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Abstract

1 Recent advances in spatial transcriptomics technologies have led to a growing number of diverse
» datasets, offering unprecedented opportunities to explore tissue organizations and functions
s within spatial contexts. However, it remains a significant challenge to effectively integrate and
+ interpret these data, often originating from different samples, technologies, and developmental
s stages. In this paper, we present INSPIRE, a deep learning method for integrative analyses
s of multiple spatial transcriptomics datasets to address this challenge. With designs of graph
7 neural networks and an adversarial learning mechanism, INSPIRE enables spatially informed
s and adaptable integration of data from varying sources. By incorporating non-negative matrix
o factorization, INSPIRE uncovers interpretable spatial factors with corresponding gene programs,
10 revealing tissue architectures, cell type distributions and biological processes. We demonstrate

u the capabilities of INSPIRE by applying it to human cortex slices from different samples,
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12 mouse brain slices with complementary views, mouse hippocampus and embryo slices generated
13 through different technologies, and spatiotemporal organogenesis atlases containing half a
1 million spatial spots. INSPIRE shows superior performance in identifying detailed biological
15 signals, effectively borrowing information across distinct profiling technologies, and elucidating
16 dynamical changes during embryonic development. Furthermore, we utilize INSPIRE to build
17 3D models of tissues and whole organisms from multiple slices, demonstrating its power and

18 versatility.

» Introduction

20 Spatial transcriptomic (ST) technologies enable spatially resolved transcriptomic studies by
2 profiling gene expressions with spatial information in intact tissues [Il, 2]. Recently, various ST
» technologies have been developed with complementary strengths [3, 4]. For example, widely
22 used next-generation sequencing-based methods, such as 10x Visium [5], Slide-seq [0, [7] and
21 Stereo-seq [§], allow for transcriptome-wide gene expression profiling. While technologies based
2 on in situ hybridization (e.g., seqFISH [9, [10] and MERFISH [I1]) and in situ sequencing (e.g.,
s STARmap [12] [13]) require panel designs for target genes with prior knowledge, they offer single-
27 cell and subcellular resolution that is essential in characterizing cellular communications. These
s diverse ST approaches provide great opportunities for deciphering complex tissue architecture
2 [14, [15], understanding how cells interact with each other [106] [I7], and identifying spatial
0 developmental trajectories in tissues [18, [19].

31 Non-negative matrix factorization (NMF) has proven an appealing approach for analyzing
» transcriptomic count matrices [20, 21, 22]. For instance, in the context of single-cell RNA-
13 sequencing (scRNA-seq) data analyses, NMF-based methods have the ability to decompose
s gene expression in individual cells into a set of interpretable gene programs associated with
55 cell-type identities and cellular activities [23], 24]. These methods offer valuable insights, such
5 as unraveling cell states that arise in various perturbations [25], 26]. Most recently, two NMF-
w based dimension reduction methods, SpiceMix [27] and NSFH [28], were proposed for analyzing
;s complex ST data by capturing spatial dependence of cells. Owing to the decomposition nature
w0 of NMFs [29], SpiceMix and NSFH are powerful in deciphering signals within ST data by
w0 decomposing them into a collection of interpretable spatial factors, each encoding a unique

a spatial pattern [27, 2§]. These methods excel at uncovering spatial organization of cell identities,
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> identifying spatially variable features, and revealing important biological processes. However,

N

3 these methods are designed only for interpreting a single ST dataset. The development of
« interpretable and spatially-aware analytical methods that can effectively integrate multiple
s diverse ST datasets is in great need and remains a challenge.

46 With advancements in ST technologies, numerous ST studies utilizing different technologies
« have been conducted, each often generating multiple slices [3, 4]. For instance, ST profiles have
s been characterized in multiple sagittal and coronal sections from mouse brains [30, B1], 32],
» and in multiple parallel slices along the left-right axis from a late-stage mouse embryo [8].
so Multiple ST slices have also been created from mouse embryos at varying developmental
51 time points [8, [33]. Effectively interpreting these diverse ST datasets, both within and across
52 studies, is crucial for establishing a comprehensive understanding of tissue architectures and
53 their developmental dynamics. However, unwanted variations across samples, batches, ST
s« technologies and developmental time points can introduce confounding factors that hinder the
ss discovery of biologically meaningful spatial signals [34) 35]. Consequently, while methods like
s SpiceMix and NSFH can unveil meaningful spatial factors in a single ST dataset, they face
sz difficulties in distinguishing shared biological signals among datasets from the heterogeneous
ss unwanted variation when applied to multiple ST datasets. This task can become even more
so challenging if certain datasets contain unique biologically meaningful spatial factors that need
o to be accurately identified and separated from the unwanted variation [36]. Therefore, there
s1 remains a need for computational methods that are specifically designed for joint analyses of
2 multiple diverse ST datasets.

63 Here, we develop INSPIRE, a deep learning-based method that unifies NMF and adversarial
s« learning [37] to achieve interpretable, flexible and spatially-aware integration of ST datasets.
s INSPIRE leverages graph neural networks [38], 39] to perform spatially informed analyses of ST
e slices, by accounting for local microenvironments of cells or spatial spots. For joint analyses of
e multiple datasets, INSPIRE incorporates a tailored adversarial learning mechanism to adaptively
¢ distinguish complex unwanted variations across multiple batches, samples, technical platforms
so and developmental stages from intrinsic biological variations, even when certain datasets present
70 unique biological signals. Hence, INSPIRE can reliably eliminate heterogeneous unwanted
7 variations in its analyses. By seamlessly integrating this adversarial learning mechanism with

72 NMF, INSPIRE enables a harmonized NMF for multiple diverse ST datasets. It allows for
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the discovery of spatial factors among multiple datasets without confounded by unwanted
variations, deciphering detailed spatial organizations in diverse datasets. For these spatial
factors, INSPIRE also explicitly models their gene signatures, enabling the interpretation of
their biological meanings and the identification of gene programs associated with them.
Through the application of INSPIRE to various ST datasets, including human cortex slices
from different samples, mouse brain slices prepared at different orientations and resolutions, as
well as a collection of whole mouse embryo slices, we demonstrate that INSPIRE can flexibly
integrate diverse ST datasets from multiple samples, created by different ST technologies
and at varying developmental time points. In these diverse integrative analyses, INSPIRE
shows its power to decipher fine-grained spatial architecture with biological meanings, elucidate
spatial cell-population distributions, and uncover biological processes organized in complex
tissues. Through these applications, we show that INSPIRE is a versatile analytical approach
that allows for various downstream analyses. For instance, it enables pathway enrichment
analysis, identification of spatially variable genes, detection of spatial trajectories, imputation
of spatial gene expressions as well as 3D reconstruction of tissue structures using multiple
parallel slices along an axis. Of note, INSPIRE is also scalable to handle large-scale datasets.
As a demonstration, we applied INSPIRE to spatiotemporal atlases of mouse organogenesis,
comprising half a million high-resolution spatial spots. INSPIRE effectively modeled these
atlases, deciphering dynamical changes during mouse embryonic development. INSPIRE is
publicly available as a Python package (https://github.com/jiazhao97/INSPIRE), offering

an efficient and reliable tool for ST data analyses.

Results

Method overview.

INSPIRE takes gene expression count matrices and spatial coordinates from multiple ST slices
as inputs. It effectively integrates information across slices in a shared latent space. In this space,
meaningful biological variations from the input slices are preserved, while complex unwanted
variations are eliminated (Fig. and panel al). Utilizing this shared latent space, INSPIRE
achieves an integrated NMF on gene expressions across slices, decomposing biological signals in

different slices into consistent and interpretable spatial factors with associated gene programs
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Figure 1: Overview of INSPIRE. a. INSPIRE is a unified deep learning method that incorporates
adversarial learning and non-negative matrix factorization (NMF) for interpretable integrations of ST
datasets. Raw gene expressions and spatial locations from multiple slices are taken as the inputs. (al).
INSPIRE embeds the biological variations from ST slices into a shared latent space. By incorporating
a tailored adversarial learning mechanism, INSPIRE effectively eliminates unwanted variations in this
latent space, providing harmonized representations of cells or spatial spots among slices. (a2). The
latent space enables INSPIRE to achieve an integrated NMF for multiple slices, further decomposing
biological signals into a set of consistent and interpretable factors among slices. Unconfounded
by unwanted variations, these spatial factors reveal detailed spatial organizations in multiple ST
slices. The gene signatures of these spatial factors are explicitly characterized by the shared gene
loading matrix, elucidating their biological meanings. After training, INSPIRE simultaneously outputs
integrated latent representations, interpretable spatial factors, and corresponding gene loadings. b.
INSPIRE’s outputs enable multiple downstream analyses, including spatial trajectory inference,
identification of fine-grained spatial regions and tissue structures, detection of spatially variable genes,
and pathway enrichment analysis for deciphering biological processes in tissues. INSPIRE can also be
applied to tasks including gene imputation and 3D reconstruction of tissues with multiple parallel 2D
slices.
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(Fig. and panel a2). The non-negative spatial factors of cells or spatial spots are inferred
from their latent representations, where unwanted variations are largely eliminated. Hence,
these spatial factors are free from complex unwanted variations, enabling unified discoveries of
fine-grained spatial patterns among slices. The gene signatures associated with these spatial
factors are captured through shared non-negative gene loadings among slices, enhancing the
interpretability of multi-slice integrative analyses.

INSPIRE seamlessly incorporates the above designs in a unified deep-learning framework
(Fig. ) Specifically, it uses a spatially-informed encoder, fz(-), to map cells or spatial spots
from ST slices s = 1,2,---, 5 into the shared latent space. This encoder is a graph neural
network [38, 39] that takes gene expressions and spatial neighborhood graphs of ST slices as
inputs. For any cell or spatial spot ¢ from slice s, the encoder is designed to output its latent
representation z;, unaffected by unwanted variations. INSPIRE achieves this by incorporating
a tailored adversarial learning mechanism [34), 37| (Fig. [lj, panel al). To align {z}}; from
slice s with {z5™'}; from slice s + 1, an auxiliary discriminator network, D*(), is deployed in
the latent space to detect where poor mixing between {z3}; and {z:*'}; occurs. Its feedback
then guides encoder fz(-) to improve the alignment. The discriminator can adaptively preserve
slice-specific signals by only guiding fz(-) to integrate shared biological variations between
slices. By introducing S — 1 discriminators, including D*(-), s = 1,2,--- ;S — 1, INSPIRE
effectively harmonizes all S slices in the shared latent space.

Next, INSPIRE adopts an integrated NMF across slices to further decompose the biological
signals in the shared latent space into a set of interpretable spatial patterns with gene programs
(Fig. , panel a2). This provides characterizations of tissue structures at a finer-grained
level and with enhenced interpretability. The integrated NMF includes non-negative spatial
factor matrices {3°} for the multiple slices, and a shared non-negative gene loading matrix, g,
among slices. For any cell ¢ in slice s, 3; presents the set of non-negative weights across the
hidden spatial factors it contains. The sum of the non-negative weights of spatial factors for any
given cell equals to one. The contributions of different genes to diverse hidden spatial factors
are explicitly encoded by the non-negative weights in p, revealing gene programs associated
each detailed spatial pattern. Two unique designs in INSPIRE enable its integrated NMF
across slices. First, INSPIRE uses a decoder network, fs(-), to generate spatial factors {35},

directly from integrated representations {z;}; in the latent space. This ensures that {3;}s,
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only decompose meaningful biological signals among slices, as the unwanted variations are
removed in {z]},,;. Second, INSPIRE introduces additional slice s-and-gene g-specific effects
7, to help explicitly model confounding signals. Therefore, {Bi}si and p can efficiently fit the
biological signals, decomposing these key signals into a set of detailed spatial factors with their
associated gene modules that are consistent among slices.

INSPIRE formulates the learning of encoder network f(-), decoder network f3(-), and gene
loading matrix g into a unified optimization problem. After training, INSPIRE simultaneously
outputs integrated latent representations {Z°}, spatial factors {3°}s, and interpretable gene
loadings . The outputs enable comprehensive characterizations of tissue structures through
various downstream analyses (Fig. ) These include the identification of spatial trajectories
and major spatial regions using {Z*®}; the discovery of detailed tissue architectures, spatial
distributions of cell types, and the organization of biological processes using {3°},; and the
detection of spatial variable genes, the identification of gene modules, along with pathway

enrichment analysis using p. Details are included in the Methods section.

INSPIRE offers superior accuracy and interpretability for the inte-
grative analysis of multiple ST datasets.

In this section, we first demonstrate that by integrating adversarial learning with NMF for joint
modeling of multiple ST slices, INSPIRE can achieve superior accuracy in capturing biological
signals across slices. This advantage allows INSPIRE to produce improved results for the
identification of spatial regions, which is critical in ST data analysis. Additionally, we highlight
that INSPIRE can model gene programs that characterize detailed spatial organization patterns
in tissues, enhancing the interpretability of multi-slice integrative analysis.

We applied INSPIRE to a human dorsolateral prefrontal cortex (DLPFC) dataset run on the
Visium platform [40]. This dataset contains four DLPFC tissue slices, indexed 151673-151676,
from a neurotypical adult donor. Researchers have manually annotated six DLPFC layers
(L1-L6) and white matter (WM) for each slice based on cytoarchitecture and gene markers [40].

We first focused on analyzing the spot representations obtained in INSPIRE’s latent space.
In this space, information across slices was effectively integrated, while different cortical layers
were still well separated (Fig. ) Importantly, the spot representations revealed a clear

trajectory from L1 to L6 and WM that is shared among slices. The identified trajectory aligns
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Figure 2: Benchmarking of INSPIRE and state-of-the-art methods based on the human
DLPFC dataset. a. UMAP plots of spot representations from INSPIRE, colored by slice indices,
INSPIRE'’s assigned spatial domain labels, and manual annotations. The PAGA algorithm was applied
to the spot representations for spatial trajectory inference. b. Manual annotations on slices. c, e.
Spatial domain identification results from INSPIRE (c), PASTE, SpiceMix, and Seurat (e). d. UMAP
plots of spot representations from SpiceMix, PRECAST and Seurat, colored by slice indices and
manual annotations. f. ASW and ARI scores of the benchmarked methods. g. Factor diversity and
factor coherence scores of the benchmarked methods. h. Spatial distributions of factors 12, 18, 20
and 17 identified by INSPIRE on slice 151673. i. Enrichment or depletion of different spatial factors
in cortical layers. j, k. We identified marker genes for four cell types using a scRNA-seq atlas (j), and
visualized the rank distribution of them in different spatial factors (k). 1. Spatial factor-specific genes
identified by INSPIRE. m. Expression levels of the factor-specific genes among cell types.
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163 with corticogenesis, during which cortical neurons are born in a successive order from outer to
16« inner layers [41], showing INSPIRE’s ability to distill meaningful biological variation among
s slices. The effective preservation of biological signals in the latent space enables INSPIRE to
166 reliably identify spatial regions in tissues. Using spot representations, INSPIRE effectively
167 recovered the layer structures among all DLPFC slices (Fig. ) This result shows a consistent
s pattern compared to manual annotation, indicating INSPIRE’s high reliability in spatial domain
160 identification (Fig. [2b, c).

170 For a quantitative evaluation of INSPIRE’s spot representation and spatial domain identifi-
i cation, we used the manual annotations as ground truth and adopted three metrics: average
12 silhouette width (ASW), adjusted rand index (ARI), and normalized mutual information (NMI).
13 ASW measures the conservation of different annotated layers in spot representations, while
7a ARI and NMI assess the accuracy of spatial domain identification by comparing it to the
175 manual annotations. Higher scores on these metrics indicate better performance. To benchmark
e INSPIRE against existing tools, we compared it to representative state-of-the-art methods
7 applicable for producing spot representations or identifying spatial domains in this analysis,
s including Seurat [42], LIGER [22], SpiceMix [27], NSFH [28], PRECAST [35], and PASTE [43].
1o INSPIRE achieved superior performance compared to all the other methods, reflected by the
180 highest scores for all three metrics (Fig. [2f and Supplementary Fig. . In contrast, scRNA-seq
11 data integration methods Seurat and LIGER showed less satisfactory results across all three
152 scores due to their lack of consideration for spatial information (Fig. , f and Supplementary
1w Fig. [3). Two spatially-informed data integration methods, PASTE and PRECAST, had better
18« performance compared to Seurat and LIGER, illustrating the importance of spatial coordinate
155 modeling. However, PASTE could not provide spot representations across slices, and its spatial
185 domain identification results were inconsistent across slices (Fig. [2e). PRECAST incorrectly
17 mixed spots from layers .4 and L5, and showed limited ability to preserve the continuous
s trajectory among cortical layers (Fig. ) SpiceMix and NSFH are two spatially-aware
189 NMF-based methods for ST data analysis, designed to handle one ST slice at a time. We
1o manually concatenated the four slices to form one ST slice to apply these methods. Both
11 methods successfully uncovered the spatial trajectory among layers, indicating their ability
12 to capture biological signals (Fig. and Supplementary Fig. . However, compared to

13 INSPIRE, they both showed less satisfactory performance across all three metrics, suggesting
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their limited ability to leverage information across slices for achieving improved results (Fig.
, Supplementary Figs. [2[ and .

So far, we have demonstrated the superior performance of INSPIRE in learning spot
representations. We note that the gained accuracy in the latent space is contributed by the
NMF component in INSPIRE. For illustration, we manually removed the NMF component
from INSPIRE, and denoted this version as “INSPIRE (w/o NMF)”. Compared to INSPIRE
(w/o NMF), INSPIRE’s spot representation consistently showed higher scores for all three
metrics ASW, ARI, and NMI (Supplementary Fig. |4)). This demonstrates the effectiveness of
INSPIRE’s integration of the shared latent space with the NMF model.

Next, we focused on analyzing the spatial factors and the associated gene loading in the
NMF across slices from INSPIRE. To quantitatively evaluate the quality of spatial factors, we
employed two metrics: factor diversity and factor coherence [44]. Factor diversity measures the
percentage of unique genes associated with each factor, with a higher diversity score indicating
more varied factors. Factor coherence evaluates the interpretability of factors by assessing
the co-expression of genes associated with the same factor across spots. A higher coherence
score indicates better interpretability of spatial factors. Using these two metrics, we compared
the performance of INSPIRE to NMF-based methods SpiceMix and NSFH. As shown by the
highest scores for both metrics, INSPIRE achieved superior factor quality compared to other
methods (Fig. Pg).

Besides quantitative evaluation, we also visualized INSPIRE’s spatial factors to illustrate
their ability to decipher detailed spatial organization patterns among slices. For instance,
three factors (factors 18, 20, and 17) showed clear enrichment in cortical layers L2, L5, and
L6, respectively (Fig. 2h, i). By exploring their gene loadings from INSPIRE, we found their
correspondence to excitatory neuronal subtypes specific to L2, L5, and L6, respectively. To be
specific, we identified marker genes for these neuronal subtypes using an external scRNA-seq
atlas (Fig. ) These marker genes showed top rankings in the gene loadings of these factors
(Fig. ; the Methods section), confirming the biological meanings of the factors. Additionally,
with the interpretable gene loadings, INSPIRE is able to unveil variable genes that are associated
with the spatial factors, offering the biological insights. For example, genes specific to the
three factors were identified (Fig. 2I; the Methods section) and their reliability was validated
(Fig. ) Unlike INSPIRE, which uncovered neuronal subtypes in detailed cortical layers,
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SpiceMix only captured broad layer structures with its factors (Supplementary Figs. [5| and
@. For example, its factor 14 described a mixture of multiple layers, including L4, L5, and
L6. Consistent with its relatively low factor quality scores, NSFH’s factors did not present
clear spatial structures in the tissue (Supplementary Fig. [7)). Notably, beyond cortical layers,
INSPIRE also depicted other detailed spatial structures. For instance, INSPIRE revealed
the spatial distribution of astrocytes, with the gene signature of factor 12 characterizing the
gene expression profile of astrocytes (Fig. 2j-m). This demonstrated that INSPIRE identified
the spatial organization in the tissue that is not covered by manual layer annotation, further
highlighting INSPIRE’s ability to decipher fine-grained and interpretable spatial structures

using spatial factors and gene loadings.

Precise stitching of multiple sagittal and coronal mouse brain slices
with partially shared spatial structures.

In this section, we evaluate INSPIRE’s performance in a more challenging scenario compared to
our previous benchmarking study: integrating multiple slices from different samples, where the
spatial structures only partially overlap. This situation presents a unique challenge in learning
spot representations and spatial factors, as it requires methods to adaptively identify and align
shared biological variations among the slices, while preserving signals unique to each slice and
accounting for batch effects.

To explore the complex architecture of the brain, 10x Genomics created Visum slices in
both sagittal and coronal planes. Due to the size restriction on the captured area, the sagittal
plane was further dissected into two sections, each profiled in an individual ST slice. In total,
there are three ST brain slices: the sagittal anterior [30], sagittal posterior [31], and coronal
slices [32]. Brain structures captured in these ST slices are only partially shared. For instance,
while all the three slices contain the isocortex, the main olfactory bulb is unique to the sagittal
anterior slice, and the cerebellum is unique to the sagittal posterior slice. We used INSPIRE to
jointly model the three slices, merging data collected from distinct views of the brain.

When applied to this task, INSPIRE effectively depicted the mouse brain architecture.
After INSPIRE’s integration, the representations of spatial spots were correctly aligned across
the three slices in the latent space (Fig. ) By clustering the spot representations, INSPIRE

was able to partition the mouse brain into 36 distinct and well-organized spatial regions (Fig.
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Figure 3: Analysis of multiple mouse brain ST slices with only partially shared spatial
tissue organizations. INSPIRE integrated sagittal anterior, sagittal posterior and coronal sections
of mouse brains. a. Spatial clusters visualized on the three ST slices. b. UMAP plots of spot
representations from INSPIRE, colored by slice indices and discriminator activities. INSPIRE’s
discriminators were active on the spots describing the shared spatial structures across slice, while they
were inactive on spots related to the slice-unique structures. Thereby, they adaptively guided INSPIRE
to align shared variations among slices, while preserving slice-unique signals. c. Spatial regions 3 and
18 from INSPIRE characterized the cerebellum. Spatial regions 2, 6, 7, 8, 25 and 31 characterized
layers in the isocortex. d. UMAP plots of spot representations from SpiceMix and PRECAST, and
visualizations of their spatial clusters in the isocortex. e, f. Spatial distributions of factors 1, 19 and
39 identified by INSPIRE (e). Based on the learned gene signatures (f), INSPIRE identified spatially
variable genes associated with the three factors respectively (e). g, h. We identified marker genes of
CA1, CA2/3 and DG using a scRNA-seq atlas (h), and visualized the rank distribution of them in
gene loadings of the three factors (g). i, j. Spatial distributions (j) and gene signatures (j) of factors
5, 17 and 25 respectively. k. Top spatially variable genes associated with each of the three factors
identified by INSPIRE. i. ISH images of genes Grm4, Ppp1r17 and Kit from Allen Brain Atlas.
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3a). Among these clusters, six layer-structured spatial domains with labels 2, 6, 7, 8, 25,
and 31 together formed the isocortex region shared across the three brain slices (Fig. , c).
Importantly, INSPIRE also successfully preserved slice-unique tissue structures such as the
cerebellum, characterized by spatial regions 3 and 18 in the sagittal posterior slice, and the
main olfactory bulb, characterized by spatial regions 20 and 27 in the sagittal anterior slice
(Fig. , c). In contrast, SpiceMix, NSFH, and PRECAST, which performed relatively well
in the human DLPFC-based benchmarking study, produced results that were confounded by
strong batch effects and intrinsic differences among the slices (Fig. and Supplementary
Fig. , highlighting their limited applicability in creating a comprehensive tissue ST atlas
through the integration of slices with partial overlap. For instance, none of these methods
successfully described the shared cortical layers among the multiple mouse brain slices (Fig.
, Supplementary Figs. |§|, and .

In this example, we also confirmed that INSPIRE’s designed discriminators (the Methods
section) indeed adaptively distinguished between shared biological signals among slices and
slice-unique signals, facilitating INSPIRE’s adaptive data integration. In the latent space,
discriminators were active for spot populations shared among slices, such as spots in the
isocortex (Fig. , c), encouraging their alignment across slices. Conversely, discriminators
were found inactive for slice-specific spot populations, such as spots in the cerebellum (Fig. ,
c), helping preserve their identities.

Next, we investigated the spatial factors inferred by INSPIRE. Each of them provided a
unique and detailed description of the spatial organization in the brain (Supplementary Fig.
. For instance, the spatial distributions of different hippocampal neuron types in the brain,
which are concentrated mainly in the curve-shaped CA1, CA2/CA3, and DG subregions of
the hippocampus, were depicted by spatial factors 1, 19, and 39. This observation aligns well
with the reference from the Allen Reference Atlas — Mouse Brain [45] (Fig. [3e, Supplementary
Figs. , . The gene loadings for spatial factors 1, 19, and 39 also corresponded with marker
genes for these hippocampal neuron types identified in an external scRNA-seq atlas [46] (Fig.
). Using these factors, we were able to identify specific regional markers, such as C'1¢l2 and
Fam163b for CA1; Cpne7 and Npy2r for CA2/CA3; and Pou3f1 and Fibedl for DG (Fig. ,
f). Furthermore, we showed that INSPIRE excels at capturing detailed spatial organization

unique to individual sections by spatial factors. One example is that, non-negative weights
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(proportions) of spatial factors 15, 17, and 25 on spots revealed spatial distributions of neurons
specific to the molecular layer, the Purkinje layer, and the granular layer in the cerebellum,
respectively. Using the associated gene signatures, spatially variable genes specific to each of
these fine-grained layers were identified, such as Grmy4, Adcyl for the granular layer; PppIr17,
Calb! for the Purkinje layer; and Kit, Epha8 for the molecular layer (Fig. [3, k). The spatial
specificity of these genes was confirmed by in situ hybridization (ISH) data from the Allen
Brain Atlas (Fig. [l), providing additional support for the high quality and interpretability of
INSPIRE’s results.

Unlike INSPIRE, both SpiceMix and NSFH produced results that were less satisfactory
due to the confounding of their inferred spatial factors by strong batch effects across sections
(Supplementary Figs. and . Additionally, NSFH showed limited capability in characteriz-
ing detailed spatial structures, as evidenced by the lack of clear spatial patterns in its learned
factors (Supplementary Fig. . This challenging task demonstrates the superior performance
and broad applicability of INSPIRE for integrating ST slices with batch effects and a very low

degree of spatial overlap, outperforming all other tools.

INSPIRE integrates ST data from different ST technologies, facilitat-
ing multiple downstream analyses.

Different ST technologies and platforms produce data with varying spatial resolutions and
sequencing depths [3, 4]. In this section, we demonstrate INSPIRE’s performance in integrating
data from different ST technologies, leveraging the strengths of each technology to enhance
biological insights.

We first collected mouse brain ST datasets from Slide-seq V2 [7] and MERFISH [47]. The
Slide-seq V2 dataset contains expression measurements of over 20,000 genes, with a near-cellular
spatial resolution of 10 pm, where each barcoded bead typically captures one to two cells. In
contrast, the MERFISH dataset measures gene expression levels in individual cells but covers
only 1,122 genes. Before integration, we applied the standard Scanpy workflow [48] to each of
these datasets. The Slide-seq V2 data failed to recover known layer structure in the isocortex
(Fig. ). Conversely, the MERFISH data successfully revealed this structure, indicating its
higher data quality for annotating spatial regions (Supplementary Fig. [18]). Aligning these

two datasets helps to combine the better spatial organization characterization from MERFISH
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Figure 4: Integrative analyses of data from different ST technologies to enhance biological
insights. a. Spatial domain identification from the analysis of Slide-seq V2 data alone. b. Cell
representations aligned between the MERFISH and Slide-seq V2 datasets using SpiceMix, PRECAST,
INSPIRE, and spatial domain identification result from INSPIRE. c. Spatial distributions of INSPIRE’s
factors 26 and 33. d. Expressions of genes Semaba, Plzna2 among INSPIRE’s identified spatial
regions 8, 14 and 15. e. Signaling direction from ligand Sema6a to receptor Plzna2 across INSPIRE’s
annotated regions inferred by the COMMOT method. f. Cell representations aligned between the
seqFISH and Stereo-seq embryo datasets using SpiceMix, PRECAST, INSPIRE, and spatial domain
identification result from INSPIRE. g, h. Significant gene ontology terms and spatial distributions
of INSPIRE’s factors 8 (g) and 27 (h).
and imputed their expressions from the Stereo-seq dataset to show INSPIRE’s gene imputation

We manually held out genes from the seqFISH dataset

capability. We visualized the expressions of Ttn, Siz3 and Foxal measured by seqFISH (top panel),
and compared them with the imputed expression levels (bottom panel). j. Differentially expressed
gene analysis between the ventral and dorsal sides of the developing gut tube in the seqFISH dataset.
Top differentially expressed genes with imputed expression levels from INSPIRE are annotated in
blue, and top genes with expression levels quantified by seqFISH are annotated in black. k. Tbx3
expression levels measured by seqFISH, and Id1 expression levels imputed by INSPIRE.
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with the transcriptome-wide measurement from Slide-seq V2. However, prior to integration,
the two datasets showed strong discrepancies, making their integration a challenging task
(Supplementary Fig. [19)).

Despite the challenge, INSPIRE effectively eliminated confounding technical noises in its
cell representations, enabling the identification of spatial regions consistent across the two
datasets (Fig. ) For example, it identified three different hippocampal regions (clusters 9,
16, and 23), and three broad cortical layers (clusters 2, 14 and 15). INSPIRE’s spatial factors
revealed additional spatial structures at a finer granularity. Specifically, spatial factors 11, 15,
26, 27, 29, and 33 delineated six highly detailed cortical layers in both datasets, unaffected
by the strong technical effects (Fig. and Supplementary Fig. . A notable achievement
was INSPIRE’s ability to call out the hidden cortical layer structure within the Slide-seq V2
data by leveraging information from the MERFISH data (Fig. —c). To demonstrate how this
facilitates downstream biological analyses, we utilized the COMMOT method [16] to screen
for cell-cell communications among INSPIRE’s identified cortical layers and nearby regions in
the Slide-seq V2 data. Such analysis revealed interactions that were undetectable using the
MERFISH data alone, due to its limited number of profiled genes. For example, MERFISH did
not capture gene Plrna2. However, the integrative analysis enabled COMMOT to identify a
signaling direction from ligand Semab6a to receptor Plxna2 cross INSPIRE’s annotated regions
(Fig. [4d, e). Among them, Sema6a was enriched in fiber tracts (cluster 8), while Plzna2
was highly expressed in the inner cortical layer (cluster 14) with decreasing expression in the
adjacent cortical layer (cluster 15). This Sema6a-Plxna2 interaction suggests potential cell
migration and neuronal connectivity around the inner cortical layer area of the brain [49].

As a comparison, other methods including SpiceMix, NSFH and PRECAST performed
less satisfactorily in this challenging task. Their results including representation of cells,
identification of spatial domains and/or spatial factors were still severely confounded by the
unwanted technical effects (Fig. , Supplementary Figs. , , and . Additionally,
SpiceMix’s factors did not show clear spatial distributions in any dataset, lacking the ability to
uncover spatial organization patterns in this analysis (Supplementary Fig. .

Next, we collected two mouse whole-embryo slices generated by seqFISH [33] and Stereo-seq
[8] respectively, and applied INSPIRE to jointly analyze them. Similar to previous cross-

technology data example, these datasets exhibited clear discrepancies due to strong technical
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effects prior to integration (Supplementary Fig. . Nevertheless, INSPIRE successfully aligned
cell embeddings between the two datasets after data integration (Fig. |4f). This alignment
facilitated the detection of 16 well-organized and biologically meaningful spatial domains
consistent between the two mouse embryos (Fig. |5f). For instance, cluster 1 corresponded to
developing hearts, while cluster 2 described the midbrains in both embryo datasets. Additionally,
INSPIRE’s spatial factors allowed for more detailed spatial characterization of the embryos
(Supplementary Fig. . For example, spatial factors 6 and 8 accurately delineated subregions
within the embryonic hearts, including the atria and ventricles (Fig. and Supplementary
Fig. . Spatial factor 27 was ubiquitously distributed in both embryos. Through gene
ontology (GO) analysis of genes related to factor 27, we found it depicted meaningful biological
processes such as angiogenesis, vasculature development, and circulatory system processes in
both datasets (Fig. [dh).

Through this example, we show that INSPIRE’s effective data integrative analysis (Sup-
plementary Fig. enables accurate information transfer across datasets, facilitating deeper
biological understanding. To validate this, we manually held out six genes from the seqFISH
dataset, which includes only 351 genes in total. These held-out genes included cardiomyocyte
markers Titn and Popdc2 [50} 51], brain markers Siz3 and Lhz2 [52], 53], and gut endoderm
markers Fozal and Cldn4 [54, 55]. Using INSPIRE, we imputed spatially-resolved expression
levels of these genes from the Stereo-seq dataset. The imputed gene expressions showed consis-
tent patterns with the measured expression levels, highlighting INSPIRE’s effective integrative
analysis even with a limited number of genes (Fig. and Supplementary Fig. . After
validating INSPIRE’s gene imputation capability, we extended this approach to impute all
genes from the Stereo-seq dataset for cells in the seqFISH dataset, increasing the number of
genes in the seqFISH dataset from 351 to over 20,000. This comprehensive gene imputation
enabled a detailed exploration of gene expression differences between the dorsal and ventral
parts of the developing gut tube, which were clearly separated only in the seqFISH dataset
(Fig. [4j). Based on t-test results, the top differentially expressed genes on the dorsal side
include Smoc2, Tbx1, Cdh2, Chrd, and Foxdl, while the top genes enriched on the ventral side
include Tbz3, Id1, Isl1, DIk1, Pmp22, Nkxz2-3, and Gata3 (Fig. |4j). Dorsal-ventral patterning
of the gut tube is essential for the separation of the dorsal esophagus and the ventral trachea in

mouse embryos [50, 57]. Consistent with a previous study of mouse embryo [58], genes known
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ss  to be upregulated in the esophagus, such as Foxd1, were detected to be highly expressed on the
;9 dorsal side of the gut tube. Similarly, genes upregulated in the trachea, including Tbhz3, Id1,
0 and Isl1, were identified as enriched on the ventral side. This supports the reliability of our
;1 analysis of dorsal-ventral differential gene expressions. Notably, among the identified genes,
w2  the expression levels of Id1, Pmp22, and Fozdl were imputed using INSPIRE (Fig. [4]j, k),
;3 underscoring INSPIRE’s ability to facilitate biological discoveries.

384 To compare the performance of INSPIRE to other methods, we also applied SpiceMix,
s NSFH, and PRECAST to this cross-technology data analysis. However, consistent with the
;6 results from previous cross-technology data example, all these methods had difficulties to
;7 account for strong unwanted discrepancies between datasets caused by technical effects, leading
% to less satisfactory integrative analyses (Fig. [4f, Supplementary Figs. [27] [28] and
w0 [32)). The comparison between INSPIRE and these methods further demonstrated the superior

w0 performance and wide applicability of the INSPIRE method.

. INSPIRE creates a comprehensive mouse organogenesis atlas, en-
w2 abling spatiotemporal analysis of embryonic development.

33 Understanding how a complex organism develops over time and space is a fundamental
s problem in developmental biology. Recently, mouse whole-embryo slices were collected at
s eight developmental stages, spanning from embryonic day 9.5 (E9.5) to day 16.5 (E16.5) [§].
w6 1o investigate the spatiotemporal dynamics of organogenesis, we applied INSPIRE to jointly
57 analyze this collection of ST slices across different developmental time points.

308 These eight ST slices were profiled using high-resolution technology Stereo-seq, with each
39 slice containing numerous spatial spots measuring 25 pym in diameter. For example, the ST
wo slices sampled at E14.5, E15.5, and E16.5 each included over 100,000 spatial spots. In total,
w1 the eight whole-embryo slices encompass more than half a million spatial spots. Analyzing this
w2 spatiotemporal dataset presents new challenges for computational methods: it requires not
w03 only precise alignment of eight complex slices across various developmental stages, but also
ss demands high efficiency and scalability to manage over half a millions spatial spots.

405 INSPIRE is scalable to handle this challenging task, and completed the analysis in 80
ws minutes. It successfully aligned the eight ST slices in its latent space, accommodating the

w7 extreme large number of spatial spots and varying embryo sizes (Fig. ) This alignment
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Figure 5: Construction of the spatiotemporal mouse organogenesis atlas by integrating
whole-embryo ST slices across various developmental stages. a. UMAP plots of spot repre-
sentations, colored by slice indices and spatial domain labels assigned by INSPIRE. b. Visualization
of the identified spatial domains across slices. c. For each developmental stage, we visualized the
proportions of the embryo occupied by different spatial regions. d, e. Visualization of the liver region
(d) and the expression patterns of liver marker genes (e). f, g. Visualization of a brain region (f)
and the expression pattern of its differentially expressed genes (g). h, i. Spatial distribution of the
factor representing the choroid plexus (h) and its gene signature (i). The gene profile indicates the
expression levels of genes for this factor. The log2-fold change measures the difference between gene
expressions in this factor and other factors. j. GO analysis for the genes specific to the factor in h. k.
Spatial distribution of the factor related to smooth muscle cells and the spatial expression pattern of a
smooth muscle cell marker gene. 1. GO analysis for the genes specific to the factor in k. m. Gene set

enrichment analysis comparing genes related to the factor in k with the marker gene set for smooth
muscle cells.

enabled INSPIRE to identify biologically meaningful spatial regions that consistently localized
across all eight embryonic stages. These regions corresponded to major organs or tissues, such
as heart, liver, lung, and brain (Fig. [fb). Their spatial locations aligned with the known

anatomical structure of the mouse embryo [59]. The identities of these regions were further

validated by analyzing the expression levels of specific marker genes, such as Myl7 for heart,
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sz Afp for liver, Sftpc for lung [8], and Siz3, Lhxz2, Otz2, and PouSf1 for brain [52, [60], across all
ss  developmental time points (Fig. , d, and Supplementary Fig. .

a15 Using the well-annotated spatial regions identified by INSPIRE, we visualized the changes
a6 in proportions of spatial spots covered by the corresponding organs or tissues within embryos
a7 across developmental stages, providing insights into embryo developmental dynamics (Fig. )
ais The liver, initially occupying a very small area at the earliest stage E9.5, rapidly increased its
so  proportion within the embryo as development progressed (Fig. , d, e). In contrast, the heart
a0 was already well-structured at early stages E9.5 and E10.5, with its size remaining relatively
2 stable in subsequent stages (Supplementary Figs. and , consistent with its role as the
a2 first functional organ to form in the embryo [61]. Importantly, this analysis also highlighted
23 organs or tissues that were barely formed at earlier stages but became well developed in later
22 embryonic stages. For example, the shape of the lung became clear after stage E12.5, aligning
w5 with the observed increase in the expression of the lung marker gene after E12.5 (Supplementary
2 Figs. [36]and [38)). This finding is consistent with the fact that although lung buds begin to form
227 during the early embryonic stages from E9.5 to E12.5, the process of branching morphogenesis
ws occurs after £12.5 [62]. Similarly, INSPIRE identified a brain region characterized by the
w9 specific expression of genes Neurod6 and Neurod2, which only became clearly localized in the
a0 forebrain after stage E12.5 (Fig. , f, g). The expressions of these two genes suggest active
a1 neuronal differentiation and development in the forebrain during these stages. These results
sz demonstrate INSPIRE’s capability to deepen the understanding of developmental dynamics
a3 through its effective integrative data analysis.

a3 Using NMF modeling, INSPIRE enabled cross-developmental stage comparisons that went
i35 beyond the resolution of major organs or tissues. Instead of concentrating solely on broader
a6 structures, it identified intricate tissue architectures and cell type distributions through its
w7 spatial factors, allowing for detailed comparisons among embryos at various stages. For instance,
18 two distinct spatial factors emerged in the forebrain region by stage E11.5, gradually forming a
a0 layered structure that became clearly visible by stage E14.5 (Supplementary Fig. . Similarly,
mo three spatial factors captured the evolving structure of the embryonic mouth and jaw, with their
w1 spatial organization becoming increasingly complex by stages E12.5 and E13.5 (Supplementary
e Fig. . Furthermore, analyzing the spatial distributions of INSPIRE’s spatial factors alongside

w3 their gene signatures offered more in-depth biological insights into the developmental dynamics.
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s As an example, we identified a factor annotated as the choroid plexus based on its spatial
ws location in the embryo at E16.5 (Fig. ) GO analysis of its gene profile, as reported by
us INSPIRE, confirmed its involvement in central nervous system and brain development. It also
w7 linked this factor to biological processes like cilium organization and movement, providing
ws insights into its specific functions (Fig. , j)- This factor, along with its associated genes Ttr
ao and Pep4ll, exhibited clear spatial localization after stage E11.5, illustrating its developmental
o trajectory over time. Another example is the identification of a factor with detailed spatial
1 concentrations within the embryos, specifically surrounding many tiny tube-like structures (Fig.
s> |pk). Gene set enrichment analysis revealed its correspondence with smooth muscle cells (Fig.
3 pll, m), showing alignment between its specific gene programs and a set of smooth muscle cell
ss¢ marker genes such as Acta?2 and Myl9 [63]. Given that this spatial factor also colocalized with
5 the expression of Nkz2-3 (Supplementary Fig. , we inferred that it described the nuanced
w6 distributions of gastrointestinal smooth muscle cells [64]. Spatial visualizations indicated that
7 gastrointestinal smooth muscle cells and tracts became clearly presented after stage E12.5,
s uncovering their spatiotemporal dynamics. To summarize, the above results highlight the power
ss0  of INSPIRE to facilitate the study of embryonic development by effectively identifying nuanced
wo differences with biological meanings across developmental stages using spatial factors and the

w1 associated gene profiles.

« INSPIRE enables precise 3D reconstruction of tissues and whole
w3 organisms.

s Recently, there has been a growing number of ST datasets composed of multiple parallel 2D
w5 slices (x-y-axis) along the z-axis within tissues. Each slice captures a 2D spatial transcrip-
w6 tomic landscape, and when these slices are spatially aligned and jointly analyzed, they offer
w7 valuable opportunities to construct a comprehensive 3D view of spatial structures and cell
s type distributions within tissues or organs, deepening our understanding of complex biological
wo systems. Here, we demonstrate INSPIRE’s capability to reliably register adjacent 2D ST slices,
a0 enabling accurate 3D reconstruction of tissues. For a comprehensive illustration, we applied
a INSPIRE for two different scenarios, utilizing slices that vary in scale from tissue regions to
a2 whole organisms.

473 In the first scenario, we highlighted INSPIRE’s enhanced performance in slice registration

21


https://doi.org/10.1101/2024.09.23.614539
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.23.614539; this version posted September 25, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a

b c
Gene signature of factors MERFISH slice Factor Proportion MERFISH slice 1 MERFISH slice 2

Mbp Mature OD %
Pdgfra Immature OD 0.10
Cxcl14 Astrocytes
Selplg Microglia 0.05
Cd24a Ependymal %ﬁ!

o

Fnl Endothelial 0.00 r‘?ﬂ‘

Gad1 Inhibitory neurons ok g
Slc17a6 Excitatory neurons ‘* W

123456 7 8 9101112131415

Factor
d e f
PASTE INSPIRE Pearson’s correlation
MERFISH STARMap PLUS
slice 0.6 s
® Sslicel 0.5 ® Slicel
® Slice2 0.4 © Slice2

INSPIRE
PASTE

Pearson’s correlation Cell-type accuracy Stereo-seq slices
0.8

0.25
0.20 0.6

0.15 0.4
0.10

0.2
0.05

0.00 0.0

INSPIRE
PASTE

INSPIRE
PASTE

Neurodé

High

High

Low Low

Figure 6: 3D reconstruction of tissues and whole organisms by INSPIRE. We utilized
INSPIRE to spatially align two MERFISH slices from the mouse hypothalamic preoptic region (a -
e), two STARmap PLUS slices from the mouse hippocampus region (f, g), and five whole-embryo
slices produced by Stereo-seq (h - j). a. Gene signatures of spatial factors, with each row indicating a
marker gene specific to a cell type. b. UMAP plots of cell representations from INSPIRE, colored
by MERFISH slice indices and the inferred factor proportions among cells. ¢. The MERFISH slices
colored by the proportions of factors. d. The MERFISH slices after PASTE alignment and INSPIRE
alignment, respectively. e. Pearson correlation scores of INSPIRE and PASTE evaluated using the
MERFISH dataset. f. The STARmap PLUS slices after PASTE alignment and INSPIRE alignment,
respectively. g. Pearson correlation and cell-type accuracy scores of INSPIRE and PASTE evaluated
using the STARmap PLUS dataset. h. Visualization of the Stereo-seq whole-embryo slices and UMAP
plot of spot representations, colored by the identified spatial domains across slices. i. Visualization of
liver structure and distribution of Afp expression on the reconstructed 3D model of the embryo. j.
Visualization of the 3D structure of a brain subregion and the distribution of Neurod6é expression on
the reconstructed 3D embryo.
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by using two sets of mouse brain region slices. Specifically, we first tested INSPIRE on a
dataset comprising two adjacent MERFISH slices from the mouse hypothalamic preoptic region
[65]. The application of INSPIRE revealed spatial factors that corresponded distinctly to
different cell types or subtypes within the hypothalamic preoptic region, aiding in accurate
cell-type identification in the brain (Fig. @a, b). Moreover, the two slices displayed consistent
spatial factor distributions both in the UMAP plot and in spatial locations, providing valuable
information for establishing spatial correspondence between slices (Fig. |§]b7 c). Utilizing
this integration result, we identified mutual nearest neighbor (MNN) cells between the two
slices within the integrated embedding, serving as anchor pairs for guiding the registration
process. These anchors enabled the calculation of the optimal rigid transformation, effectively
aligning one slice with the other and achieving precise registration (Fig. @d and Supplementary
Fig. . However, PASTE, a state-of-the-art method for spatial registration, could not
align these two slices as INSPIRE did. To quantitatively compare INSPIRE and PASTE, we
utilized the Pearson correlation metric, which measures the similarity of gene expression levels
between spatially proximal spots from the two slices after spatial registration, with a higher
score indicating better performance. As shown in Fig. [6e, INSPIRE demonstrated superior
registration performance compared to PASTE. We also compared INSPIRE and PASTE on
another dataset, consisting of two STARmap PLUS slices from the mouse hippocampus region
[13]. Consistent with the previous results, INSPIRE achieved precise registration between the
two slices, while PASTE did not (Fig. [0f, Supplementary Figs. [43|and [44)). For the quantitative
evaluation, in addition to the Pearson correlation metric, we evaluated cell-type accuracy score
as the original dataset provided cell type annotations. The cell-type accuracy score measures
the similarity of cell type annotation between spatially proximal spots from the two slices
after spatial registration, with a higher score indicating better spatial alignment performance.
INSPIRE achieved higher scores for both metrics compared to PASTE (Fig. [6g), highlighting
its superior performance in the slice registration task.

In the second scenario, we tested INSPIRE’s ability to register multiple slices at the whole-
organism level. We applied INSPIRE to a Stereo-seq dataset consisting of five adjacent 2D
slices taken along the left-right axis of a mouse embryo at developmental stage F16.5. Spatial
registration and integrative analysis of these slices are crucial for constructing a comprehensive

3D model of the mouse embryo. In this application, INSPIRE effectively and efficiently
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sos integrated 567,381 spatial spots across multiple slices (Supplementary Fig. . Its consistent
sos identification of tissues across the slices, such as heart, liver and brain, further showed the
s reliablity of the integration result (Fig. |§|h) Guided by MNN cells from each pair of adjacent
ss  slices, INSPIRE sequentially aligned all adjacent slices using rigid transformation. The resulting
so0 3D model of mouse embryo successfully reconstructed major organs such as liver and heart,
s0 and characterized 3D expression pattern of their marker genes (Fig. |§|i and Supplementary Fig.
511 . INSPIRE was also able to reconstruct detailed spatial structures such as tissue subregions
s12 for accelerating comprehensive understandings of tissue 3D organizations. For instance, it
si3 described the 3D structures of subregions in the forehead which vary along the left-right axis
st (Fig. [ and Supplementary Fig. [47)).

515 To summarize, the results from these two scenarios illustrate that INSPIRE could be applied
si6 to build 3D architectures of tissues or even the whole organisms with high reliability. This
si7 - capability of INSPIRE makes it a powerful tool for conducting 3D analyses in a wide range of

si8 biological systems, enhancing our understanding beyond traditional 2D analyses.

50 Discussion.

s20 In this paper, we have presented INSPIRE, an effective and versatile tool powered by advanced
s deep learning technologies for integrating and interpreting multiple ST slices from diverse
s sources. The results demonstrate that INSPIRE effectively addresses the challenges posed by the
23 heterogeneity in ST data, such as variations in samples, technologies, and developmental stages.
s2« By combining an adversarial learning mechanism and NMF, INSPIRE not only integrated these
55 diverse datasets, but also deciphered fine-grained spatial tissue architectures through spatial
s26 factors and interpreted their biological meanings based on their associated gene signatures.

527 Although several computational methods have also been developed and have greatly facil-
s itated transcriptomics data analysis, direct application of them did not sufficiently address
s20 challenges in ST data integrative analysis, as shown in our examples. Methods including Seurat
s and LIGER, designed to remove batch effects among scRNA-seq datasets, lack the ability to
s model spatial dependencies among spots or cells in ST data. PASTE and PRECAST, although
sz capable of performing spatially-informed analysis for multiple ST tissue slices, have shown less
s13  satisfactory results in managing heterogeneous unwanted variation across ST datasets. PASTE

s3 is primarily designed for joint analysis of ST slices from biological replicate samples, whereas
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PRECAST relies on Gaussian mixture model shared among slices to correct for unwanted
variations, which can be less powerful when dealing with strong slice-specific effects. Methods
SpiceMix and NSFH use spatially-informed NMF to extract spatial signals from tissue slices,
successfully revealing fine-grained spatial organizations with biological interpretations. However,
they are limited to handling one slice at a time and are not designed for integrative analysis
of ST data. In contrast, INSPIRE addresses all these challenges and offers advantages over
existing methods in ST data integrative analysis by the innovations on its model.

The first major advantage of INSPIRE is its utilization of a tailored adversarial learning
mechanism. The adversarial learning mechanism adaptively detects unwanted variations among
datasets, even when certain slices present their unique biological signals, providing accurate
guidance for neural networks to distill meaningful biological variations across slices in the
shared latent space. Meanwhile, the nonlinearity of neural networks offers great flexibility for
INSPIRE to adjust for heterogeneous unwanted effects originating from diverse sources.

Second, the seamless integration of the adversarial learning mechanism with NMF in
INSPIRE can decipher biological signals across multiple slices into detailed and interpretable
spatial factors, unconfounded by unwanted variations. The capability to learn NMF consistently
among slices is particularly essential to reveal fine-grained spatial structural patterns in multi-
slice integrative analysis. Meanwhile, downstream analyses, including GO analysis and GSEA,
provide interpretation of biological meanings of spatial factors, leading to the discovery of
spatial cell type distributions and biological processes. Additionally, as shown in the DLPFC
example, the learning of spatial factors aids in eliminating redundant signals that are not
related to the inferred gene programs, thus enhancing the discovery of biologically meaningful
spot representations in the latent space and facilitating improved result in analyses including
spatial trajectory inference and spatial domain identification.

Lastly, INSPIRE incorporates GNNs to perform spatially informed analyses. The GNNs
take into account the microenvironments of cells or spatial spots within the tissue, enhancing
the ability of INSPIRE to understand tissue organizations. Furthermore, with the utilization
of lightweight GNNs that allow for mini-batch optimization, INSPIRE is scalable to analyze
large-scale ST datasets, as demonstrated by the construction of mouse organogenesis atlas and
the 3D reconstruction of mouse embryo tasks, each encompassing over half a million spots.

Through a comprehensive benchmarking study, INSPIRE has shown superior performance
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se6 il integrating information across multiple tissue slices, significantly enhancing the characteriza-
ss7 tion of spatial architecture compared to existing methods. We also demonstrated INSPIRE’s
ses effectiveness and wide applicability in a range of challenging applications, including stitching
seo  together tissue slices with only partially overlapping structures, integrating data from different
s ST technologies, aligning slices collected at a series of embryonic developmental stages, and
s reconstructing 3D tissue models. Each of these applications highlighted a distinct advantage
s of INSPIRE: constructing a comprehensive atlas by merging data from different tissue views,
s.3 enabling downstream analyses that leverage the strengths of distinct ST technologies, ad-
s.a vancing the study of developmental dynamics, and deepening our understanding of 3D tissue
575 organization.

576 One potential limitation of INSPIRE, despite its numerous strengths, is its dependence on
sz shared genes across datasets for data integration and interpretation. This reliance might result
s7s  in the exclusion of important gene signals that are unique to specific datasets. Extending this
sto method to incorporate and align non-shared genes among ST datasets could further enhance
ss0  biological analyses.

581 The interpretable and scalable integration of diverse ST datasets across different experimental
se2  designs is invaluable in advancing biological discoveries. As the field of spatial transcriptomics
ss3  continues to grow rapidly, the need for comprehensive integrative analysis of ST datasets will
s« only increase. We expect that INSPIRE, with its exceptional performance, interpretability, and

sss  versatility, will be a powerful addition to the modern life scientist’s ST analysis toolkit.
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Methods

The model of INSPIRE.

INSPIRE offers interpretable and spatially-informed integration of ST data from multiple tissue
slices. Let s =1,2,---, 5 be the index of ST slices. For slice s, we observe gene expression count
matrix Y?® = [yf g] € RMVs*¢ and 2D spatial coordinates of cells or spatial spots P* € RNs*2,
where i = 1,2,--- , N, is the index for cells or spatial spots, and g =1,2,--- G is the index
for genes. Using all the information as input, INSPIRE learns to decipher spatial structures
across all the S slices and infers the associated gene programs.

To integrate both gene expressions and spatial locations across all ST slices, INSPIRE
encodes the gene expression information of all cells or spatial spots into a shared latent space Z,
using a neural network that accounts for spatial dependencies among cells or spots. Specifically,
INSPIRE builds a 2D neighborhood graph for each slice using the spatial location matrix. We
denote the neighborhood graph for slice s as A® = [a;;] € {0, 1}"*N: where a; ; = 1 if cells
or spots ¢ and j are spatial neighbors, and a; ; = 0 otherwise. Using both gene expressions
{Y*}s—12.. s and spatial graphs {A°},_12.. g, the latent representations of cells or spatial
spots are generated by:

73, = log (é/—gM + 1) , (1)

S

7° = f,(X5, A%), (2)

where we perform log-normalization on count matrices {Y®},_1o... ¢ for algorithm stability.
In the data normalization, we set M = 10* for sequencing-based ST data, and set M = 10?
for imaging-based ST data. The log-normalized data X* = [25 ] € RV are then encoded
to latent representations Z* € RY*¥ through a graph neural network fz(-) with parameters
shared among all slices, where P is the dimensionality of the shared latent space. For slice s,
the latent representation Z° embeds information from both gene expressions Y* and spatial
neighbors encoded in graph A®, describing spatially-informed biological variations in slice s.
Importantly, in addition to capturing spatially-aware biological signals in each slice, the shared
latent space is designed for achieving the integration across all input slices. For harmonizing

latent representations Z', Z2,--- ,Z° from different ST slices, INSPIRE adopts a tailored

adversarial mechanism in latent space Z. Let z{ € R” be the latent representation of cell
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15 or spot ¢ in slice s. An auxiliary discriminator network, D*(:) : Z — (0,1), is deployed
o6 to identify where the poor mixing between representations {z{};—1 .. n, from slice s and
or {z"}ic19. N, from slice s + 1 occurs. Encoder network fz(-) is trained to compete against
e1s  discriminator D*(-), aiming to mix {z;},—1 2. n, from slice s and {Z§+1}i:1,2,---,Ns+1 from slice
610 s+ 1. Through this competition, discriminator D?*(-) provides feedback to improve encoder

o0 fz(-) until representations {z$}i—1o.. v, and {z5™' }iz1 0. n,,, from slices s and s + 1 are well

Nst1
ez integrated. INSPIRE introduces S — 1 discriminators {D*(-)}i=12... g—1 for aligning all the S
62 tissue slices. Guided by the S — 1 discriminators, encoder fz(-) learns to generate integrated
23 representations of cells or spatial spots across all S tissue slices.

624 Based on the shared latent space, INSPIRE then achieves a harmonized non-negative matrix
625 factorization (NMF) for gene expressions across all input slices, that are not confounded by
26 complex unwanted variations. The hidden spatial factors identified by this integrated NMF
s27 across slices provide a unified characterization of fine-grained tissue structures across all slices.
s Meanwhile, the gene loading matrix describes gene modules associated with each spatial factor,
20 interpreting the biological meanings of the detailed spatial organization patterns discovered by
30 the spatial factors. We assume there are K hidden spatial factors in input slices. Each spatial
e factor characterizes a fine-grained spatial structure in the tissue. Let B; = 57, 5;5, - , ] k]
sz denote the set of non-negative weights among the K hidden spatial factors for cell or spot

633 ¢ in slice s, with 7, > 0 and Z,If:l Bir = 1. INSPIRE generates 3; from integrated latent

e3¢« representation z of cells or spots across slices:

o35 Bi = [s(z}), (3)

e3s where network fz(-) contains a simple linear layer, followed by a softmax function. Notably, in
e37 the shared latent space, representations {Z*}s_; .. ¢ are spatially-aware and free of unwanted
e variations. Hence, generated from Z°, the obtained 3° = [35;] € RY** for different slices
e3 are also spatially-informed and well integrated across ST slices. The integrated {8°}s=12... s
s together with shared gene loading matrix p = [u,] € RE*C across slices form a harmonized
e NMF model for all input slices. In the model, {3°p}s—1.. s focus on capturing shared
s2 biological signal in all slices and further decomposing it into a set of K interpretable spatial
a3 factors. To account for confounding factors including batch effects and technical effects
e across ST slices, INSPIRE also introduces slice- and gene-specific effects 7, € R to the

s integrated NMF model. Combining non-negative weights for spatial factors in cells or spots
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o6 {3°}s=12...5, non-negative gene loadings p shared across slices, and slice- and gene-specific
er effects {¥} im0, = [15,75, -+ 78] € R for modeling unwanted variations, INSPIRE
sas Teconstructs the observed gene expression counts using the following integrated NMF-based

s0 model across all ST slices:

650 y; , ~ Poisson(lfu; ), (4)
K

651 uf,g = exXp [log (Z ﬁf,k/“f,g) + ’yg , (5)
k=1

2 where [ is the observed total transcript count in cell or spot ¢ from slice s, gene loadings
653 satisfy ppg > 0 and 25:1 e = 1. For gene loadings p and slice- and gene-specific effects
65+ {Y°}s=12...5, INSPIRE models them as learnable parameters. After training, INSPIRE’s
o5 learned gy, = [fg1, fhas - tec] € RY reveals the gene signature corresponding to hidden
esc spatial factor k, where a high value of yy, , indicates a greater impact of gene g on spatial factor
ss7 k. Through learning and analyzing gene loadings p, INSPIRE is able to find gene programs that
s are associated with different hidden spatial factors. Meanwhile, in the integrated NMF across
e slices, non-negative weights {37 }.=12...s, 87y = {8 }i=12, v, With spatial coordinates of
0 cells or spots describe a spatial enrichment pattern of spatial factor k£ across all the S ST
es1 slices. Using {8°}s-12,...5, INSPIRE is capable of depicting fine-grained spatial organization
2 structures across all ST slices, without being confounded by unwanted variations.

663 INSPIRE is a unified method that incorporates the adversarial learning mechanism for data
sca integration with the NMF model for jointly depicting interpretable spatial structures in multiple

es tissue slices. We propose to train INSPIRE under the following optimization framework:

S—1
666 {le}lgi,llli o {DI,DI{I.?CDSA} ; Ll tegration T LNMF + AERAE + AGeometry RGeometry (6)
667
668 fntegration = Isntegration (f z, D S) )
660 Lavr = £NMF(fZ;f,B7.U'7'7)7
670 Rag = RAE(fZ);
671 RGeometry = RGeometry (f Z )7

sz where L is the objective function of adversarial learning for integrating data from slice

fntegration
o3 s and slice s + 1; Lnur is the objective function of the joint NMF for reconstructing gene

ea expression counts across all ST slices; Rag and Rgeometry are regularizers to encourage the
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preservation of biological signals across slices in the shared latent space; Aag and Ageometry are
coefficients for the two regularizers respectively, and are set to Aag = 1.0 and Ageometry = 0.02.
We explain each component in optimization problem @ in details in the next sections. The
parameters in INSPIRE include: parameters in network f(-) that encodes latent representations
{Z°}_15,... s; parameters in network f5(-) that generates spatial factors for cells or spots among
slices {3*}s=1.2... s; gene loading matrix p shared across slices; parameters in S—1 discriminators
{D*(-)}s=12... s—1 that assist data integration across slices; as well as slice- and gene-specific
effects v = {¥*}s=12... s that account for unwanted variations. After training, INSPIRE
simultaneously outputs latent representations {Z°},_ o... g, spatial factors {8°}s-12.. s and
gene loadings . The latent representations of cells or spatial spots are utilized for identifying
major spatial domains in tissues and detecting spatial trajectories. Detailed spatial factors
{B’}s=12,... s are used for the discovery of fine-grained tissue sub-regions and spatial distributions
of cell types, providing a characterization of spatial patterns in tissues at a higher resolution.
Gene loading matrix p characterizes gene signatures associated with the detailed spatial
structures discovered by spatial factors. It deciphers the biological meaning of spatial factors
through factor-specific gene program detection and pathway enrichment analysis.
Adversarial learning mechanism for data integration across slices.

The adversarial training between the discriminators and the encoder is formulated as a

min-max optimization problem, mingy,y maxgp: p2.... ps-1 Zf;ll Ttegration (2, D?), contained
in (6)), where
| | N
fuegration = - ; log D*(2) + 1 ; log(1 — D*(z:*1)).

The latent representations are obtained using Eqs. and . Given latent codes {z{}i—12... N,

and {zf+1},~:1727...,Ns+1 generated by fz(-), discriminator D*(:) : Z — (0,1) is trained to

distinguish between {z{},—1 .. n, from slice s and {z;

Y19, N, from slice s + 1. Here,
D#(-) is trained to output a high score (close to one) for representations in slice s, while it
learns to assign a low score (close to zero) for representations in slice s + 1. This is achieved by
with respect to D*(-). Given discriminators {D?*(-)}s=12... s—1, encoder

. s
maxunizing 'CIntegration

fz(+) is trained to mix latent representations across all slices, such that any discriminator

s

.. . . .. . . S—1
cannot distinguish latent codes between slices. This is achieved by minimizing » 27" L7 earation

with respect to fz(-). Through the competition between encoder fz(-) and discriminators

{D*(-)}s=12... 51, the discriminators will guide the improvement of the encoder until the
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06 encoder generates integrated latent representations for cells or spatial spots across all the S
707 slices.

708 With the above design, Discriminator D?*(-) will guide fz(-) to mix {zf};—1 .. n, from slice
wo s with {z{"'}iZ12.. n.,, from slice s + 1. However, a slice-specific cell or spot population
70 should not be mixed with cells or spots from another slice. To preserve slice-specific cell
1 populations from being incorrectly mixed with other cells, we follow our previous work [34]
712 to adopt a thresholding for discriminator scores. Consider a cell population that is unique
73 in slice s. Discriminator D*(-) can easily recognize cells in this population as cells from
ne slice s, and assign extremely high scores to them. By similar reasoning, D*(-) will assign
75 extremely low scores to slice s + 1-unique cell populations. Therefore, as slice-unique cell
76 populations are prone to be assigned with extreme discriminator scores, we set boundaries
77 for discriminator scores to make discriminators inactive on them. Specifically, the outputs
ns  of standard discriminators are transformed into (0, 1) through the sigmoid function. For any
70 applicable latent code z, D*(z) = sigmoid(d®(z)) = 1/(1 +exp(—d®(z))), where d*(z) € R is the
720 logit value of discriminator score D*(z). We bound discriminator score D*(z) by thresholding

=1 its logit d*(z) to a reasonable range [—m, m|, where m is set to 50.0:

722 D*(z) = sigmoid(clamp(d®(z))),

= where clamp(-) = max(min(-,m), —m), m > 0. By clamping d*(z), D*(z) becomes a constant
7 when d*(z) < —m or d*(z) > m, providing zero gradients for updating parameters in encoder
75 network fz(-). With this design, the slice-unique cell populations with extreme d*(z) scores
726 will be left in the inactive region of discriminators. Consequently, discriminators will not
27 force encoder fz(-) to mix slice-unique cell populations with other cells, avoiding incorrect
2 integration. Meanwhile, D*(z) remains the same as D*(z) when D*(z) € [—m, m], effectively
70 guiding encoder fz(-) to align cells that are likely to belong to the shared cell populations among
750 slices for data integration. For clarity, we still use the notation D*(-) to denote discriminator
m  D*(-) with the score thresholding design hereinafter.

722 Joint NMF for reconstructing gene expressions in multiple ST slices.

733 The major objective function in optimization problem @ of INSPIRE, Lywmr, corresponds
74 to the reconstruction of gene expression counts in all S input slices through a joint NMF model.
75 INSPIRE uses encoder fz(-) to generate integrated data {Z°};—1 ... s across slices, guided by
6 discriminators {D*(+)}s—1,2,.. s—1. By Eq. (3)), it then leverages network fs(-) to decompose the
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77 signal captured in {Z°},—; .. s into a set of K interpretable spatial factors {8};_,, . ¢ that
738 characterize spatial structures of tissues at a fine-grained level. Combining the obtained spatial
730 factors with addtional parameters, including gene loadings p as well as slice- and gene-specific
0 effects v, INSPIRE reconstructs the gene expression counts from all inputs slices through
1 an integrated NMF-based model described by Egs. and . Based on this model, the
2 corresponding objective function is given by
743 Lnvr = — Z ZZ ylglog ju fg>_lf fg}'

N i=1 g=1
7e By minimizing Lxyr with respect to fz(+), fs(-), n and v, INSPIRE deciphers interpretable
75 hidden spatial factors that are unified across slices with {3°p}. Here, {3°}s-12.... s characterizes
6 detailed spatial organizations in tissues, while g describes gene signatures associated with the
77 tissue organization patterns identified by spatial factors for interpretability.
ns Regularization for encouraging the preservation of biological variations across
79 slices.
750 INSPIRE uses two regularizers, Rag and Rgeometry, t0 help preserve biological signals across

751 slices in the shared latent space. We design regularizer Rag as

S 1 N
752 RAE = ZFZHX?_]E;{(Z?:‘SN?’
s=1 "% i=1

53 where slice-specific neural network f%(-,s) is introduced to reconstruct log-normalized gene
75 expressions in cells or spots x; based on latent codes z{ and slice label s. Encoder fz(-)
s and network f3%(-,s) together form an auto-encoder structure between log-normalized data
56 {X°}sz12.. s and latent codes {Z*}s—1 ... 5. In regularizer Rag, slice-specific network f%(-,s)
77 is designed to recover gene expressions from the latent space while accounting for slice-
s specific effects using slice labels. Therefore, encoder fz(+) is encouraged to distill all biological
750 information into the latent space without slice-specific effects. To preserve a good geometric
70 structure in the latent space for revealing biological signals, e.g., continued developmental

761 trajectories of cells, we propose regularizer Rgeometry:

S XN
762 RGeometry - Z ﬁ Z ||C§:,z‘ - ci,z‘”%:
s=1 "% i=1
i < X7, Xj >
i =T Tl
. = z;, 75 >
74 Caj =l = e
o 12521252
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S

s where for cells or spots ¢ and j from slice s, ¢} ; ; is the cosine similarity between their log-

S

w mnormalized gene expressions x; and xj, c;,; is the cosine similarity between their latent

w7 representations zj and z%; ¢ = [¢}; ;] € RY*M and ¢f = [¢5; ;] € RV-*"s are corresponding
s cosine similarity matrices; c; ; and c; ; are the i-th rows of c; and ¢ respectively. In regularizer
769 RGeometry; Cells or spots with high similarities in gene expressions are encouraged to be close in
70 the latent space, while cells or spots with dissimilar gene expressions are encouraged to remain

m  distinct in the latent space. Hence, by using RGeometry, INSPIRE encourages fz(-) to preserve

72 biological meaningful structures in the shared latent space.

= Selection of informative genes.

772 When all input ST slices provide the whole transcriptome profiling, INSPIRE selects the
75 informative genes and uses them as features. Following the Scanpy pipeline [48], INSPIRE
76 selects the top M highly variable genes for each slice. It then takes the intersection of these
77z highly variable genes across all ST slices to ensure that the features of cells or spatial spots are
s shared across all slices. By default, we set M = 6,000. If the number of selected features is
779 less than 2,000 with M = 6,000, a larger value of M can be adopted. When some ST slices to
70 be analyzed are based on ST technologies that measure the expressions of a limited number of
71 genes, such as MERFISH, INSPIRE uses all the shared genes across the input slices for the

72 integrative analysis.

s INetwork structures.

7 Encoder fz(-) contains a graph neural network (GNN) layer and a dense layer. The GNN
785 layer takes log-normalized gene expressions x; and spatial graph A® as input. It outputs
s H12-dimensional hidden vectors. Then the dense layer in fz(-) maps the 512-dimensional hidden
77 vectors to the P-dimensional latent representations z; of cells or spatial spots. We set P = 32
78 throughout all analyses. Inspired by previous works [15] 66, [67], INSPIRE provides two options

750 for the GNN layer: the graph attention layer and the lightweight graph-convolutional layer.
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790 The graph attention layer is formulated as:

791 hf =0 (Z ai,ijf) )

©

JEN;
L ex(el,)
792 Oéi,j = 3 s
> jren; exp(e] ;1)
793 e ;= sigmoid(v] Wx$ + V;WX?),

e where hf represents the output of the graph attention layer; N; = {j|aj; = 1} represents the
795 neighbor set of cell or spot 7 encoded in spatial graph A®; W, vy and v, are parameters in the
96 graph attention layer; o(+) is the activation function. Based on the graph attention mechanism,
7 parameters vi and vy are used to learn edge weights o ; between neighboring cells or spots,
798 helping to adaptively borrow information from neighboring cells or spots. INSPIRE adopts
90 the graph attention layer in fz(-) when handling the integration task for ST datasets with
soo  moderate numbers of cells or spatial spots. To integrate large atlas-scale ST datasets which
sor contain hundreds of thousands or even millions of cells or spots, INSPIRE uses the lightweight

s> graph-convolutional layer in f7(-), which is formulated as:

803 H' =0 (WXS> s

o X = concat (X*, AX", (A%)2X", -, (A")FX"),

sos where H® represents the output of the lightweight graph-convolutional layer; W denotes the
s parameters; A® = (D*)"1/2A%(D%)~1/2, D* is the diagonal degree matrix of A®; and L is the
sor  number of steps in the concatenation. We set L = 1 by default. The graph attention layer
g8 has the advantage of providing an inference of the edge importance between neighborhood
g0 cells or spots for adaptively aggregating information in microenviroments of cells or spots. By
a0 preparing X® as a preprocessing step, the lightweight graph-convolutional layer enables an
s efficient training with mini-batch samples from X, serving as a scalable approach to account
sz for spatial dependencies in datasets with large numbers of cells or spots.

813 For network fs(-) which produces K-dimensional spatial factors 8; from latent codes z{ of
sua  cells or spatial spots, INSPIRE adopts a one-layer dense network with the softmax activation.
s1s The choice of K depends on the scale of the tissues to be analyzed. For example, INSPIRE set
sie I = 20 for analyzing the cortex region of the brain, while it adopts K = 40 for analyzing the

sz whole-brain slices.
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818 For discriminators { D*(+) }s=12,.. s—1 that guide encoder fz(-) to achieve the data integration,
sio  INSPIRE uses two-layer dense networks. D?*(-) works as a binary classifier to distinguish between
o0 {2°}iz19.. n, from slice s and {z°"'},_1 5. n,,, from slice s. Then, encoder fz(-) competes
1 against D*(-) to integrate {z°};—1 ... n, with {z°"'}, 21 5. n,,,. Here, D*(-) takes latent codes
g2 7 of cells or spots from slices s or s + 1 as input. It first uses a dense layer with an activation
23 function to map z to a 512-dimensional hidden state. It then uses another dense layer to
s produce a score belonging to (0, 1) from the 512-dimensional hidden state.

825 INSPIRE introduces slice-specific network f% (-, s) in its regularizer Rag to help preserve
s26  biological variations across slices in the shared latent space. f%(-, s) takes latent representations
s2 z; and slice label s as inputs. It adopts a graph attention layer or a lightweight graph-
s2s convolutional layer, followed by a dense layer, to recover log-normalized gene expressions x;
20 while accounting for slice-specific effects and spatial dependencies among cells or spatial spots.

g0 The dimensionality of the hidden state in f§(-,s) is set to be 512.

s Model training details.

sz INSPIRE employs Adamax, which is a variant of the Adam algorithm [68], for stochastic
g33  optimization during model training. By default, the number of optimization steps in INSPIRE
g2 is set to 10,000 with learning rate Ir = 0.0005, coefficients for computing running averages
g5 01 = 0.9, B2 = 0.999 and weight decay parameter A = 0.0001. We conducted all experiments
36 on a single graphics processing unit. The computation times for all experiments are detailed in

g7 Supplementary Table [I]

s ovaluation metrics.

g0 We evaluated spot or cell representations using ASW and assessed spatial domain identification
sa0 results, inferred from these representations, with ARI and NMI metrics. The quality of spatial
san  factors was measured by factor diversity and factor coherence.

842 ASW. ASW calculates the silhouette width of cells or spatial spots with respect to spatial
g3 region annotation labels. A higher score indicates that cells or spots within the same spatial
sas  Tegion are closely grouped, while those from different spatial regions are well separated.

845 ARI. ARI measures the alignment between spatial domain identification result and expert

sas  manual annotation. A lower score suggests that the two sets of labels for cells or spots are
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g7 independent, while a higher score indicates that the labels are identical, except for a possible
a3 permutation.

849 NMI. NMI calculates the normalized mutual information between spatial domain identi-
5o fication result and expert manual annotation. A low NMI value indicates minimal shared
ss1  information between the label sets, while a high value suggests a strong correlation between
2 them.

853 Factor diversity. Topic diversity is defined as the percentage of unique genes among the
ssa  top 10 genes across all factors. A higher score reflects greater diversity among factors, while a
g5 lower score indicates more redundancy.

856 Factor coherence. Topic coherence measures the interpretability of factors by calculating the
57 average pointwise mutual information of top genes associated with each factor, then averaging

sss these values across all factors. Specifically,

| Ko Joo 1o
859 Factor coherence = 17 Z Y m (gz(k), ](k)> 7
k=1 i=1 j=i+1
P( i1g')
lgeg) = — B PGP
e log P(gi, 9;)
ss1  Where {g%k),gék), e ,g%)} denotes the top 10 genes associated with factor k, m(-,-) is the

sz normalized pointwise mutual information, P(g;, g;) is the probability of genes g; and g; co-

g3 expressing in a spot or cell, and P(g;) is the marginal probability of gene g;.

« Rankings of genes within a spatial factor.

ss The gene loading associated with spatial factor & is represented as py, . = [pr1, fr2, 5 fcl,
ssc  where p is the gene loading matrix derived from integrated NMF across all input slices, and G
se7 1S the total number of genes analyzed. The non-negative values in p, . indicate the relative
sss expression levels among genes within a factor, with a higher p; , corresponding to greater
g0 enrichment of gene g expressioin in factor k. Therefore, for each spatial factor k£, we can rank
s genes according to the non-negative values in p;, .. The gene with the highest value is ranked

g1 first, and the gene with the lowest value is ranked last.
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Identification of genes specific to a spatial factor.

To identify highly expressed genes specific to spatial factor k, we first select the top Gy ranked
genes based on the gene loading associated with spatial factor k, with G set to 50 by default.
For each selected gene g, we then calculate the fold change between its estimated weight on
spatial factor k and all other spatial factors. A gene ¢ is considered highly expressed and

specific to spatial factor k, if pu/pr o > 1 for any k' # k.

Number of spatial factors.

In the human DLPFC example, we demonstrated that the NMF component in INSPIRE
enhances the accuracy of spot representations in the latent space. Additionally, we investigated
how varying the number of spatial factors in INSPIRE affects the quality of these spot
representations. The results indicate that the quality remained stable across different numbers
of spatial factors, with a slight improvement in accuracy as the number of spatial factors
increased (Supplementary Fig. and Supplementary Note 1).

Next, we examined the relationship between the number of spatial factors and both the
quality of the spatial factors and the model fitting accuracy using the human DLPFC and
mouse brain data. The results suggest that increasing the number of spatial factors improves
model fit to the ST datasets but also reduces the diversity of the spatial factors. These examples
illustrate that the optimal number of spatial factors depends on the scale of the ST slices.
Specifically, for the human DLPFC slices, representing only a subregion of the brain, the factor
diversity score dropped below 50% when the number of spatial factors exceeded 20. In contrast,
for the mouse brain data, which includes multiple complementary views of the brain, the factor
diversity score remained above 50% even with 40 spatial factors (Supplementary Figs. ,
and Supplementary Note 2). Based on empirical observations, we recommend using number of
spatial factors K = 20 for analyzing a subregion of an organ, K = 40 for a complex organ, and
K = 60 for a whole organism. Alternatively, the INSPIRE model can be run with different
values of spatial factor number K, and we recommend selecting the largest K such that factor

diversity exceeds a specified threshold. By default, we suggest a threshold of 50%.
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= Data availability.

oo All data used in this work are publicly available through online sources.

901 e Human dorsolateral prefrontal cortex dataset profiled by Visium platform [40] (https:
902 //research.libd.org/spatiallLIBD/)).

903 e Mouse brain sagittal anterior, sagittal posterior, and coronal sections profiled by Visium
904 [30, BT, 32] (https://www.1l0xgenomics.com/datasets).

%05 e Mouse brain slice profiled by Slide-seq V2 [7] (https://singlecell.broadinstitute.

906 org/single_cell).

%07 e Mouse brain slice profiled by MERFISH [47] (https://doi.brainimagelibrary.org/
908 doi/10.35077/act-bag).

%00 e Mouse whole-embryo slice profiled by seqFISH [33] (https://crukci.shinyapps.io/

910 SpatialMouseAtlas/).
o11 e Mouse whole-embryo datasets across different developmental time points profiled by
o12 Stereo-seq [§] (https://db.cngb.org/stomics/mosta/).

013 e Mouse hypothalamic preoptic region slices profiled by MERFISH [65] (https://doi.
o14 org/10.5061/dryad.8t8s248).

015 e Mouse hippocampus region slices profiled by SRARmap PLUS [13] (https://doi.org/

016 10.5281/zenodo . 7458952).

= Code availability.

s The INSPIRE software is available at https://github.com/jiazhao97/INSPIRE.
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