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Abstract: Lung cancer is one of the most common causes of cancer-related deaths worldwide.
Monoamine Oxidase-A (MAO-A) enzyme mediates the production of reactive oxygen species (ROS)
that trigger DNA damage and oxidative injury of cells resulting in tumor initiation and progression.
Available MAO-A inhibitors are used as antidepressants, however, their role as anticancer agents is
still under investigation. Ligand- and structure-based drug design approaches guided the discovery
and development of novel MAO-A inhibitors. A series of 1H indole-2-carboxamide derivatives was
prepared and characterized using 1H-NMR, 13C-NMR, and IR. The antiproliferative effects of MAO-
A inhibitors were evaluated using the cell viability assay (MTT), and MAO-A activity was evaluated
using MAO-A activity assay. The presumed inhibitors significantly inhibited the growth of lung
cell lines in a dose- and time dependent manner. The half maximal inhibitory concentration (IC50)
values of MAO-A inhibitors (S1, S2, S4, S7, and S10) were 33.37, 146.1, 208.99, 307.7, and 147.2 µM,
respectively, in A549. Glide docking against MAO-A showed that the derivatives accommodate
MAO-A binding cleft and engage with key binding residues. MAO-A inhibitors provide significant
and consistent evidence on MAO-A activity in lung cancer and present a potential target for the
development of new chemotherapeutic agents.

Keywords: MAO-A inhibitors; anticancer; lung cancer; docking; pharmacophore; NCI; virtual screening

1. Introduction

Since its discovery in 1928, MAO enzyme has opened the door for the investigation of
its effects in many biological processes [1]. Tyramine oxidase was the first discovered MAO
enzyme. MAO enzyme is basically classified in two types: MAO-A and MAO-B. In general,
MAO enzymes are known as groups of mitochondrial bound flavor proteins [2]. They
work principally through catalyzing the oxidative deamination by converting monoamine
into their corresponding aldehyde and ketone [3]. MAO plays a major role in control-
ling the level of many neurotransmitters including serotonin, dopamine, norepinephrine,
epinephrine, tryptamine, tyramine, and 2-phenylethylamine [2,4]. Recently, studies have
revealed a significant contribution of MAO (especially MAO-A) in the development and
progression of carcinogenesis [5]. The effect is mainly related to MAO-A mediation in
DNA damage through ROS production [6]. Advanced prostate cancer showed high expres-
sion of MAO-A that responded well to treatment with MAO-A inhibitor (clorgyline) [7,8].
Remarkably, prostate and renal cell carcinoma showed high expression of MAO-A [9].
Additionally, MAO-A enzyme showed a relatively high expression in bladder cancer and
glioma [9]. Pargyline and phenelzine showed significant decrease in the neuroendocrine
differentiation in prostate cancer. This effect occurs as a result of down-regulation of the
repressor element-1 silencing transcription factor (REST) and activation of autophagy that
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is attributed to MAO inhibition [10]. Clorgyline resulted in a decrease in Temzolomide
resistance, which is considered an essential problem in glioma treatment [11].

About 2.3 million cases of lung cancer were diagnosed in 2020, and 2 million deaths
were expected as a consequence of such an increase in lung cancer rates in the same
year [12]. Such an increasing rate urges researchers to focus efforts on finding new drugs
targeting lung cancer. Lung cancer is usually diagnosed at an advanced stage where the
disease has become incurable [13]. There are different types of available treatments ranging
from radiotherapy to chemotherapy. Cisplatin and carboplatin, in addition to docetaxel,
irinotecan, and topotecan, are considered the cornerstone for the treatment of non-small
cell lung carcinoma (NSCLC) [14]. Interestingly, MAO-A showed high expression on both
mRNA and protein level in NSCLC [15]. It is thought that MAO-A works primarily by
affecting the epithelial to mesenchymal transition (EMT) state; that is considered a key step
in the invasion and metastasis of cancer [16].

Molecular docking was first developed in the 1980s. Since that time, it became an
important approach in the drug discovery process. Molecular docking works principally
through molecular interaction prediction, where the protein and ligand are held together in
a bound state. Docking relates mainly to structure-based drug design approach. The crystal
structure of MAO-A/clogyline complex (PDB ID: 2BXS) was first released in 2005 [17,18].
The first generation of MAO inhibitors show many adverse effects, especially liver toxic-
ity [19]. The cheese effect or the hypertensive crisis is also associated with the use of MAO
inhibitors [19]. Therefore, efforts have focused on designing new MAO inhibitors with
better activity and fewer side effects. Our study aims to provide a greater depth of under-
standing the role of MAO-A in lung cancer, exploring the binding interactions of MAO-A
with known inhibitors, building a pharmacophore model for MAO-A inhibitors, and de-
signing MAO-A inhibitors using structure-based and ligand-based approaches. Moreover,
synthesizing novel MAO-A inhibitors, evaluating their anticancer activities against differ-
ent lung cancer cell lines, and, finally, characterizing the activity of the synthesized MAO-A
inhibitors against MAO isoforms will be explored.

2. Results and Discussion
2.1. Pharmacophore Modeling

We adopted the coordinates of ligand MLG (S1) in MAO-A (PDB ID: 2BXS) to build
the 3D-sturctures of the reported inhibitors (J1-J3, J5, J7, J10, J12-J13, and J26) [20–24]
(Figure 1). Superposing the modeled coordinates against MLG derived a pharmacophore
model with the following features. F1: one aromatic or hydrophobic functionality, F2: one
hydrophobic moiety, F3: one aromatic or hydrophobic motif, and F4: H-bond donor or
acceptor. Our model indicates that MOA-A inhibitor should harbor two aromatic rings
and one hydrophobic motif or three hydrophobic groups and one H-bond acceptor or
donor moiety.

2.2. Pharmacophore Searching

We screened the generated pharmacophore model against the national cancer institute
(NCI) database [25], harboring 265,240 compounds. Filtration of the NCI database was
applied using Lipinski’s rule of five [26] to retrieve drug-like molecules. Lipinski’s rule
of five describes the drug-likeness for oral active drugs, and it states oral drugs should
have no more than 5 H-bond donors, no more than 10 H-bond acceptors, molecular weight
equal to/or less than 500 Dalton, and partition coefficient (log P o/w) equal to/or less than
5. Fortunately, 52,457 of molecules were obtained and identified as hits. Further filtration
against 52,457 hits retrieved 49 hits endorsing the MAO-A fingerprint (Figure 2). S1 and
retrieved hits (S2–S10) were provided by the NCI agency.
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Figure 2. MAO-A pharmacophore model with (A) MLG (S1), (B) NSC215, and (C) NSC6884 Aro
stands for aromatic ring, Hyd: hydrophobic, Acc: acceptor, Don: donor. Picture made by MOE [27].

2.3. Molecular Docking

In order to discuss the anticancer activity of potential hits as MAO-A inhibitors (S1,
S2–S6, S7, S8–S10) (Figure 3) [20–24,28] in human adenocarcinoma alveolar basal epithelial
cell (A549), human non-small cell lung cancer cell (H1299), and human lung carcinoma cell
(H661) lines, we employed the coordinates of MAO-A (PDB ID: 2Z5X) [29] to explore the
structural basis of MAO-A/ligand complex formation. The complex of MAO-A/ligands
was examined using Glide docking [30–32] studies against 2Z5X coordinates.
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Figure 3. Chemical structures of S1, S2–S6, S7, and S8–S10.

The Glide (grid-based ligand docking with energetics) is a comprehensive algorithm
for the ligand/receptor docking strategy [30]. It provides high speed and accuracy levels for
high-throughput virtual screening of millions of compounds along with superior accurate
binding mode predictions [30]. Furthermore, the Glide score has been implemented with
“extra precision” (XP) scoring function [31]. The XP Glide scoring protocol probes water
desolvation energy and receptor–ligand structural backbones that are involved in complex
formation and, consequently, enhance binding affinity [31].

The binding site of 2Z5X encloses Tyr69, Leu97, Ile180, Phe208, Ser209, Glu216, Cys323,
Ile335, Thr336, Leu337, Met350, Phe352, Tyr407, and Tyr444. The binding sites accommo-
date hydrophobic and polar residues. The acidic and basic residues furnish an ionic
(electrostatic) bonding, whereas the hydrophilic residues offer hydrogen-bonding, ion–
dipole, and dipole–dipole interactions. The aromatic and hydrophobic residues provide
π-stacking and van der Waals interactions, respectively. Docking data showed that the
S series (S1–S10) accommodates the MAO-A binding domain (Figure 4A). Definitely, the
docked pose of J14 superposes the template of clorgyline (S1) in 2Z5X (Figure 4B). Re-
sults show that compounds form H-bond with Ala68, Tyr69, Asn181, Phe208, Gln215, and
Gly443 of 2Z5X (Table 1). Interestingly, reported computational and experimental studies
pinpointed the significance of these amino acids as key binding residues for MAO-A/ligand
interaction [29,33–39].
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Picture visualized by PYMOL [32].
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Table 1. The Glide scores (Kcal/mol) and H-bond against 2Z5X. NA stands for not available.

Compounds Docking Score Binding Residues Compounds Docking Score Binding Residues

S1 −6.78 NA S6 −7.82 NA
S2 −7.64 Asn181 S7 −9.59 Ala68, Asn181, Phe208
S3 −8.28 Ala68, Tyr69 S8 −9.78 Gly443
S4 −7.16 Ala68, Tyr69, Gln215 S9 −11.02 Ala68, Tyr69, Phe208
S5 −6.41 NA S10 −10.26 Ala68, Tyr69, Phe208

To evaluate the execution of Glide algorithm, we compared the docked pose of F2M in
MOA-B (PDB ID: 5MRL) [40] to its original orientation in the crystal assembly. Figure 5
demonstrates the superposing of the Glide-generated F2M conformation and its native
geometry in 5MRL. The RMSD for heavy atoms of F2M between Glide-extracted docked
conformation and the native pose was 1.048 Å. Result infers that Glide docking can success-
fully identify the native pose in crystal coordinates and, consequently, predict the ligand
binding pose.
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2.4. Biological Evaluation

The MTT assay was performed after exposing A549, H1299, and H661 cell lines to in-
creasing concentrations of the presumed inhibitors for either 24, 48, or 72 h. Compounds S1,
S2, S4, and S10 have shown considerable antiproliferative activities, and the treated cells
had reduced cell viability compared to the untreated control cells (Table 2). Specifically, S2
exhibited potent antiproliferative activities against A549, H661, and H1299 with IC50 values
of 33.37 µM, 10.76 µM, and 60.32 µM, respectively. In addition, S4 demonestrated antipro-
liferative activities against A549, H661, and H1299 with IC50 values of 146.1 µM, 63.96 µM,
and 65.46 µM, respectively. On the other hand, S1 had significant antiproliferative activities
against A549, H661, and H1299 with IC50 values of 208.99 µM, 215 µM, and 323.6 µM, re-
spectively. Among the synthesized compounds, S10 displayed noticeable antiproliferative
activities against A549, H661, and H1299 with IC50 values of 147.2 µM, 73.83 µM, and 116
µM, respectively. Interestingly, compound S7 showed selective antiproliferative activities
against A549, H661 cell lines with IC50 values of 255.9 µM, and 168.8 µM, respectively, after
treatment for 72 h. Moreover, compounds S8 and S9 showed preferential antiproliferative
activities against H661. On the other hand, compounds S3, S5, and S6 showed poor an-
tiproliferative activities against all examined cell lines (Supplementary Figures S1–S5). To
assess compound’s toxicity on normal cells, the MTT assay was performed after treatment
of dermal fibroblast cells to increasing concentrations of MAO-A inhibitors for either 24,
48, or 72 h. Interestingly, S1, S2, S4, and S10 did not show any antiproliferative activity on
treated cells within the examined concentration range. Based on the estimated IC50 values,
compounds S1, S2, and S4 appear to have at least a three-fold difference in IC50 against
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fibroblast cells relevant to their IC50 against lung cancer cells. Compounds S7 and S10
showed no killing effect against normal cells. IC50 values against fibroblasts are shown in
Supplementary Table S1.

Table 2. The 50% inhibitory concentration (IC50) values for MAO-A inhibitors in A549, H1299, and
H661 lung cancer cells at 24, 48, 72 h. Experiments were carried out in duplicate at 4 independent
times (n = 8). SD did not exceed 5%. SD: standard deviation, h: hour; µM: micromolar.

Cell Line A549 H661 H1299 Cell Line A549 H661 H1299

S1 IC50 (µM) S6 IC50 (µM)

24 h 367 252.3 330.4 24 h >1000 >1000 >1000
48 h 208.99 215 323.6 48 h >1000 >1000 >1000
72 h 198.2 240.5 188.5 72 h >1000 >1000 >1000

S2 IC50 (µM) S7 IC50 (µM)

24 h 49.9 27.7 33.7 24 h >1000 >1000 >1000
48 h 33.37 10.76 60.32 48 h 307.7 309.6 922.4
72 h 31.18 7.626 27.1 72 h 255.9 168.8 464.9

S3 IC50 (µM) S8 IC50 (µM)

24 h >1000 >1000 >1000 24 h >1000 >1000 >1000
48 h >1000 >1000 >1000 48 h >1000 875.3 >1000
72 h >1000 >1000 >1000 72 h >1000 163.8 >1000

S4 IC50 (µM) S9 IC50 (µM)

24 h 145.2 89.52 75.62 24 h >1000 >1000 >1000
48 h 146.1 63.96 65.46 48 h >1000 178.8 716.2
72 h 141 27.74 48.47 72 h 357 344.9 398.8

S5 IC50 (µM) S10 IC50 (µM)

24 h >1000 >1000 >1000 24 h >1000 >1000 >1000
48 h >1000 >1000 >1000 48 h 147.2 73.83 116
72 h >1000 >1000 >1000 72 h 143 44.79 139.8

In 2020, the world health organization announced that cancer was the leading cause
of death in about 10 million persons all over the world. According to new cases in 2020,
lung cancer was diagnosed in about 2.21 million cases [12]. Lung cancer was the most
common cancer in men and the second most common cancer in women, as breast cancer
was the most frequent cancer in women by 2.26 million cases [13,41]. Many difficulties have
been associated with lung cancer treatment, ranging from side effects of chemotherapies,
resistance to treatment, and high cost of radio and chemo therapies, which have urged the
search for new therapeutic approaches to treat lung cancer. Many studies have shown the
relationship between MAO-A enzyme and cancer. As MAO-A has been shown at increased
levels in lung cancer, hence, the study of the MAO-A effect has become of great interest
in lung cancer [42]. Non-small lung cancer has been associated with high expression of
MAO-A. It was suggested that MAO-A leads to epithelial-mesenchymal transition (EMT)
and the appearance of clinicopathological features and lymph node metastasis in late
stage cancer [15]. Many non-selective MAO inhibitors have been tested on lung cancer
cells. However, limited data are available for the use of MAO-A inhibitors in lung cancer
treatment [43,44]. The current study was based on the previously reported antiproliferative
activity of clorgyline (S1), a standard MAO-A inhibitor, against prostate and Glioma cell
lines [8,10,11]. Clorgyline (S1) was considered as the reference compound for our study, so
MAO-A inhibitors were chosen based on the pharmacophoric features and docking results.
The present study has shown that MAO-A inhibitors (S1, S2, S4, S7, and S10) significantly
inhibited the proliferation of A549, H1299, and H661 cells compared to the untreated
control cells in a concentration and time dependent manner accompanied with a reasonable
safety margin. Zhao et al. found that clorgyline (MAO-A inhibitor) has a significant
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antiproliferative effect against prostate cancer, even in the advanced stage [7]. The effect
of MAO-A inhibitors on MAO-A activity in the lung cancer cell line was evaluated and
an MAO-A activity assay was performed. Treatment of A549 with either S1, S2, S4, S7, or
S10 resulted in significant inhibition of MAO-A activity in comparison to the untreated
control and the positive control, as shown in Table 3. MAO-A activity was measured using
fluorometric detection (Ex/Em = 535 nm/587 nm), as illustrated in Figure 6.

Table 3. MAO-A activity assay. A549 cells were cultured and treated with IC50, sub-IC50 of S1, S2,
S4, S7, and S10. Fluorescence detection was on Ex/Em 535/587 nm. Data were expressed as mean
and SD did not exceed 5%. p-value < 0.05 indicates statistical significance in-comparison to untreated
control, while asterisk: ns (not-significant) p > 0.05; * p ≤ 0.05; ** p ≤ 0.01; (according to GraphPad
prism 9). µM: micromolar.

Sample Name H2O2
(Pmol)

MAO-A
Activity

(Pmol/Min/ Ml)

Specific Activity
Of MAO-A p-Value

A549 (control) 111.14 18.52 1.00 -
S2 IC50 50.19 8.36 0.45 0.0082 (**)

S2 sub-IC50 53.37 8.89 0.48 0.0087 (**)
S4 IC50 56.40 9.40 0.51 0.0091 (**)

S4 sub-IC50 57.73 9.62 0.52 0.0094 (**)
S1 IC50 35.3 5.883333333 0.317617477 0.0066 (**)

S1 sub-IC50 49.35 8.225 0.444034631 0.0081 (**)
S7 IC50 85.35 14.225 0.767950471 0.0193 (*)

S7 sub-IC50 95.66 15.94333333 0.860716369 0.0321 (*)
S10 IC50 42.04 7.006666667 0.37826172 0.0072 (**)

S10 sub-IC50 104.47 17.41166667 0.939985773 0.0735 (ns)
positive control (MAO-A enzyme) 112.64 18.77333333 1.013496673 0.3171 (ns)
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Figure 6. MAO-A activity assay. A549 cells were cultured and treated with IC50 and sub-IC50 of S1,
S2, S4, S7, and S10. Fluorescence detection was on Ex/Em 535/587 nm. Data were expressed as
mean + SD. SD did not exceed 5%. p-value < 0.05 indicates statistical significance in-comparison to
untreated control, while asterisk: ns (not-significant) p > 0.05; * p ≤ 0.05; ** p ≤ 0.01 (according to
GraphPad prism 9).

It is well known that MAO-A is a mitochondrial enzyme which works through catalyz-
ing oxidative deamination of neurotransmitters or dietary amines yielding H2O2. Studies
on MAO-A activity in prostate cancer showed that clorgyline inhibited MAO-A activity and
caused suppression in tumorigenesis and metastasis [10]. Pei-Chuan Li et al., 2015, showed
that MAO-A expression and activity was higher in Hodgkin lymphoma (HL)-derived
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L1236, and usage of MAO-A inhibitor (clorgyline) revealed inhibition of cancer cells pro-
liferation, invasion, and MAO-A activity [45]. Our study was the first study to verify the
effect of MAO-A inhibitors on MAO-A activity in lung cancer cells. All MAO-A inhibitors
showed activity inhibition in a dose dependent manner. These results were consistent with
the docking results that demonstrated considerable binding scores against MAO-A.

3. Materials and Methods
3.1. Computational Methods
3.1.1. Pharmacophore Generation

Three-dimensional structures of MAO-A inhibitors with diverse scaffolds: pyridaziny-
lacetic acid derivatives [20], nicotinamides [21], indole alkaloids [21], flavonoids [21],
xanthones [21,23], and anilides [24], were built and energy minimized using MMFF94X
force field in MOE [23] software based on MLG template in MAO-A (PDB ID: 2Z5X) [29].
Each minimized structure was superposed to MLG (the most active molecule i.e., the lowest
IC50 value). The superposed molecules were employed to define the pharmacophore model
using the Pharmacophore Query module in MOE [23].

3.1.2. Pharmacophore Search

The pharmacophore model was used to search against the National Cancer Insti-
tute (NCI) database to retrieve hit molecules. The pharmacophore search protocol was
performed using MOE software [23].

3.1.3. Preparation of Protein Structures

The X-ray coordinates of MAO-A (PDB ID: 2BXS) [39] and (PDB ID: 2Z5X) [29] with
resolution 3.15 Å and 2.2 Å, respectively, were retrieved from the RCSB Protein Data Bank.
We adopted the assembly of 2Z5X without ligand and transferred the ligand’s template
(clorgyline: MLG) of 2BXS to 2Z5X; MLG was identified as a ligand to extract the grid
file. The coordinates of 2Z5X were energetically minimized to avoid steric clash. Extra
treatment for the minimized coordinates was executed using Protein Preparation algorithm
in Schrödinger software [32] to maximize H-bond interactions between side chains.

3.1.4. Preparation of Ligand Structures

The verified compounds (ligands) were modeled using MLG template in 2Z5X [29].
The ligands were built by MAESTRO [32] Build algorithm and energetically minimized by
the MacroModel [32] script using OPLS2005 force field.

3.1.5. Glide Docking

The Grid files for 2Z5X binding pocket were generated using the Glide Grid Generation
panel with the bound ligands as centroid. During the docking process, the scaling factor
for van der Waals for the nonpolar atoms was calibrated to 0.8 to provide some plasticity
for the protein side chains. All other parameters were adjusted as defaults. The binding
affinity was defined as docking score (Kcal/mol). The more negative the docking score, the
better the binder.

3.2. Chemistry
3.2.1. Chemicals

The following chemicals were purchased and used without further purification:
indole-2-carboxylic acid 98% (Aldrich, Wyoming, IL, USA), oxalyl chloride 98% (Aldrich,
Wyoming, IL, USA), 4-aminoacetophenone 97% (Aldrich, Wyoming, IL, USA),
3-aminoacetophenone 97% (Aldrich, Wyoming, IL, USA), N,N-dimethylformamide (DMF)
(HPLC grade Tedia, Fairfield, OH, USA), pyridine (Cerritos, CA, USA), sodium bicar-
bonate (NaHCO3) (Labachemie, Mumbai, India), sodium borohydride (NaBH4) (Aldrich,
Wyoming, IL, USA), dichloromethane (HPLC grade Carbon group, Lincoln, UK), hex-
ane (HPLC grade Tedia, Fairfield, OH, USA), ethyl acetate (AZ chem, Dongguan, China),
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tetrahydro furan (THF) (Honeywell, Offenbach am Main, Germany), acetone (AZ Chem,
Dongguan, China), absolute ethanol (Honeywell, Offenbach am Main, Germany), chloro-
form (HPLC grade) (Honeywell, Offenbach am Main, Germany), and methanol (HPLC
grade Biosolve, Dieuze, France).

3.2.2. Hits

Based on ligand- and structure-based drug design approaches, the following hits were
purchased from Sigma Aldrich, Darmstadt, Germany, as shown in Table 4.

Table 4. Hits obtained by ligand- and structure-based drug design approaches. The chemical structure
of hits was retrieved from NCI database. Hits have been provided by NCI agency.

NSC Code Compound
Code Structure

- Clorgyline (S1)
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3.2.3. Synthesis of Target Compounds

The following compounds were synthesized based on reported chemical procedure [17].
The synthetic procedure has been optimized as shown under the relevant section. All rele-
vant data of NMR and IR were provided in the Supplementary File (Figures S1–S21).

All synthesized products were characterized by 1H NMR, 13C NMR on a Bruker-
Avance III 500 MHz spectrophotometer in deutrated dimethyl sulfoxide (DMSO-d6) or
deutrated methanol as solvents and TMS as internal standard. Chemical shift (δ) is ex-
pressed in ppm; coupling constant (J) values are given in Hertz (Hz). Infrared spectra
were recorded using Shimadzu IR Affinity H spectrophotometer; all samples were pre-
pared with potassium bromide and pressed into a disc. A Euro-Vector 8910 elemental
analyzer-WeaverTM software (Pavia, Italy) was employed.
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The purity of all prepared compounds was examined using elemental analysis, and
the results lay in the accepted limits (±0.5%) according to the instrument’s supplier. A
standard material is usually analyzed prior and during the sample’s measurement to ensure
the precision and accuracy of the analysis.

H-indole-2-carbonyl Chlorides: Adding oxalyl chloride (4.13 mmol) to a solution of
1H-indole-2-carboxylic acid (2.48 mmol) in 15 mL DCM at 0 ◦C followed by few drops of
DMF. The solution was stirred for 30 min in an iced water bath, then refluxed for a further
two hours. After that, the solution was cooled and evaporated under reduced pressure and
the residue was used for the next step without further purification.

N-(4-acetylphenyl)-1H-indole-2-carboxamide (S7): A solution of 1H-indole-2-carbonyl
chloride was prepared in 15 mL DCM in iced water bath, followed by addition of 4-
aminoacetophenone solution (4.96 mmol). After waiting for 10 min, dry pyridine (1.5 mL)
was added. The resulting solution was stirred overnight. The desired precipitate was
filtered off and washed with DCM and then with 0.1 M NaHCO3 solution, and was dried
for 20 min in an oven.

Pink solid, yield 79%, m.p. 290–293 ◦C. 1H-NMR (500 MHz, DMSO-d6) δ (ppm): 2.63
(s, 3H, CH3); 7.05 (t, J = 7.5 Hz, 1H, CH); 7.20 (t, J = 7.8 Hz, 1H, CH); 7.44–7.46 (m, 2H); 7.64
(d, J = 8.1 Hz, 1H); 7.89–7.99 (m, 4H), 10.49 (s, 1H, N-H amide); 11.79 (s, 1H, N-H indole).
13C-NMR (125 MHz, DMSO-d6) δ (ppm): 26.9 (CH3); 105.2 (C8); 112.9 (C3); 119.7 (C2’,
C6’); 120.5 (C5); 122.4 (C6); 124.5 (C7); 127.4 (C4); 129.9 (C3’, C5’); 131.5 (C4’); 132.3 (C2);
137.5 (C9); 143.9 (C1’); 160.5 (C = O amide); 197.0 (C = O ketone). FT-IR (KBr-disc) cm−1:
3350 N-H amide; 3317 N-H indole; 1658 C = O for ketone and C = O amide. Elemental
analysis for C17H14N2O2: calcd. C 73.37, H 5.07, N 10.07; found C 72.90, H 5.49, N 9.59.

N-(4-(1-hydroxyethyl)phenyl)-1H-indole-2-carboxamide (S8): (0.76 mmol) of sodium
borohydride (NaBH4) was added to a solution of N-(4-acetylphenyl)-1H-indole-2-carboxamide
(S7) in 10 mL of THF. The reaction mixture was stirred overnight at room temperature, then
the solvent was evaporated under reduced pressure and the desired precipitate was collected
and dried.

Beige solid, yield 90%, m.p. 253–255 ◦C. 1H-NMR (500 MHz, CD3OD-d4) δ (ppm):
1.42 (d, J = 6.0 Hz, 3H); 3.27 (m, 1H); 4.88 (d, J = 7.4 Hz, 2H); 7.05 (t, J = 7.1 Hz, 1H); 7.21
(t, J = 7.5 Hz, 1H); 7.28 (s, 1H); 7.33 (d, J = 7.7 Hz, 2H); 7.45 (d, J = 8.0 Hz, 1H); 7.61 (d,
J = 7.7 Hz, 1H); 7.67 (d, J = 7.8 Hz, 2H), 7.91 (s, 1H, N-H amide); 7.99 (s, 1H, N-H indole).
13C-NMR (125 MHz, CD3OD-d4) δ (ppm): 24.2 (CH3), 69.1 (C-OH); 103.9 (C8); 111.7 (C3);
119.8 (C2’, C6’); 120.6 (C6); 121.5 (C5); 123.9 (C7); 125.5 (C3’, C5’); 127.7 (C4); 131.0 (C1’);
137.2 (C2); 137.3 (C9); 142.2 (C4’); 160.9 (C = O) amide). FT-IR (KBr-disc) cm−1: 3506 N-H
amide; 3375 N-H indole; 3296 OH; 1649 C = O amide. Elemental analysis for C17H16N2O2:
calcd. C 72.84, H 5.75, N 9.99; found C 72.41, H 6.17, N 9.63.

N-(3-acetylphenyl)-1H-indole-2-carboxamide (S9): A solution of 1H-indole-2-carbonyl
chloride was prepared in 15 mL DCM in an iced water bath, followed by adding 3-
aminoacetophenone solution (4.96 mmol). After 10 min, dry pyridine (1.5 mL) was added.
The resulting solution was stirred overnight. The desired precipitate was filtered off and
washed with DCM and then with 0.1 M NaHCO3 solution, and was dried for 20 min
in oven.

White solid, yield 81%, m.p. 240–243 ◦C. 1H-NMR (500 MHz, DMSO-d6) δ (ppm):
2.45 (s, 3H, CH3); 7.04 (t, J = 6.7 Hz, 1H); 7.19 (t, J = 7.1 Hz, 1H); 7.43–7.47 (m, 2H), 7.50
(t, J = 7.4 Hz, 1H); 7.68 (q, J = 7.7 Hz, 2H); 8.11 (d, J = 7.4 Hz, 1H); 8.34 (s, 1H); 10.38 (s,
1H, N-H amide); 11.73 (s, 1H, N-H indole). 13C-NMR (125 MHz, DMSO-d6) δ (ppm): 27.2
(CH3); 104.6 (C8); 112.9 (C3); 119.8 (C2’); 120.5 (C6); 122.3 (C5); 123.9 (C7); 124.4 (C4’); 124.9
(C6’); 127.5 (C4); 129.6 (C5’); 131.7 (C3’); 137.4 (C2’); 137.8 (C9); 139.9 (C1’); 160.4 (C = O)
amide; 198.2 (C = O) ketone. FT-IR (KBr-disc) cm−1: 3365 N-H amide; 3284 N-H indole;
1678 C = O for ketone and C = O amide. Elemental analysis for C17H14N2O2: calcd. C 73.37,
H 5.07, N 10.07; found C 72.94, H 5.47, N 9.62.

N-(3-(1-hydroxyethyl)phenyl)-1H-indole-2-carboxamide (S10): A (0.76 mmol) of sodium
borohydride (NaBH4) was added to a solution of N-(3-acetylphenyl)-1H-indole-2-carboxamide
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(S9) in 10 mL of THF. The reaction mixture was stirred overnight at room temperature, then
the solvent was evaporated under reduced pressure and the desired precipitate was collected
and dried.

White solid, yield 87%, m.p. 172–174 ◦C. 1H-NMR (500 MHz, CD3OD-d4) δ (ppm):
1.44 (d, J = 6.3 Hz, 3H); 3.27 (m, 1H); 5.81 (d, J = 7.5 Hz, 1H); 7.03–7.06 (t, J = 7.4 Hz, 1H); 7.13
(d, J = 7.5 Hz,1H); 7.20 (t, J = 7.6 Hz, 1H); 7.27–7.30 (m, 2H); 7.44 (d, J = 8.2 Hz, 1H); 7.59–7.61
(m, 2H); 7.70 (s, 1H); 9.93 (s, 1H, N-H amide); 11.08 (s, 1H, N-H indole). 13C-NMR (125
MHz, CD3OD-d4) δ (ppm): 24.2 (CH3); 69.4 (C-O); 103.8 (C8); 111.7 (C3); 117.8 (C2’); 119.4
(C6’); 119.9 (C6); 121.1 (C5); 121.5 (C7); 123.9 (C4’); 127.7 (C4); 128.4 (C5’); 131.0 (C1’); 137.2
(C2); 138.3 (C9); 147.1 (C3’); 160.9 (C = O amide). FT-IR (KBr-disc) cm−1: 3525 N-H amide;
3304 broad OH and N-H indole; 1647 C = O amide. Elemental analysis for C17H16N2O2:
calcd. C 72.84, H 5.75, N 9.99; found C 72.53, H 6.08, N 9.54

3.3. Biological Methods
3.3.1. Cell Maintenance and Cell Culture

Lung cancer cells were maintained in RPMI 1640 culture medium. The media were
completed with 100 U/ mL pencillin and 0.1 mg/ mL streptomycin. Additionally, 10%
FBS and 2 mM L-glutamine were added. Cells were cultured in 75 cm2 and incubated in
incubator (5% CO2, and 95% humidified air) at 37 ◦C.

Cells were cultured in RPMI 1640 media until they became confluent (90%), then
the cultured media was removed. Flask was washed three times with 3 mL PBS, then
the trypsin was added for 2–3 min in an incubator at 37 ◦C. When cells were de-attached
from the flask (examined under microscope), media was added with continuous mixing to
ensure single cell suspension. Then, cell suspension was transferred to 15 mL conical tube
for counting. Hemocytometer was used to determine number of cells.

3.3.2. Cell Viability Assay

In order to evaluate cell proliferation, the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazoliumbromide (MTT) assay was employed as previously described [46].
A549 and normal dermal fibroblasts cells were plated in 96-well plates at a variable seed-
ing density per well depending on doubling time, proliferation ability, and target time
of treatment.

3.3.3. Monoamine Oxidase A (MAO-A) Activity Assay

Before starting the MAO-A activity assay, lung cancer cells A549 were cultured in
6-well plates for 24 h, then treated with IC50 and sub-IC50 (a concentration that is lower than
IC50) of MAO-A inhibitors for 48 h. A series of H2O2 standards (0, 200, 400, 600, 800, and
1000 pmol/well) was prepared by adding 0, 2, 4, 6, 8, and 10 µL of 0.1 mM H2O2. Further,
the volume was adjusted to 50 µL/well with MAO assay buffer. Cells were dethatched
using trypsin and centrifuged. One million cells were counted for each sample and ho-
mogenized using MAO assay buffer (0.1 mg/µL). The homogenates were centrifuged,
and the supernatants were collected. Then, 10 µL of MAO-B inhibitor (Selegline) (Sigma
Aldrich, Darmstadt, Germany) was added to each sample. Positive control was prepared
by adding 4 µL of positive control solution and completing the volume to 50 µL with MAO
assay buffer. Next, 50 µL of MAO reaction mix and background mix for each reaction was
prepared. Both the reaction and background mix contained MAO assay buffer, developer,
MAO substrate, and probe. Reaction and background mix were added into each standard,
sample, and positive control. Finally, fluorescent measurement at (Ex/Em = 535/587 nm)
was performed in kinetic mode at 25 ◦C for 60 min.

3.3.4. Statistical Analysis

Data analysis was performed using GraphPad Prism software (GraphPad Prism
version 8.0.0 for Windows, GraphPad Software, San Diego, CA, USA). The differences
between treatment groups were determined by independent sample t-test. Paired sample
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t-test was used to assess cell viability over various time points. Data are expressed as
mean ± SD, and p < 0.05 was considered a statistically significant difference. A non-linear
regression analysis was used to calculate IC50 values.

4. Conclusions

The current study demonstrated the role of MAO-A enzyme in lung cancer as a
promotor for proliferation, tumorigenesis, migration, and invasion of human lung cancer
cells. We identified the pharmacophoric features of MAO-A inhibitors and disclosed
potential hits targeting MAO-A binding domain. Moreover, we successfully conducted the
design and synthesis of novel compounds that exerted their anticancer activities through
MAO-A inhibition. Apparently, the ability of the synthesized inhibitors to affect the
proliferation of cancer cells is not only mediated through their MAO-A inhibition but also
crosslinks with several signaling pathways in the cancer cell, suggesting new roles of MAO-
A at the molecular level. Herein, we provided the first evidence of MAO-A involvement
in different lung cancer cell lines, and confirmed the ability of synthesized compounds to
inhibit MAO-A selectively and suppress cancer growth.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27092887/s1, Figure S1: Time-dependent inhibition of
A549, H661, and H1299 lung cancer cells at 24, 48, 72 h treatment duration; Figure S2: Time-dependent
inhibition of A549, H661, and H1299 lung cancer cells at 24, 48, 72 h treatment duration; Figure S3:
Time-dependent inhibition of H661 lung cancer cells at 48 and 72 h treatment duration; Figure S4:
Time-dependent inhibition of H661 and H1299 lung cancer cells at 48 and 72 h treatment duration;
Figure S5: Time-dependent inhibition of A549, H661, and H1299 lung cancer cells at 48 and 72 h
treatment duration; Table S1: The 50% inhibitory concentration (IC50) values for MAO-A inhibitors in
fibroblast cells at 24, 48, and 72 h. Experiments were carried out in duplicate at 4 independent times
(n = 8). SD did not exceed 5%. SD: standard deviation, h: hour; µM: micromolar.
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