,𝑔
𝑠 = exp log σ𝑝=1

𝑃 𝛽𝑖,𝑝
𝑠 𝜇𝑝,𝑔 + 𝛾𝑔

𝑠 ,  

𝑌𝑖,𝑔
𝑠 ∼ Poisson(𝑙𝑖

𝑠𝜆𝑖,𝑔
𝑠 ).

Gene expression

reconstruction

Spatial locations

INSPIRE

Outputs

Latent representations 𝒁𝑠; Factors 𝜷𝑠; Shared gene loadings 𝝁.

Other analyses

Gene 

imputation

Im
p
u

te
d
 T

tn

HighLow

Spatial alignment/

3D reconstruction

Direct analyses

Joint spatial region 

identification

Region 1 2 3 4 5 6 7

Joint spatial 

enrichment of factors

Low High Factor 1 Low High Factor 2
Low High Factor 3

Low High Factor 4 Low High Factor 5
Low High Factor 6

Identification of gene 

profiles of factors

HighLow

Pathway enrichment 

analysis of factors

Count P.adjust

6e-04 2e-04

Embedding 

alignment

Slice 1 2 3 4

UMAP 1

U
M

A
P

 2

a

b

a1

a2

𝑓𝑍(⋅) 𝑓𝛽(⋅)

𝐷1(⋅)

𝐷2(⋅)

Figure 1: Overview of INSPIRE. a. INSPIRE is a unified deep learning method that incorporates

adversarial learning and non-negative matrix factorization (NMF) for interpretable integrations of ST

datasets. Raw gene expressions and spatial locations from multiple slices are taken as the inputs. (a1).

INSPIRE embeds the biological variations from ST slices into a shared latent space. By incorporating

a tailored adversarial learning mechanism, INSPIRE effectively eliminates unwanted variations in this

latent space, providing harmonized representations of cells or spatial spots among slices. (a2). The

latent space enables INSPIRE to achieve an integrated NMF for multiple slices, further decomposing

biological signals into a set of consistent and interpretable factors among slices. Unconfounded

by unwanted variations, these spatial factors reveal detailed spatial organizations in multiple ST

slices. The gene signatures of these spatial factors are explicitly characterized by the shared gene

loading matrix, elucidating their biological meanings. After training, INSPIRE simultaneously outputs

integrated latent representations, interpretable spatial factors, and corresponding gene loadings. b.

INSPIRE’s outputs enable multiple downstream analyses, including spatial trajectory inference,

identification of fine-grained spatial regions and tissue structures, detection of spatially variable genes,

and pathway enrichment analysis for deciphering biological processes in tissues. INSPIRE can also be

applied to tasks including gene imputation and 3D reconstruction of tissues with multiple parallel 2D

slices.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.23.614539doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.23.614539
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Fig. 1a and panel a2). The non-negative spatial factors of cells or spatial spots are inferred102

from their latent representations, where unwanted variations are largely eliminated. Hence,103

these spatial factors are free from complex unwanted variations, enabling unified discoveries of104

fine-grained spatial patterns among slices. The gene signatures associated with these spatial105

factors are captured through shared non-negative gene loadings among slices, enhancing the106

interpretability of multi-slice integrative analyses.107

INSPIRE seamlessly incorporates the above designs in a unified deep-learning framework108

(Fig. 1a). Specifically, it uses a spatially-informed encoder, fZ(·), to map cells or spatial spots109

from ST slices s = 1, 2, · · · , S into the shared latent space. This encoder is a graph neural110

network [38, 39] that takes gene expressions and spatial neighborhood graphs of ST slices as111

inputs. For any cell or spatial spot i from slice s, the encoder is designed to output its latent112

representation zsi , unaffected by unwanted variations. INSPIRE achieves this by incorporating113

a tailored adversarial learning mechanism [34, 37] (Fig. 1a, panel a1). To align {zsi}i from114

slice s with {zs+1
i }i from slice s+ 1, an auxiliary discriminator network, Ds(·), is deployed in115

the latent space to detect where poor mixing between {zsi}i and {zs+1
i }i occurs. Its feedback116

then guides encoder fZ(·) to improve the alignment. The discriminator can adaptively preserve117

slice-specific signals by only guiding fZ(·) to integrate shared biological variations between118

slices. By introducing S − 1 discriminators, including Ds(·), s = 1, 2, · · · , S − 1, INSPIRE119

effectively harmonizes all S slices in the shared latent space.120

Next, INSPIRE adopts an integrated NMF across slices to further decompose the biological121

signals in the shared latent space into a set of interpretable spatial patterns with gene programs122

(Fig. 1a, panel a2). This provides characterizations of tissue structures at a finer-grained123

level and with enhenced interpretability. The integrated NMF includes non-negative spatial124

factor matrices {βs}s for the multiple slices, and a shared non-negative gene loading matrix, µ,125

among slices. For any cell i in slice s, βs
i presents the set of non-negative weights across the126

hidden spatial factors it contains. The sum of the non-negative weights of spatial factors for any127

given cell equals to one. The contributions of different genes to diverse hidden spatial factors128

are explicitly encoded by the non-negative weights in µ, revealing gene programs associated129

each detailed spatial pattern. Two unique designs in INSPIRE enable its integrated NMF130

across slices. First, INSPIRE uses a decoder network, fβ(·), to generate spatial factors {βs
i}s,i131

directly from integrated representations {zsi}s,i in the latent space. This ensures that {βs
i}s,i132
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only decompose meaningful biological signals among slices, as the unwanted variations are133

removed in {zsi}s,i. Second, INSPIRE introduces additional slice s-and-gene g-specific effects134

γs
g to help explicitly model confounding signals. Therefore, {βs

i}s,i and µ can efficiently fit the135

biological signals, decomposing these key signals into a set of detailed spatial factors with their136

associated gene modules that are consistent among slices.137

INSPIRE formulates the learning of encoder network fZ(·), decoder network fβ(·), and gene138

loading matrix µ into a unified optimization problem. After training, INSPIRE simultaneously139

outputs integrated latent representations {Zs}s, spatial factors {βs}s, and interpretable gene140

loadings µ. The outputs enable comprehensive characterizations of tissue structures through141

various downstream analyses (Fig. 1b). These include the identification of spatial trajectories142

and major spatial regions using {Zs}s; the discovery of detailed tissue architectures, spatial143

distributions of cell types, and the organization of biological processes using {βs}s; and the144

detection of spatial variable genes, the identification of gene modules, along with pathway145

enrichment analysis using µ. Details are included in the Methods section.146

INSPIRE offers superior accuracy and interpretability for the inte-147

grative analysis of multiple ST datasets.148

In this section, we first demonstrate that by integrating adversarial learning with NMF for joint149

modeling of multiple ST slices, INSPIRE can achieve superior accuracy in capturing biological150

signals across slices. This advantage allows INSPIRE to produce improved results for the151

identification of spatial regions, which is critical in ST data analysis. Additionally, we highlight152

that INSPIRE can model gene programs that characterize detailed spatial organization patterns153

in tissues, enhancing the interpretability of multi-slice integrative analysis.154

We applied INSPIRE to a human dorsolateral prefrontal cortex (DLPFC) dataset run on the155

Visium platform [40]. This dataset contains four DLPFC tissue slices, indexed 151673-151676,156

from a neurotypical adult donor. Researchers have manually annotated six DLPFC layers157

(L1-L6) and white matter (WM) for each slice based on cytoarchitecture and gene markers [40].158

We first focused on analyzing the spot representations obtained in INSPIRE’s latent space.159

In this space, information across slices was effectively integrated, while different cortical layers160

were still well separated (Fig. 2a). Importantly, the spot representations revealed a clear161

trajectory from L1 to L6 and WM that is shared among slices. The identified trajectory aligns162
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Figure 2: Benchmarking of INSPIRE and state-of-the-art methods based on the human

DLPFC dataset. a. UMAP plots of spot representations from INSPIRE, colored by slice indices,

INSPIRE’s assigned spatial domain labels, and manual annotations. The PAGA algorithm was applied

to the spot representations for spatial trajectory inference. b. Manual annotations on slices. c, e.

Spatial domain identification results from INSPIRE (c), PASTE, SpiceMix, and Seurat (e). d. UMAP

plots of spot representations from SpiceMix, PRECAST and Seurat, colored by slice indices and

manual annotations. f. ASW and ARI scores of the benchmarked methods. g. Factor diversity and

factor coherence scores of the benchmarked methods. h. Spatial distributions of factors 12, 18, 20

and 17 identified by INSPIRE on slice 151673. i. Enrichment or depletion of different spatial factors

in cortical layers. j, k. We identified marker genes for four cell types using a scRNA-seq atlas (j), and

visualized the rank distribution of them in different spatial factors (k). l. Spatial factor-specific genes

identified by INSPIRE. m. Expression levels of the factor-specific genes among cell types.
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with corticogenesis, during which cortical neurons are born in a successive order from outer to163

inner layers [41], showing INSPIRE’s ability to distill meaningful biological variation among164

slices. The effective preservation of biological signals in the latent space enables INSPIRE to165

reliably identify spatial regions in tissues. Using spot representations, INSPIRE effectively166

recovered the layer structures among all DLPFC slices (Fig. 2c). This result shows a consistent167

pattern compared to manual annotation, indicating INSPIRE’s high reliability in spatial domain168

identification (Fig. 2b, c).169

For a quantitative evaluation of INSPIRE’s spot representation and spatial domain identifi-170

cation, we used the manual annotations as ground truth and adopted three metrics: average171

silhouette width (ASW), adjusted rand index (ARI), and normalized mutual information (NMI).172

ASW measures the conservation of different annotated layers in spot representations, while173

ARI and NMI assess the accuracy of spatial domain identification by comparing it to the174

manual annotations. Higher scores on these metrics indicate better performance. To benchmark175

INSPIRE against existing tools, we compared it to representative state-of-the-art methods176

applicable for producing spot representations or identifying spatial domains in this analysis,177

including Seurat [42], LIGER [22], SpiceMix [27], NSFH [28], PRECAST [35], and PASTE [43].178

INSPIRE achieved superior performance compared to all the other methods, reflected by the179

highest scores for all three metrics (Fig. 2f and Supplementary Fig. 2). In contrast, scRNA-seq180

data integration methods Seurat and LIGER showed less satisfactory results across all three181

scores due to their lack of consideration for spatial information (Fig. 2e, f and Supplementary182

Fig. 3). Two spatially-informed data integration methods, PASTE and PRECAST, had better183

performance compared to Seurat and LIGER, illustrating the importance of spatial coordinate184

modeling. However, PASTE could not provide spot representations across slices, and its spatial185

domain identification results were inconsistent across slices (Fig. 2e). PRECAST incorrectly186

mixed spots from layers L4 and L5, and showed limited ability to preserve the continuous187

trajectory among cortical layers (Fig. 2d). SpiceMix and NSFH are two spatially-aware188

NMF-based methods for ST data analysis, designed to handle one ST slice at a time. We189

manually concatenated the four slices to form one ST slice to apply these methods. Both190

methods successfully uncovered the spatial trajectory among layers, indicating their ability191

to capture biological signals (Fig. 2d and Supplementary Fig. 1). However, compared to192

INSPIRE, they both showed less satisfactory performance across all three metrics, suggesting193
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their limited ability to leverage information across slices for achieving improved results (Fig.194

2f, Supplementary Figs. 2 and 3).195

So far, we have demonstrated the superior performance of INSPIRE in learning spot196

representations. We note that the gained accuracy in the latent space is contributed by the197

NMF component in INSPIRE. For illustration, we manually removed the NMF component198

from INSPIRE, and denoted this version as “INSPIRE (w/o NMF)”. Compared to INSPIRE199

(w/o NMF), INSPIRE’s spot representation consistently showed higher scores for all three200

metrics ASW, ARI, and NMI (Supplementary Fig. 4). This demonstrates the effectiveness of201

INSPIRE’s integration of the shared latent space with the NMF model.202

Next, we focused on analyzing the spatial factors and the associated gene loading in the203

NMF across slices from INSPIRE. To quantitatively evaluate the quality of spatial factors, we204

employed two metrics: factor diversity and factor coherence [44]. Factor diversity measures the205

percentage of unique genes associated with each factor, with a higher diversity score indicating206

more varied factors. Factor coherence evaluates the interpretability of factors by assessing207

the co-expression of genes associated with the same factor across spots. A higher coherence208

score indicates better interpretability of spatial factors. Using these two metrics, we compared209

the performance of INSPIRE to NMF-based methods SpiceMix and NSFH. As shown by the210

highest scores for both metrics, INSPIRE achieved superior factor quality compared to other211

methods (Fig. 2g).212

Besides quantitative evaluation, we also visualized INSPIRE’s spatial factors to illustrate213

their ability to decipher detailed spatial organization patterns among slices. For instance,214

three factors (factors 18, 20, and 17) showed clear enrichment in cortical layers L2, L5, and215

L6, respectively (Fig. 2h, i). By exploring their gene loadings from INSPIRE, we found their216

correspondence to excitatory neuronal subtypes specific to L2, L5, and L6, respectively. To be217

specific, we identified marker genes for these neuronal subtypes using an external scRNA-seq218

atlas (Fig. 2j). These marker genes showed top rankings in the gene loadings of these factors219

(Fig. 2k; the Methods section), confirming the biological meanings of the factors. Additionally,220

with the interpretable gene loadings, INSPIRE is able to unveil variable genes that are associated221

with the spatial factors, offering the biological insights. For example, genes specific to the222

three factors were identified (Fig. 2l; the Methods section) and their reliability was validated223

(Fig. 2m). Unlike INSPIRE, which uncovered neuronal subtypes in detailed cortical layers,224

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.23.614539doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.23.614539
http://creativecommons.org/licenses/by-nc-nd/4.0/


SpiceMix only captured broad layer structures with its factors (Supplementary Figs. 5 and225

6). For example, its factor 14 described a mixture of multiple layers, including L4, L5, and226

L6. Consistent with its relatively low factor quality scores, NSFH’s factors did not present227

clear spatial structures in the tissue (Supplementary Fig. 7). Notably, beyond cortical layers,228

INSPIRE also depicted other detailed spatial structures. For instance, INSPIRE revealed229

the spatial distribution of astrocytes, with the gene signature of factor 12 characterizing the230

gene expression profile of astrocytes (Fig. 2j-m). This demonstrated that INSPIRE identified231

the spatial organization in the tissue that is not covered by manual layer annotation, further232

highlighting INSPIRE’s ability to decipher fine-grained and interpretable spatial structures233

using spatial factors and gene loadings.234

Precise stitching of multiple sagittal and coronal mouse brain slices235

with partially shared spatial structures.236

In this section, we evaluate INSPIRE’s performance in a more challenging scenario compared to237

our previous benchmarking study: integrating multiple slices from different samples, where the238

spatial structures only partially overlap. This situation presents a unique challenge in learning239

spot representations and spatial factors, as it requires methods to adaptively identify and align240

shared biological variations among the slices, while preserving signals unique to each slice and241

accounting for batch effects.242

To explore the complex architecture of the brain, 10x Genomics created Visum slices in243

both sagittal and coronal planes. Due to the size restriction on the captured area, the sagittal244

plane was further dissected into two sections, each profiled in an individual ST slice. In total,245

there are three ST brain slices: the sagittal anterior [30], sagittal posterior [31], and coronal246

slices [32]. Brain structures captured in these ST slices are only partially shared. For instance,247

while all the three slices contain the isocortex, the main olfactory bulb is unique to the sagittal248

anterior slice, and the cerebellum is unique to the sagittal posterior slice. We used INSPIRE to249

jointly model the three slices, merging data collected from distinct views of the brain.250

When applied to this task, INSPIRE effectively depicted the mouse brain architecture.251

After INSPIRE’s integration, the representations of spatial spots were correctly aligned across252

the three slices in the latent space (Fig. 3b). By clustering the spot representations, INSPIRE253

was able to partition the mouse brain into 36 distinct and well-organized spatial regions (Fig.254
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Figure 3: Analysis of multiple mouse brain ST slices with only partially shared spatial

tissue organizations. INSPIRE integrated sagittal anterior, sagittal posterior and coronal sections

of mouse brains. a. Spatial clusters visualized on the three ST slices. b. UMAP plots of spot

representations from INSPIRE, colored by slice indices and discriminator activities. INSPIRE’s

discriminators were active on the spots describing the shared spatial structures across slice, while they

were inactive on spots related to the slice-unique structures. Thereby, they adaptively guided INSPIRE

to align shared variations among slices, while preserving slice-unique signals. c. Spatial regions 3 and

18 from INSPIRE characterized the cerebellum. Spatial regions 2, 6, 7, 8, 25 and 31 characterized

layers in the isocortex. d. UMAP plots of spot representations from SpiceMix and PRECAST, and

visualizations of their spatial clusters in the isocortex. e, f. Spatial distributions of factors 1, 19 and

39 identified by INSPIRE (e). Based on the learned gene signatures (f), INSPIRE identified spatially

variable genes associated with the three factors respectively (e). g, h. We identified marker genes of

CA1, CA2/3 and DG using a scRNA-seq atlas (h), and visualized the rank distribution of them in

gene loadings of the three factors (g). i, j. Spatial distributions (j) and gene signatures (j) of factors

5, 17 and 25 respectively. k. Top spatially variable genes associated with each of the three factors

identified by INSPIRE. i. ISH images of genes Grm4, Ppp1r17 and Kit from Allen Brain Atlas.
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3a). Among these clusters, six layer-structured spatial domains with labels 2, 6, 7, 8, 25,255

and 31 together formed the isocortex region shared across the three brain slices (Fig. 3b, c).256

Importantly, INSPIRE also successfully preserved slice-unique tissue structures such as the257

cerebellum, characterized by spatial regions 3 and 18 in the sagittal posterior slice, and the258

main olfactory bulb, characterized by spatial regions 20 and 27 in the sagittal anterior slice259

(Fig. 3b, c). In contrast, SpiceMix, NSFH, and PRECAST, which performed relatively well260

in the human DLPFC-based benchmarking study, produced results that were confounded by261

strong batch effects and intrinsic differences among the slices (Fig. 3d and Supplementary262

Fig. 12), highlighting their limited applicability in creating a comprehensive tissue ST atlas263

through the integration of slices with partial overlap. For instance, none of these methods264

successfully described the shared cortical layers among the multiple mouse brain slices (Fig.265

3d, Supplementary Figs. 9, 10, and 11).266

In this example, we also confirmed that INSPIRE’s designed discriminators (the Methods267

section) indeed adaptively distinguished between shared biological signals among slices and268

slice-unique signals, facilitating INSPIRE’s adaptive data integration. In the latent space,269

discriminators were active for spot populations shared among slices, such as spots in the270

isocortex (Fig. 3b, c), encouraging their alignment across slices. Conversely, discriminators271

were found inactive for slice-specific spot populations, such as spots in the cerebellum (Fig. 3b,272

c), helping preserve their identities.273

Next, we investigated the spatial factors inferred by INSPIRE. Each of them provided a274

unique and detailed description of the spatial organization in the brain (Supplementary Fig.275

13). For instance, the spatial distributions of different hippocampal neuron types in the brain,276

which are concentrated mainly in the curve-shaped CA1, CA2/CA3, and DG subregions of277

the hippocampus, were depicted by spatial factors 1, 19, and 39. This observation aligns well278

with the reference from the Allen Reference Atlas – Mouse Brain [45] (Fig. 3e, Supplementary279

Figs. 16, 17). The gene loadings for spatial factors 1, 19, and 39 also corresponded with marker280

genes for these hippocampal neuron types identified in an external scRNA-seq atlas [46] (Fig.281

3h). Using these factors, we were able to identify specific regional markers, such as C1ql2 and282

Fam163b for CA1; Cpne7 and Npy2r for CA2/CA3; and Pou3f1 and Fibcd1 for DG (Fig. 3e,283

f). Furthermore, we showed that INSPIRE excels at capturing detailed spatial organization284

unique to individual sections by spatial factors. One example is that, non-negative weights285
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(proportions) of spatial factors 15, 17, and 25 on spots revealed spatial distributions of neurons286

specific to the molecular layer, the Purkinje layer, and the granular layer in the cerebellum,287

respectively. Using the associated gene signatures, spatially variable genes specific to each of288

these fine-grained layers were identified, such as Grm4, Adcy1 for the granular layer; Ppp1r17,289

Calb1 for the Purkinje layer; and Kit, Epha8 for the molecular layer (Fig. 3j, k). The spatial290

specificity of these genes was confirmed by in situ hybridization (ISH) data from the Allen291

Brain Atlas (Fig. 3l), providing additional support for the high quality and interpretability of292

INSPIRE’s results.293

Unlike INSPIRE, both SpiceMix and NSFH produced results that were less satisfactory294

due to the confounding of their inferred spatial factors by strong batch effects across sections295

(Supplementary Figs. 14 and 15). Additionally, NSFH showed limited capability in characteriz-296

ing detailed spatial structures, as evidenced by the lack of clear spatial patterns in its learned297

factors (Supplementary Fig. 15). This challenging task demonstrates the superior performance298

and broad applicability of INSPIRE for integrating ST slices with batch effects and a very low299

degree of spatial overlap, outperforming all other tools.300

INSPIRE integrates ST data from different ST technologies, facilitat-301

ing multiple downstream analyses.302

Different ST technologies and platforms produce data with varying spatial resolutions and303

sequencing depths [3, 4]. In this section, we demonstrate INSPIRE’s performance in integrating304

data from different ST technologies, leveraging the strengths of each technology to enhance305

biological insights.306

We first collected mouse brain ST datasets from Slide-seq V2 [7] and MERFISH [47]. The307

Slide-seq V2 dataset contains expression measurements of over 20,000 genes, with a near-cellular308

spatial resolution of 10 µm, where each barcoded bead typically captures one to two cells. In309

contrast, the MERFISH dataset measures gene expression levels in individual cells but covers310

only 1,122 genes. Before integration, we applied the standard Scanpy workflow [48] to each of311

these datasets. The Slide-seq V2 data failed to recover known layer structure in the isocortex312

(Fig. 4a). Conversely, the MERFISH data successfully revealed this structure, indicating its313

higher data quality for annotating spatial regions (Supplementary Fig. 18). Aligning these314

two datasets helps to combine the better spatial organization characterization from MERFISH315
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Figure 4: Integrative analyses of data from different ST technologies to enhance biological

insights. a. Spatial domain identification from the analysis of Slide-seq V2 data alone. b. Cell

representations aligned between the MERFISH and Slide-seq V2 datasets using SpiceMix, PRECAST,

INSPIRE, and spatial domain identification result from INSPIRE. c. Spatial distributions of INSPIRE’s

factors 26 and 33. d. Expressions of genes Sema6a, Plxna2 among INSPIRE’s identified spatial

regions 8, 14 and 15. e. Signaling direction from ligand Sema6a to receptor Plxna2 across INSPIRE’s

annotated regions inferred by the COMMOT method. f. Cell representations aligned between the

seqFISH and Stereo-seq embryo datasets using SpiceMix, PRECAST, INSPIRE, and spatial domain

identification result from INSPIRE. g, h. Significant gene ontology terms and spatial distributions

of INSPIRE’s factors 8 (g) and 27 (h). i. We manually held out genes from the seqFISH dataset

and imputed their expressions from the Stereo-seq dataset to show INSPIRE’s gene imputation

capability. We visualized the expressions of Ttn, Six3 and Foxa1 measured by seqFISH (top panel),

and compared them with the imputed expression levels (bottom panel). j. Differentially expressed

gene analysis between the ventral and dorsal sides of the developing gut tube in the seqFISH dataset.

Top differentially expressed genes with imputed expression levels from INSPIRE are annotated in

blue, and top genes with expression levels quantified by seqFISH are annotated in black. k. Tbx3

expression levels measured by seqFISH, and Id1 expression levels imputed by INSPIRE.
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with the transcriptome-wide measurement from Slide-seq V2. However, prior to integration,316

the two datasets showed strong discrepancies, making their integration a challenging task317

(Supplementary Fig. 19).318

Despite the challenge, INSPIRE effectively eliminated confounding technical noises in its319

cell representations, enabling the identification of spatial regions consistent across the two320

datasets (Fig. 4b). For example, it identified three different hippocampal regions (clusters 9,321

16, and 23), and three broad cortical layers (clusters 2, 14 and 15). INSPIRE’s spatial factors322

revealed additional spatial structures at a finer granularity. Specifically, spatial factors 11, 15,323

26, 27, 29, and 33 delineated six highly detailed cortical layers in both datasets, unaffected324

by the strong technical effects (Fig. 4c and Supplementary Fig. 23). A notable achievement325

was INSPIRE’s ability to call out the hidden cortical layer structure within the Slide-seq V2326

data by leveraging information from the MERFISH data (Fig. 4a-c). To demonstrate how this327

facilitates downstream biological analyses, we utilized the COMMOT method [16] to screen328

for cell-cell communications among INSPIRE’s identified cortical layers and nearby regions in329

the Slide-seq V2 data. Such analysis revealed interactions that were undetectable using the330

MERFISH data alone, due to its limited number of profiled genes. For example, MERFISH did331

not capture gene Plxna2. However, the integrative analysis enabled COMMOT to identify a332

signaling direction from ligand Sema6a to receptor Plxna2 cross INSPIRE’s annotated regions333

(Fig. 4d, e). Among them, Sema6a was enriched in fiber tracts (cluster 8), while Plxna2334

was highly expressed in the inner cortical layer (cluster 14) with decreasing expression in the335

adjacent cortical layer (cluster 15). This Sema6a-Plxna2 interaction suggests potential cell336

migration and neuronal connectivity around the inner cortical layer area of the brain [49].337

As a comparison, other methods including SpiceMix, NSFH and PRECAST performed338

less satisfactorily in this challenging task. Their results including representation of cells,339

identification of spatial domains and/or spatial factors were still severely confounded by the340

unwanted technical effects (Fig. 4b, Supplementary Figs. 20, 21, 22 and 25). Additionally,341

SpiceMix’s factors did not show clear spatial distributions in any dataset, lacking the ability to342

uncover spatial organization patterns in this analysis (Supplementary Fig. 24).343

Next, we collected two mouse whole-embryo slices generated by seqFISH [33] and Stereo-seq344

[8] respectively, and applied INSPIRE to jointly analyze them. Similar to previous cross-345

technology data example, these datasets exhibited clear discrepancies due to strong technical346
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effects prior to integration (Supplementary Fig. 26). Nevertheless, INSPIRE successfully aligned347

cell embeddings between the two datasets after data integration (Fig. 4f). This alignment348

facilitated the detection of 16 well-organized and biologically meaningful spatial domains349

consistent between the two mouse embryos (Fig. 5f). For instance, cluster 1 corresponded to350

developing hearts, while cluster 2 described the midbrains in both embryo datasets. Additionally,351

INSPIRE’s spatial factors allowed for more detailed spatial characterization of the embryos352

(Supplementary Fig. 30). For example, spatial factors 6 and 8 accurately delineated subregions353

within the embryonic hearts, including the atria and ventricles (Fig. 4g and Supplementary354

Fig. 33). Spatial factor 27 was ubiquitously distributed in both embryos. Through gene355

ontology (GO) analysis of genes related to factor 27, we found it depicted meaningful biological356

processes such as angiogenesis, vasculature development, and circulatory system processes in357

both datasets (Fig. 4h).358

Through this example, we show that INSPIRE’s effective data integrative analysis (Sup-359

plementary Fig. 34) enables accurate information transfer across datasets, facilitating deeper360

biological understanding. To validate this, we manually held out six genes from the seqFISH361

dataset, which includes only 351 genes in total. These held-out genes included cardiomyocyte362

markers Ttn and Popdc2 [50, 51], brain markers Six3 and Lhx2 [52, 53], and gut endoderm363

markers Foxa1 and Cldn4 [54, 55]. Using INSPIRE, we imputed spatially-resolved expression364

levels of these genes from the Stereo-seq dataset. The imputed gene expressions showed consis-365

tent patterns with the measured expression levels, highlighting INSPIRE’s effective integrative366

analysis even with a limited number of genes (Fig. 4i and Supplementary Fig. 35). After367

validating INSPIRE’s gene imputation capability, we extended this approach to impute all368

genes from the Stereo-seq dataset for cells in the seqFISH dataset, increasing the number of369

genes in the seqFISH dataset from 351 to over 20,000. This comprehensive gene imputation370

enabled a detailed exploration of gene expression differences between the dorsal and ventral371

parts of the developing gut tube, which were clearly separated only in the seqFISH dataset372

(Fig. 4j). Based on t-test results, the top differentially expressed genes on the dorsal side373

include Smoc2, Tbx1, Cdh2, Chrd, and Foxd1, while the top genes enriched on the ventral side374

include Tbx3, Id1, Isl1, Dlk1, Pmp22, Nkx2-3, and Gata3 (Fig. 4j). Dorsal-ventral patterning375

of the gut tube is essential for the separation of the dorsal esophagus and the ventral trachea in376

mouse embryos [56, 57]. Consistent with a previous study of mouse embryo [58], genes known377
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to be upregulated in the esophagus, such as Foxd1, were detected to be highly expressed on the378

dorsal side of the gut tube. Similarly, genes upregulated in the trachea, including Tbx3, Id1,379

and Isl1, were identified as enriched on the ventral side. This supports the reliability of our380

analysis of dorsal-ventral differential gene expressions. Notably, among the identified genes,381

the expression levels of Id1, Pmp22, and Foxd1 were imputed using INSPIRE (Fig. 4j, k),382

underscoring INSPIRE’s ability to facilitate biological discoveries.383

To compare the performance of INSPIRE to other methods, we also applied SpiceMix,384

NSFH, and PRECAST to this cross-technology data analysis. However, consistent with the385

results from previous cross-technology data example, all these methods had difficulties to386

account for strong unwanted discrepancies between datasets caused by technical effects, leading387

to less satisfactory integrative analyses (Fig. 4f, Supplementary Figs. 27, 28, 29, 31 and388

32). The comparison between INSPIRE and these methods further demonstrated the superior389

performance and wide applicability of the INSPIRE method.390

INSPIRE creates a comprehensive mouse organogenesis atlas, en-391

abling spatiotemporal analysis of embryonic development.392

Understanding how a complex organism develops over time and space is a fundamental393

problem in developmental biology. Recently, mouse whole-embryo slices were collected at394

eight developmental stages, spanning from embryonic day 9.5 (E9.5) to day 16.5 (E16.5) [8].395

To investigate the spatiotemporal dynamics of organogenesis, we applied INSPIRE to jointly396

analyze this collection of ST slices across different developmental time points.397

These eight ST slices were profiled using high-resolution technology Stereo-seq, with each398

slice containing numerous spatial spots measuring 25 µm in diameter. For example, the ST399

slices sampled at E14.5, E15.5, and E16.5 each included over 100,000 spatial spots. In total,400

the eight whole-embryo slices encompass more than half a million spatial spots. Analyzing this401

spatiotemporal dataset presents new challenges for computational methods: it requires not402

only precise alignment of eight complex slices across various developmental stages, but also403

demands high efficiency and scalability to manage over half a millions spatial spots.404

INSPIRE is scalable to handle this challenging task, and completed the analysis in 80405

minutes. It successfully aligned the eight ST slices in its latent space, accommodating the406

extreme large number of spatial spots and varying embryo sizes (Fig. 5a). This alignment407
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Figure 5: Construction of the spatiotemporal mouse organogenesis atlas by integrating

whole-embryo ST slices across various developmental stages. a. UMAP plots of spot repre-

sentations, colored by slice indices and spatial domain labels assigned by INSPIRE. b. Visualization

of the identified spatial domains across slices. c. For each developmental stage, we visualized the

proportions of the embryo occupied by different spatial regions. d, e. Visualization of the liver region

(d) and the expression patterns of liver marker genes (e). f, g. Visualization of a brain region (f)

and the expression pattern of its differentially expressed genes (g). h, i. Spatial distribution of the

factor representing the choroid plexus (h) and its gene signature (i). The gene profile indicates the

expression levels of genes for this factor. The log2-fold change measures the difference between gene

expressions in this factor and other factors. j. GO analysis for the genes specific to the factor in h. k.

Spatial distribution of the factor related to smooth muscle cells and the spatial expression pattern of a

smooth muscle cell marker gene. l. GO analysis for the genes specific to the factor in k. m. Gene set

enrichment analysis comparing genes related to the factor in k with the marker gene set for smooth

muscle cells.

enabled INSPIRE to identify biologically meaningful spatial regions that consistently localized408

across all eight embryonic stages. These regions corresponded to major organs or tissues, such409

as heart, liver, lung, and brain (Fig. 5b). Their spatial locations aligned with the known410

anatomical structure of the mouse embryo [59]. The identities of these regions were further411

validated by analyzing the expression levels of specific marker genes, such as Myl7 for heart,412
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Afp for liver, Sftpc for lung [8], and Six3, Lhx2, Otx2, and Pou3f1 for brain [52, 60], across all413

developmental time points (Fig. 5b, d, and Supplementary Fig. 36).414

Using the well-annotated spatial regions identified by INSPIRE, we visualized the changes415

in proportions of spatial spots covered by the corresponding organs or tissues within embryos416

across developmental stages, providing insights into embryo developmental dynamics (Fig. 5c).417

The liver, initially occupying a very small area at the earliest stage E9.5, rapidly increased its418

proportion within the embryo as development progressed (Fig. 5c, d, e). In contrast, the heart419

was already well-structured at early stages E9.5 and E10.5, with its size remaining relatively420

stable in subsequent stages (Supplementary Figs. 36 and 37), consistent with its role as the421

first functional organ to form in the embryo [61]. Importantly, this analysis also highlighted422

organs or tissues that were barely formed at earlier stages but became well developed in later423

embryonic stages. For example, the shape of the lung became clear after stage E12.5, aligning424

with the observed increase in the expression of the lung marker gene after E12.5 (Supplementary425

Figs. 36 and 38). This finding is consistent with the fact that although lung buds begin to form426

during the early embryonic stages from E9.5 to E12.5, the process of branching morphogenesis427

occurs after E12.5 [62]. Similarly, INSPIRE identified a brain region characterized by the428

specific expression of genes Neurod6 and Neurod2, which only became clearly localized in the429

forebrain after stage E12.5 (Fig. 5c, f, g). The expressions of these two genes suggest active430

neuronal differentiation and development in the forebrain during these stages. These results431

demonstrate INSPIRE’s capability to deepen the understanding of developmental dynamics432

through its effective integrative data analysis.433

Using NMF modeling, INSPIRE enabled cross-developmental stage comparisons that went434

beyond the resolution of major organs or tissues. Instead of concentrating solely on broader435

structures, it identified intricate tissue architectures and cell type distributions through its436

spatial factors, allowing for detailed comparisons among embryos at various stages. For instance,437

two distinct spatial factors emerged in the forebrain region by stage E11.5, gradually forming a438

layered structure that became clearly visible by stage E14.5 (Supplementary Fig. 39). Similarly,439

three spatial factors captured the evolving structure of the embryonic mouth and jaw, with their440

spatial organization becoming increasingly complex by stages E12.5 and E13.5 (Supplementary441

Fig. 40). Furthermore, analyzing the spatial distributions of INSPIRE’s spatial factors alongside442

their gene signatures offered more in-depth biological insights into the developmental dynamics.443

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.23.614539doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.23.614539
http://creativecommons.org/licenses/by-nc-nd/4.0/


As an example, we identified a factor annotated as the choroid plexus based on its spatial444

location in the embryo at E16.5 (Fig. 5h). GO analysis of its gene profile, as reported by445

INSPIRE, confirmed its involvement in central nervous system and brain development. It also446

linked this factor to biological processes like cilium organization and movement, providing447

insights into its specific functions (Fig. 5i, j). This factor, along with its associated genes Ttr448

and Pcp4l1, exhibited clear spatial localization after stage E11.5, illustrating its developmental449

trajectory over time. Another example is the identification of a factor with detailed spatial450

concentrations within the embryos, specifically surrounding many tiny tube-like structures (Fig.451

5k). Gene set enrichment analysis revealed its correspondence with smooth muscle cells (Fig.452

5l, m), showing alignment between its specific gene programs and a set of smooth muscle cell453

marker genes such as Acta2 and Myl9 [63]. Given that this spatial factor also colocalized with454

the expression of Nkx2-3 (Supplementary Fig. 41), we inferred that it described the nuanced455

distributions of gastrointestinal smooth muscle cells [64]. Spatial visualizations indicated that456

gastrointestinal smooth muscle cells and tracts became clearly presented after stage E12.5,457

uncovering their spatiotemporal dynamics. To summarize, the above results highlight the power458

of INSPIRE to facilitate the study of embryonic development by effectively identifying nuanced459

differences with biological meanings across developmental stages using spatial factors and the460

associated gene profiles.461

INSPIRE enables precise 3D reconstruction of tissues and whole462

organisms.463

Recently, there has been a growing number of ST datasets composed of multiple parallel 2D464

slices (x-y-axis) along the z-axis within tissues. Each slice captures a 2D spatial transcrip-465

tomic landscape, and when these slices are spatially aligned and jointly analyzed, they offer466

valuable opportunities to construct a comprehensive 3D view of spatial structures and cell467

type distributions within tissues or organs, deepening our understanding of complex biological468

systems. Here, we demonstrate INSPIRE’s capability to reliably register adjacent 2D ST slices,469

enabling accurate 3D reconstruction of tissues. For a comprehensive illustration, we applied470

INSPIRE for two different scenarios, utilizing slices that vary in scale from tissue regions to471

whole organisms.472

In the first scenario, we highlighted INSPIRE’s enhanced performance in slice registration473
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Figure 6: 3D reconstruction of tissues and whole organisms by INSPIRE. We utilized

INSPIRE to spatially align two MERFISH slices from the mouse hypothalamic preoptic region (a -

e), two STARmap PLUS slices from the mouse hippocampus region (f, g), and five whole-embryo

slices produced by Stereo-seq (h - j). a. Gene signatures of spatial factors, with each row indicating a

marker gene specific to a cell type. b. UMAP plots of cell representations from INSPIRE, colored

by MERFISH slice indices and the inferred factor proportions among cells. c. The MERFISH slices

colored by the proportions of factors. d. The MERFISH slices after PASTE alignment and INSPIRE

alignment, respectively. e. Pearson correlation scores of INSPIRE and PASTE evaluated using the

MERFISH dataset. f. The STARmap PLUS slices after PASTE alignment and INSPIRE alignment,

respectively. g. Pearson correlation and cell-type accuracy scores of INSPIRE and PASTE evaluated

using the STARmap PLUS dataset. h. Visualization of the Stereo-seq whole-embryo slices and UMAP

plot of spot representations, colored by the identified spatial domains across slices. i. Visualization of

liver structure and distribution of Afp expression on the reconstructed 3D model of the embryo. j.

Visualization of the 3D structure of a brain subregion and the distribution of Neurod6 expression on

the reconstructed 3D embryo.
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by using two sets of mouse brain region slices. Specifically, we first tested INSPIRE on a474

dataset comprising two adjacent MERFISH slices from the mouse hypothalamic preoptic region475

[65]. The application of INSPIRE revealed spatial factors that corresponded distinctly to476

different cell types or subtypes within the hypothalamic preoptic region, aiding in accurate477

cell-type identification in the brain (Fig. 6a, b). Moreover, the two slices displayed consistent478

spatial factor distributions both in the UMAP plot and in spatial locations, providing valuable479

information for establishing spatial correspondence between slices (Fig. 6b, c). Utilizing480

this integration result, we identified mutual nearest neighbor (MNN) cells between the two481

slices within the integrated embedding, serving as anchor pairs for guiding the registration482

process. These anchors enabled the calculation of the optimal rigid transformation, effectively483

aligning one slice with the other and achieving precise registration (Fig. 6d and Supplementary484

Fig. 42). However, PASTE, a state-of-the-art method for spatial registration, could not485

align these two slices as INSPIRE did. To quantitatively compare INSPIRE and PASTE, we486

utilized the Pearson correlation metric, which measures the similarity of gene expression levels487

between spatially proximal spots from the two slices after spatial registration, with a higher488

score indicating better performance. As shown in Fig. 6e, INSPIRE demonstrated superior489

registration performance compared to PASTE. We also compared INSPIRE and PASTE on490

another dataset, consisting of two STARmap PLUS slices from the mouse hippocampus region491

[13]. Consistent with the previous results, INSPIRE achieved precise registration between the492

two slices, while PASTE did not (Fig. 6f, Supplementary Figs. 43 and 44). For the quantitative493

evaluation, in addition to the Pearson correlation metric, we evaluated cell-type accuracy score494

as the original dataset provided cell type annotations. The cell-type accuracy score measures495

the similarity of cell type annotation between spatially proximal spots from the two slices496

after spatial registration, with a higher score indicating better spatial alignment performance.497

INSPIRE achieved higher scores for both metrics compared to PASTE (Fig. 6g), highlighting498

its superior performance in the slice registration task.499

In the second scenario, we tested INSPIRE’s ability to register multiple slices at the whole-500

organism level. We applied INSPIRE to a Stereo-seq dataset consisting of five adjacent 2D501

slices taken along the left-right axis of a mouse embryo at developmental stage E16.5. Spatial502

registration and integrative analysis of these slices are crucial for constructing a comprehensive503

3D model of the mouse embryo. In this application, INSPIRE effectively and efficiently504

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.23.614539doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.23.614539
http://creativecommons.org/licenses/by-nc-nd/4.0/


integrated 567,381 spatial spots across multiple slices (Supplementary Fig. 45). Its consistent505

identification of tissues across the slices, such as heart, liver and brain, further showed the506

reliablity of the integration result (Fig. 6h). Guided by MNN cells from each pair of adjacent507

slices, INSPIRE sequentially aligned all adjacent slices using rigid transformation. The resulting508

3D model of mouse embryo successfully reconstructed major organs such as liver and heart,509

and characterized 3D expression pattern of their marker genes (Fig. 6i and Supplementary Fig.510

46). INSPIRE was also able to reconstruct detailed spatial structures such as tissue subregions511

for accelerating comprehensive understandings of tissue 3D organizations. For instance, it512

described the 3D structures of subregions in the forehead which vary along the left-right axis513

(Fig. 6j and Supplementary Fig. 47).514

To summarize, the results from these two scenarios illustrate that INSPIRE could be applied515

to build 3D architectures of tissues or even the whole organisms with high reliability. This516

capability of INSPIRE makes it a powerful tool for conducting 3D analyses in a wide range of517

biological systems, enhancing our understanding beyond traditional 2D analyses.518

Discussion.519

In this paper, we have presented INSPIRE, an effective and versatile tool powered by advanced520

deep learning technologies for integrating and interpreting multiple ST slices from diverse521

sources. The results demonstrate that INSPIRE effectively addresses the challenges posed by the522

heterogeneity in ST data, such as variations in samples, technologies, and developmental stages.523

By combining an adversarial learning mechanism and NMF, INSPIRE not only integrated these524

diverse datasets, but also deciphered fine-grained spatial tissue architectures through spatial525

factors and interpreted their biological meanings based on their associated gene signatures.526

Although several computational methods have also been developed and have greatly facil-527

itated transcriptomics data analysis, direct application of them did not sufficiently address528

challenges in ST data integrative analysis, as shown in our examples. Methods including Seurat529

and LIGER, designed to remove batch effects among scRNA-seq datasets, lack the ability to530

model spatial dependencies among spots or cells in ST data. PASTE and PRECAST, although531

capable of performing spatially-informed analysis for multiple ST tissue slices, have shown less532

satisfactory results in managing heterogeneous unwanted variation across ST datasets. PASTE533

is primarily designed for joint analysis of ST slices from biological replicate samples, whereas534
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PRECAST relies on Gaussian mixture model shared among slices to correct for unwanted535

variations, which can be less powerful when dealing with strong slice-specific effects. Methods536

SpiceMix and NSFH use spatially-informed NMF to extract spatial signals from tissue slices,537

successfully revealing fine-grained spatial organizations with biological interpretations. However,538

they are limited to handling one slice at a time and are not designed for integrative analysis539

of ST data. In contrast, INSPIRE addresses all these challenges and offers advantages over540

existing methods in ST data integrative analysis by the innovations on its model.541

The first major advantage of INSPIRE is its utilization of a tailored adversarial learning542

mechanism. The adversarial learning mechanism adaptively detects unwanted variations among543

datasets, even when certain slices present their unique biological signals, providing accurate544

guidance for neural networks to distill meaningful biological variations across slices in the545

shared latent space. Meanwhile, the nonlinearity of neural networks offers great flexibility for546

INSPIRE to adjust for heterogeneous unwanted effects originating from diverse sources.547

Second, the seamless integration of the adversarial learning mechanism with NMF in548

INSPIRE can decipher biological signals across multiple slices into detailed and interpretable549

spatial factors, unconfounded by unwanted variations. The capability to learn NMF consistently550

among slices is particularly essential to reveal fine-grained spatial structural patterns in multi-551

slice integrative analysis. Meanwhile, downstream analyses, including GO analysis and GSEA,552

provide interpretation of biological meanings of spatial factors, leading to the discovery of553

spatial cell type distributions and biological processes. Additionally, as shown in the DLPFC554

example, the learning of spatial factors aids in eliminating redundant signals that are not555

related to the inferred gene programs, thus enhancing the discovery of biologically meaningful556

spot representations in the latent space and facilitating improved result in analyses including557

spatial trajectory inference and spatial domain identification.558

Lastly, INSPIRE incorporates GNNs to perform spatially informed analyses. The GNNs559

take into account the microenvironments of cells or spatial spots within the tissue, enhancing560

the ability of INSPIRE to understand tissue organizations. Furthermore, with the utilization561

of lightweight GNNs that allow for mini-batch optimization, INSPIRE is scalable to analyze562

large-scale ST datasets, as demonstrated by the construction of mouse organogenesis atlas and563

the 3D reconstruction of mouse embryo tasks, each encompassing over half a million spots.564

Through a comprehensive benchmarking study, INSPIRE has shown superior performance565
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in integrating information across multiple tissue slices, significantly enhancing the characteriza-566

tion of spatial architecture compared to existing methods. We also demonstrated INSPIRE’s567

effectiveness and wide applicability in a range of challenging applications, including stitching568

together tissue slices with only partially overlapping structures, integrating data from different569

ST technologies, aligning slices collected at a series of embryonic developmental stages, and570

reconstructing 3D tissue models. Each of these applications highlighted a distinct advantage571

of INSPIRE: constructing a comprehensive atlas by merging data from different tissue views,572

enabling downstream analyses that leverage the strengths of distinct ST technologies, ad-573

vancing the study of developmental dynamics, and deepening our understanding of 3D tissue574

organization.575

One potential limitation of INSPIRE, despite its numerous strengths, is its dependence on576

shared genes across datasets for data integration and interpretation. This reliance might result577

in the exclusion of important gene signals that are unique to specific datasets. Extending this578

method to incorporate and align non-shared genes among ST datasets could further enhance579

biological analyses.580

The interpretable and scalable integration of diverse ST datasets across different experimental581

designs is invaluable in advancing biological discoveries. As the field of spatial transcriptomics582

continues to grow rapidly, the need for comprehensive integrative analysis of ST datasets will583

only increase. We expect that INSPIRE, with its exceptional performance, interpretability, and584

versatility, will be a powerful addition to the modern life scientist’s ST analysis toolkit.585
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Methods586

The model of INSPIRE.587

INSPIRE offers interpretable and spatially-informed integration of ST data from multiple tissue588

slices. Let s = 1, 2, · · · , S be the index of ST slices. For slice s, we observe gene expression count589

matrix Ys = [ysi,g] ∈ RNs×G and 2D spatial coordinates of cells or spatial spots Ps ∈ RNs×2,590

where i = 1, 2, · · · , Ns is the index for cells or spatial spots, and g = 1, 2, · · · , G is the index591

for genes. Using all the information as input, INSPIRE learns to decipher spatial structures592

across all the S slices and infers the associated gene programs.593

To integrate both gene expressions and spatial locations across all ST slices, INSPIRE594

encodes the gene expression information of all cells or spatial spots into a shared latent space Z,595

using a neural network that accounts for spatial dependencies among cells or spots. Specifically,596

INSPIRE builds a 2D neighborhood graph for each slice using the spatial location matrix. We597

denote the neighborhood graph for slice s as As = [ai,j] ∈ {0, 1}Ns×Ns , where ai,j = 1 if cells598

or spots i and j are spatial neighbors, and ai,j = 0 otherwise. Using both gene expressions599

{Ys}s=1,2,··· ,S and spatial graphs {As}s=1,2,··· ,S, the latent representations of cells or spatial600

spots are generated by:601

xs
i,g = log

(
ysi,g∑G
g=1 y

s
i,g

M + 1

)
, (1)602

Zs = fZ(X
s,As), (2)603

where we perform log-normalization on count matrices {Ys}s=1,2,··· ,S for algorithm stability.604

In the data normalization, we set M = 104 for sequencing-based ST data, and set M = 103605

for imaging-based ST data. The log-normalized data Xs = [xs
i,g] ∈ RNs×G are then encoded606

to latent representations Zs ∈ RNs×P through a graph neural network fZ(·) with parameters607

shared among all slices, where P is the dimensionality of the shared latent space. For slice s,608

the latent representation Zs embeds information from both gene expressions Ys and spatial609

neighbors encoded in graph As, describing spatially-informed biological variations in slice s.610

Importantly, in addition to capturing spatially-aware biological signals in each slice, the shared611

latent space is designed for achieving the integration across all input slices. For harmonizing612

latent representations Z1,Z2, · · · ,ZS from different ST slices, INSPIRE adopts a tailored613

adversarial mechanism in latent space Z. Let zsi ∈ RP be the latent representation of cell614
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or spot i in slice s. An auxiliary discriminator network, Ds(·) : Z → (0, 1), is deployed615

to identify where the poor mixing between representations {zsi}i=1,2,··· ,Ns from slice s and616

{zs+1
i }i=1,2,··· ,Ns+1 from slice s+ 1 occurs. Encoder network fZ(·) is trained to compete against617

discriminator Ds(·), aiming to mix {zsi}i=1,2,··· ,Ns from slice s and {zs+1
i }i=1,2,··· ,Ns+1 from slice618

s+ 1. Through this competition, discriminator Ds(·) provides feedback to improve encoder619

fZ(·) until representations {zsi}i=1,2,··· ,Ns and {zs+1
i }i=1,2,··· ,Ns+1 from slices s and s+ 1 are well620

integrated. INSPIRE introduces S − 1 discriminators {Ds(·)}i=1,2,··· ,S−1 for aligning all the S621

tissue slices. Guided by the S − 1 discriminators, encoder fZ(·) learns to generate integrated622

representations of cells or spatial spots across all S tissue slices.623

Based on the shared latent space, INSPIRE then achieves a harmonized non-negative matrix624

factorization (NMF) for gene expressions across all input slices, that are not confounded by625

complex unwanted variations. The hidden spatial factors identified by this integrated NMF626

across slices provide a unified characterization of fine-grained tissue structures across all slices.627

Meanwhile, the gene loading matrix describes gene modules associated with each spatial factor,628

interpreting the biological meanings of the detailed spatial organization patterns discovered by629

the spatial factors. We assume there are K hidden spatial factors in input slices. Each spatial630

factor characterizes a fine-grained spatial structure in the tissue. Let βs
i = [βs

i,1, β
s
i,2, · · · , βs

i,K ]631

denote the set of non-negative weights among the K hidden spatial factors for cell or spot632

i in slice s, with βs
i,k ≥ 0 and

∑K
k=1 β

s
i,k = 1. INSPIRE generates βs

i from integrated latent633

representation zsi of cells or spots across slices:634

βs
i = fβ(z

s
i ), (3)635

where network fβ(·) contains a simple linear layer, followed by a softmax function. Notably, in636

the shared latent space, representations {Zs}s=1,2,··· ,S are spatially-aware and free of unwanted637

variations. Hence, generated from Zs, the obtained βs = [βs
i,k] ∈ RNs×K for different slices638

are also spatially-informed and well integrated across ST slices. The integrated {βs}s=1,2,··· ,S639

together with shared gene loading matrix µ = [µk,g] ∈ RK×G across slices form a harmonized640

NMF model for all input slices. In the model, {βsµ}s=1,2,··· ,S focus on capturing shared641

biological signal in all slices and further decomposing it into a set of K interpretable spatial642

factors. To account for confounding factors including batch effects and technical effects643

across ST slices, INSPIRE also introduces slice- and gene-specific effects γs
g ∈ R to the644

integrated NMF model. Combining non-negative weights for spatial factors in cells or spots645
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{βs}s=1,2,··· ,S, non-negative gene loadings µ shared across slices, and slice- and gene-specific646

effects {γs}s=1,2,··· ,S,γ
s = [γs

g , γ
s
2, · · · , γs

G] ∈ RG for modeling unwanted variations, INSPIRE647

reconstructs the observed gene expression counts using the following integrated NMF-based648

model across all ST slices:649

ysi,g ∼ Poisson(lsiu
s
i,g), (4)650

us
i,g = exp

[
log

(
K∑
k=1

βs
i,kµk,g

)
+ γs

g

]
, (5)651

where lsi is the observed total transcript count in cell or spot i from slice s, gene loadings652

satisfy µk,g ≥ 0 and
∑G

g=1 µk,g = 1. For gene loadings µ and slice- and gene-specific effects653

{γs}s=1,2,··· ,S, INSPIRE models them as learnable parameters. After training, INSPIRE’s654

learned µk = [µk,1, µk,2, · · · , µk,G] ∈ RG reveals the gene signature corresponding to hidden655

spatial factor k, where a high value of µk,g indicates a greater impact of gene g on spatial factor656

k. Through learning and analyzing gene loadings µ, INSPIRE is able to find gene programs that657

are associated with different hidden spatial factors. Meanwhile, in the integrated NMF across658

slices, non-negative weights {βs
·,k}s=1,2,··· ,S, β

s
·,k = {βs

i,k}i=1,2,··· ,Ns with spatial coordinates of659

cells or spots describe a spatial enrichment pattern of spatial factor k across all the S ST660

slices. Using {βs}s=1,2,··· ,S, INSPIRE is capable of depicting fine-grained spatial organization661

structures across all ST slices, without being confounded by unwanted variations.662

INSPIRE is a unified method that incorporates the adversarial learning mechanism for data663

integration with the NMF model for jointly depicting interpretable spatial structures in multiple664

tissue slices. We propose to train INSPIRE under the following optimization framework:665

min
{fZ ,fβ ,µ,γ}

max
{D1,D2,··· ,DS−1}

S−1∑
s=1

Ls
Integration + LNMF + λAERAE + λGeometryRGeometry, (6)666

667

Ls
Integration = Ls

Integration(fZ , D
s),668

LNMF = LNMF(fZ , fβ,µ,γ),669

RAE = RAE(fZ),670

RGeometry = RGeometry(fZ),671

where Ls
Integration is the objective function of adversarial learning for integrating data from slice672

s and slice s + 1; LNMF is the objective function of the joint NMF for reconstructing gene673

expression counts across all ST slices; RAE and RGeometry are regularizers to encourage the674
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preservation of biological signals across slices in the shared latent space; λAE and λGeometry are675

coefficients for the two regularizers respectively, and are set to λAE = 1.0 and λGeometry = 0.02.676

We explain each component in optimization problem (6) in details in the next sections. The677

parameters in INSPIRE include: parameters in network fZ(·) that encodes latent representations678

{Zs}s=1,2,··· ,S; parameters in network fβ(·) that generates spatial factors for cells or spots among679

slices {βs}s=1,2,··· ,S; gene loading matrix µ shared across slices; parameters in S−1 discriminators680

{Ds(·)}s=1,2,··· ,S−1 that assist data integration across slices; as well as slice- and gene-specific681

effects γ = {γs}s=1,2,··· ,S that account for unwanted variations. After training, INSPIRE682

simultaneously outputs latent representations {Zs}s=1,2,··· ,S, spatial factors {βs}s=1,2,··· ,S and683

gene loadings µ. The latent representations of cells or spatial spots are utilized for identifying684

major spatial domains in tissues and detecting spatial trajectories. Detailed spatial factors685

{βs}s=1,2,··· ,S are used for the discovery of fine-grained tissue sub-regions and spatial distributions686

of cell types, providing a characterization of spatial patterns in tissues at a higher resolution.687

Gene loading matrix µ characterizes gene signatures associated with the detailed spatial688

structures discovered by spatial factors. It deciphers the biological meaning of spatial factors689

through factor-specific gene program detection and pathway enrichment analysis.690

Adversarial learning mechanism for data integration across slices.691

The adversarial training between the discriminators and the encoder is formulated as a692

min-max optimization problem, min{fZ}max{D1,D2,··· ,DS−1}
∑S−1

s=1 Ls
Integration(fZ , D

s), contained693

in (6), where694

Ls
Integration =

1

Ns

Ns∑
i=1

logDs(zsi ) +
1

Ns+1

Ns+1∑
i=1

log(1−Ds(zs+1
i )).695

The latent representations are obtained using Eqs. (1) and (2). Given latent codes {zsi}i=1,2,··· ,Ns696

and {zs+1
i }i=1,2,··· ,Ns+1 generated by fZ(·), discriminator Ds(·) : Z → (0, 1) is trained to697

distinguish between {zsi}i=1,2,··· ,Ns from slice s and {zs+1
i }i=1,2,··· ,Ns+1 from slice s + 1. Here,698

Ds(·) is trained to output a high score (close to one) for representations in slice s, while it699

learns to assign a low score (close to zero) for representations in slice s+ 1. This is achieved by700

maximizing Ls
Integration with respect to Ds(·). Given discriminators {Ds(·)}s=1,2,··· ,S−1, encoder701

fZ(·) is trained to mix latent representations across all slices, such that any discriminator702

cannot distinguish latent codes between slices. This is achieved by minimizing
∑S−1

s=1 Ls
Integration703

with respect to fZ(·). Through the competition between encoder fZ(·) and discriminators704

{Ds(·)}s=1,2,··· ,S−1, the discriminators will guide the improvement of the encoder until the705
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encoder generates integrated latent representations for cells or spatial spots across all the S706

slices.707

With the above design, Discriminator Ds(·) will guide fZ(·) to mix {zsi}i=1,2,··· ,Ns from slice708

s with {zs+1
i }i=1,2,··· ,Ns+1 from slice s + 1. However, a slice-specific cell or spot population709

should not be mixed with cells or spots from another slice. To preserve slice-specific cell710

populations from being incorrectly mixed with other cells, we follow our previous work [34]711

to adopt a thresholding for discriminator scores. Consider a cell population that is unique712

in slice s. Discriminator Ds(·) can easily recognize cells in this population as cells from713

slice s, and assign extremely high scores to them. By similar reasoning, Ds(·) will assign714

extremely low scores to slice s + 1-unique cell populations. Therefore, as slice-unique cell715

populations are prone to be assigned with extreme discriminator scores, we set boundaries716

for discriminator scores to make discriminators inactive on them. Specifically, the outputs717

of standard discriminators are transformed into (0, 1) through the sigmoid function. For any718

applicable latent code z, Ds(z) = sigmoid(ds(z)) = 1/(1+exp(−ds(z))), where ds(z) ∈ R is the719

logit value of discriminator score Ds(z). We bound discriminator score Ds(z) by thresholding720

its logit ds(z) to a reasonable range [−m,m], where m is set to 50.0:721

D̃s(z) = sigmoid(clamp(ds(z))),722

where clamp(·) = max(min(·,m),−m), m > 0. By clamping ds(z), D̃s(z) becomes a constant723

when ds(z) < −m or ds(z) > m, providing zero gradients for updating parameters in encoder724

network fZ(·). With this design, the slice-unique cell populations with extreme ds(z) scores725

will be left in the inactive region of discriminators. Consequently, discriminators will not726

force encoder fZ(·) to mix slice-unique cell populations with other cells, avoiding incorrect727

integration. Meanwhile, D̃s(z) remains the same as Ds(z) when D̃s(z) ∈ [−m,m], effectively728

guiding encoder fZ(·) to align cells that are likely to belong to the shared cell populations among729

slices for data integration. For clarity, we still use the notation Ds(·) to denote discriminator730

D̃s(·) with the score thresholding design hereinafter.731

Joint NMF for reconstructing gene expressions in multiple ST slices.732

The major objective function in optimization problem (6) of INSPIRE, LNMF, corresponds733

to the reconstruction of gene expression counts in all S input slices through a joint NMF model.734

INSPIRE uses encoder fZ(·) to generate integrated data {Zs}s=1,2,··· ,S across slices, guided by735

discriminators {Ds(·)}s=1,2,··· ,S−1. By Eq. (3), it then leverages network fβ(·) to decompose the736
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signal captured in {Zs}s=1,2,··· ,S into a set of K interpretable spatial factors {β}ss=1,2,··· ,S that737

characterize spatial structures of tissues at a fine-grained level. Combining the obtained spatial738

factors with addtional parameters, including gene loadings µ as well as slice- and gene-specific739

effects γ, INSPIRE reconstructs the gene expression counts from all inputs slices through740

an integrated NMF-based model described by Eqs. (4) and (5). Based on this model, the741

corresponding objective function is given by742

LNMF = −
S∑

s=1

1

Ns

Ns∑
i=1

G∑
g=1

[
ysi,g log(l

s
iu

s
i,g)− lsiu

s
i,g

]
.743

By minimizing LNMF with respect to fZ(·), fβ(·), µ and γ, INSPIRE deciphers interpretable744

hidden spatial factors that are unified across slices with {βsµ}. Here, {βs}s=1,2,··· ,S characterizes745

detailed spatial organizations in tissues, while µ describes gene signatures associated with the746

tissue organization patterns identified by spatial factors for interpretability.747

Regularization for encouraging the preservation of biological variations across748

slices.749

INSPIRE uses two regularizers, RAE and RGeometry, to help preserve biological signals across750

slices in the shared latent space. We design regularizer RAE as751

RAE =
S∑

s=1

1

Ns

Ns∑
i=1

∥xs
i − f s

X(z
s
i , s)∥2,752

where slice-specific neural network f s
X(·, s) is introduced to reconstruct log-normalized gene753

expressions in cells or spots xs
i based on latent codes zsi and slice label s. Encoder fZ(·)754

and network f s
X(·, s) together form an auto-encoder structure between log-normalized data755

{Xs}s=1,2,··· ,S and latent codes {Zs}s=1,2,··· ,S. In regularizer RAE, slice-specific network f s
X(·, s)756

is designed to recover gene expressions from the latent space while accounting for slice-757

specific effects using slice labels. Therefore, encoder fZ(·) is encouraged to distill all biological758

information into the latent space without slice-specific effects. To preserve a good geometric759

structure in the latent space for revealing biological signals, e.g., continued developmental760

trajectories of cells, we propose regularizer RGeometry:761

RGeometry =
S∑

s=1

1

Ns

Ns∑
i=1

∥csx,i − csz,i∥22,762

csx,i,j = 1−
< xs

i ,x
s
j >

∥xs
i∥2∥xs

j∥2
,763

csz,i,j = 1−
< zsi , z

s
j >

∥zsi∥2∥zsj∥2
,764
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where for cells or spots i and j from slice s, csx,i,j is the cosine similarity between their log-765

normalized gene expressions xs
i and xs

j, csz,i,j is the cosine similarity between their latent766

representations zsi and zsj; c
s
x = [csx,i,j] ∈ RNs×Ns and csz = [csz,i,j] ∈ RNs×Ns are corresponding767

cosine similarity matrices; csx,i and csx,i are the i-th rows of csx and csz respectively. In regularizer768

RGeometry, cells or spots with high similarities in gene expressions are encouraged to be close in769

the latent space, while cells or spots with dissimilar gene expressions are encouraged to remain770

distinct in the latent space. Hence, by using RGeometry, INSPIRE encourages fZ(·) to preserve771

biological meaningful structures in the shared latent space.772

Selection of informative genes.773

When all input ST slices provide the whole transcriptome profiling, INSPIRE selects the774

informative genes and uses them as features. Following the Scanpy pipeline [48], INSPIRE775

selects the top M highly variable genes for each slice. It then takes the intersection of these776

highly variable genes across all ST slices to ensure that the features of cells or spatial spots are777

shared across all slices. By default, we set M = 6, 000. If the number of selected features is778

less than 2, 000 with M = 6, 000, a larger value of M can be adopted. When some ST slices to779

be analyzed are based on ST technologies that measure the expressions of a limited number of780

genes, such as MERFISH, INSPIRE uses all the shared genes across the input slices for the781

integrative analysis.782

Network structures.783

Encoder fZ(·) contains a graph neural network (GNN) layer and a dense layer. The GNN784

layer takes log-normalized gene expressions xs
i and spatial graph As as input. It outputs785

512-dimensional hidden vectors. Then the dense layer in fZ(·) maps the 512-dimensional hidden786

vectors to the P -dimensional latent representations zsi of cells or spatial spots. We set P = 32787

throughout all analyses. Inspired by previous works [15, 66, 67], INSPIRE provides two options788

for the GNN layer: the graph attention layer and the lightweight graph-convolutional layer.789
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The graph attention layer is formulated as:790

hs
i = σ

(∑
j∈Ni

αi,jWxs
i

)
,791

αs
i,j =

exp(esi,j)∑
j′∈Ni

exp(esi,j′)
,792

esi,j = sigmoid(vT
1 Wxs

i + vT
2 Wxs

j),793

where hs
i represents the output of the graph attention layer; Ni = {j|asi,j = 1} represents the794

neighbor set of cell or spot i encoded in spatial graph As; W, v1 and v2 are parameters in the795

graph attention layer; σ(·) is the activation function. Based on the graph attention mechanism,796

parameters v1 and v2 are used to learn edge weights αs
i,j between neighboring cells or spots,797

helping to adaptively borrow information from neighboring cells or spots. INSPIRE adopts798

the graph attention layer in fZ(·) when handling the integration task for ST datasets with799

moderate numbers of cells or spatial spots. To integrate large atlas-scale ST datasets which800

contain hundreds of thousands or even millions of cells or spots, INSPIRE uses the lightweight801

graph-convolutional layer in fZ(·), which is formulated as:802

Hs = σ
(
WX̃s

)
,803

X̃s = concat
(
Xs, ÃsXs, (Ãs)2Xs, · · · , (Ãs)LXs

)
,804

where Hs represents the output of the lightweight graph-convolutional layer; W denotes the805

parameters; Ãs = (D̃s)−1/2As(D̃s)−1/2, D̃s is the diagonal degree matrix of As; and L is the806

number of steps in the concatenation. We set L = 1 by default. The graph attention layer807

has the advantage of providing an inference of the edge importance between neighborhood808

cells or spots for adaptively aggregating information in microenviroments of cells or spots. By809

preparing X̃s as a preprocessing step, the lightweight graph-convolutional layer enables an810

efficient training with mini-batch samples from X̃s, serving as a scalable approach to account811

for spatial dependencies in datasets with large numbers of cells or spots.812

For network fβ(·) which produces K-dimensional spatial factors βs
i from latent codes zsi of813

cells or spatial spots, INSPIRE adopts a one-layer dense network with the softmax activation.814

The choice of K depends on the scale of the tissues to be analyzed. For example, INSPIRE set815

K = 20 for analyzing the cortex region of the brain, while it adopts K = 40 for analyzing the816

whole-brain slices.817
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For discriminators {Ds(·)}s=1,2,··· ,S−1 that guide encoder fZ(·) to achieve the data integration,818

INSPIRE uses two-layer dense networks. Ds(·) works as a binary classifier to distinguish between819

{zs}i=1,2,··· ,Ns from slice s and {zs+1}i=1,2,··· ,Ns+1 from slice s. Then, encoder fZ(·) competes820

against Ds(·) to integrate {zs}i=1,2,··· ,Ns with {zs+1}i=1,2,··· ,Ns+1 . Here, D
s(·) takes latent codes821

z of cells or spots from slices s or s+ 1 as input. It first uses a dense layer with an activation822

function to map z to a 512-dimensional hidden state. It then uses another dense layer to823

produce a score belonging to (0, 1) from the 512-dimensional hidden state.824

INSPIRE introduces slice-specific network f s
X(·, s) in its regularizer RAE to help preserve825

biological variations across slices in the shared latent space. f s
X(·, s) takes latent representations826

zsi and slice label s as inputs. It adopts a graph attention layer or a lightweight graph-827

convolutional layer, followed by a dense layer, to recover log-normalized gene expressions xs
i828

while accounting for slice-specific effects and spatial dependencies among cells or spatial spots.829

The dimensionality of the hidden state in f s
X(·, s) is set to be 512.830

Model training details.831

INSPIRE employs Adamax, which is a variant of the Adam algorithm [68], for stochastic832

optimization during model training. By default, the number of optimization steps in INSPIRE833

is set to 10,000 with learning rate lr = 0.0005, coefficients for computing running averages834

β1 = 0.9, β2 = 0.999 and weight decay parameter λ = 0.0001. We conducted all experiments835

on a single graphics processing unit. The computation times for all experiments are detailed in836

Supplementary Table 1.837

Evaluation metrics.838

We evaluated spot or cell representations using ASW and assessed spatial domain identification839

results, inferred from these representations, with ARI and NMI metrics. The quality of spatial840

factors was measured by factor diversity and factor coherence.841

ASW. ASW calculates the silhouette width of cells or spatial spots with respect to spatial842

region annotation labels. A higher score indicates that cells or spots within the same spatial843

region are closely grouped, while those from different spatial regions are well separated.844

ARI. ARI measures the alignment between spatial domain identification result and expert845

manual annotation. A lower score suggests that the two sets of labels for cells or spots are846
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independent, while a higher score indicates that the labels are identical, except for a possible847

permutation.848

NMI. NMI calculates the normalized mutual information between spatial domain identi-849

fication result and expert manual annotation. A low NMI value indicates minimal shared850

information between the label sets, while a high value suggests a strong correlation between851

them.852

Factor diversity. Topic diversity is defined as the percentage of unique genes among the853

top 10 genes across all factors. A higher score reflects greater diversity among factors, while a854

lower score indicates more redundancy.855

Factor coherence. Topic coherence measures the interpretability of factors by calculating the856

average pointwise mutual information of top genes associated with each factor, then averaging857

these values across all factors. Specifically,858

Factor coherence =
1

K

K∑
k=1

1

45

10∑
i=1

10∑
j=i+1

m
(
g
(k)
i , g

(k)
j

)
,859

m(gi, gj) = −
log

P (gi,gj)

P (gi)P (gj)

logP (gi, gj)
,860

where {g(k)1 , g
(k)
2 , · · · , g(k)10 } denotes the top 10 genes associated with factor k, m(·, ·) is the861

normalized pointwise mutual information, P (gi, gj) is the probability of genes gi and gj co-862

expressing in a spot or cell, and P (gi) is the marginal probability of gene gi.863

Rankings of genes within a spatial factor.864

The gene loading associated with spatial factor k is represented as µk,· = [µk,1, µk,2, · · · , µk,G],865

where µ is the gene loading matrix derived from integrated NMF across all input slices, and G866

is the total number of genes analyzed. The non-negative values in µk,· indicate the relative867

expression levels among genes within a factor, with a higher µk,g corresponding to greater868

enrichment of gene g expressioin in factor k. Therefore, for each spatial factor k, we can rank869

genes according to the non-negative values in µk,·. The gene with the highest value is ranked870

first, and the gene with the lowest value is ranked last.871
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Identification of genes specific to a spatial factor.872

To identify highly expressed genes specific to spatial factor k, we first select the top G0 ranked873

genes based on the gene loading associated with spatial factor k, with G0 set to 50 by default.874

For each selected gene g, we then calculate the fold change between its estimated weight on875

spatial factor k and all other spatial factors. A gene g is considered highly expressed and876

specific to spatial factor k, if µk,g/µk′,g > 1 for any k′ ̸= k.877

Number of spatial factors.878

In the human DLPFC example, we demonstrated that the NMF component in INSPIRE879

enhances the accuracy of spot representations in the latent space. Additionally, we investigated880

how varying the number of spatial factors in INSPIRE affects the quality of these spot881

representations. The results indicate that the quality remained stable across different numbers882

of spatial factors, with a slight improvement in accuracy as the number of spatial factors883

increased (Supplementary Fig. 48 and Supplementary Note 1).884

Next, we examined the relationship between the number of spatial factors and both the885

quality of the spatial factors and the model fitting accuracy using the human DLPFC and886

mouse brain data. The results suggest that increasing the number of spatial factors improves887

model fit to the ST datasets but also reduces the diversity of the spatial factors. These examples888

illustrate that the optimal number of spatial factors depends on the scale of the ST slices.889

Specifically, for the human DLPFC slices, representing only a subregion of the brain, the factor890

diversity score dropped below 50% when the number of spatial factors exceeded 20. In contrast,891

for the mouse brain data, which includes multiple complementary views of the brain, the factor892

diversity score remained above 50% even with 40 spatial factors (Supplementary Figs. 49, 50,893

and Supplementary Note 2). Based on empirical observations, we recommend using number of894

spatial factors K = 20 for analyzing a subregion of an organ, K = 40 for a complex organ, and895

K = 60 for a whole organism. Alternatively, the INSPIRE model can be run with different896

values of spatial factor number K, and we recommend selecting the largest K such that factor897

diversity exceeds a specified threshold. By default, we suggest a threshold of 50%.898
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Data availability.899

All data used in this work are publicly available through online sources.900

• Human dorsolateral prefrontal cortex dataset profiled by Visium platform [40] (https:901

//research.libd.org/spatialLIBD/).902

• Mouse brain sagittal anterior, sagittal posterior, and coronal sections profiled by Visium903

[30, 31, 32] (https://www.10xgenomics.com/datasets).904

• Mouse brain slice profiled by Slide-seq V2 [7] (https://singlecell.broadinstitute.905

org/single_cell).906

• Mouse brain slice profiled by MERFISH [47] (https://doi.brainimagelibrary.org/907

doi/10.35077/act-bag).908

• Mouse whole-embryo slice profiled by seqFISH [33] (https://crukci.shinyapps.io/909

SpatialMouseAtlas/).910

• Mouse whole-embryo datasets across different developmental time points profiled by911

Stereo-seq [8] (https://db.cngb.org/stomics/mosta/).912

• Mouse hypothalamic preoptic region slices profiled by MERFISH [65] (https://doi.913

org/10.5061/dryad.8t8s248).914

• Mouse hippocampus region slices profiled by SRARmap PLUS [13] (https://doi.org/915

10.5281/zenodo.7458952).916

Code availability.917

The INSPIRE software is available at https://github.com/jiazhao97/INSPIRE.918
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