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The role of polymorphonuclear neutrophils (PMNs) in biology is often recognized during

pathogenesis associated with PMN hyper- or hypo-functionality in various disease

states. However, in the vast majority of cases, PMNs contribute to resilience and tissue

homeostasis, with continuous PMN-mediated actions required for the maintenance of

health, particularly in mucosal tissues. PMNs are extraordinarily well-adapted to respond

to and diminish the damaging effects of a vast repertoire of infectious agents and

injurious processes that are encountered throughout life. The commensal biofilm, a

symbiotic polymicrobial ecosystem that lines the mucosal surfaces, is the first line of

defense against pathogenic strains that might otherwise dominate, and is therefore

of critical importance for health. PMNs regularly interact with the commensal flora

at the mucosal tissues in health and limit their growth without developing an overt

inflammatory reaction to them. These PMNs exhibit what is called a para-inflammatory

phenotype, and have reduced inflammatory output. When biofilm growth and makeup

are disrupted (i.e., dysbiosis), clinical symptoms associated with acute and chronic

inflammatory responses to these changes may include pain, erythema and swelling.

However, in most cases, these responses indicate that the immune system is functioning

properly to re-establish homeostasis and protect the status quo. Defects in this healthy

everyday function occur as a result of PMN subversion by pathological microbial

strains, genetic defects or crosstalk with other chronic inflammatory conditions, including

cancer and rheumatic disease, and this can provide some avenues for therapeutic

targeting of PMN function. In other cases, targeting PMN functions could worsen the

disease state. Certain PMN-mediated responses to pathogens, for example Neutrophil

Extracellular Traps (NETs), might lead to undesirable symptoms such as pain or swelling

and tissue damage/fibrosis. Despite collateral damage, these PMN responses limit

pathogen dissemination and more severe damage that would otherwise occur. New

data suggests the existence of unique PMN subsets, commonly associated with

functional diversification in response to particular inflammatory challenges. PMN-directed

therapeutic approaches depend on a greater understanding of this diversity. Here we

outline the current understanding of PMNs in health and disease, with an emphasis on

the positive manifestations of tissue and organ-protective PMN-mediated inflammation.
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KEY POINTS

- PMNs are constitutively recruited to healthy mucosal tissues
- PMNs prune the commensal biofilm to maintain homeostasis

in the oral cavity
- Dysbiosis contributes to hyper-inflammatory PMN responses

and periodontal disease
- Targeted therapies to suppress PMN hyper-inflammatory

responses are available, but may not be appropriate in cases
where PMN-mediated pathogen clearance is required

INTRODUCTION

Polymorphonuclear neutrophils (PMNs) are the most abundant
leukocytes in the circulation, and the first cellular responders
to tissue injury and infection. Innate immune phagocytic cells
are the most ancient immune cells, having evolved ∼600
million years ago, in early invertebrate eukaryotes (1). This
is in contrast to adaptive immune cells, which evolved ∼100
million years later, in early vertebrates. PMNs have evolved
under rigorous biological constraints, as a balance is required
between the need to respond appropriately to a wide range
of threats and the extreme tissue destructive potential of
PMN antimicrobial functions. Although PMNs have a relatively
short life-span compared to other immune cells, their sheer
abundance, innate recognition of damage and infection, and
ability to quickly home to relevant sites throughout the body and
destroy invading pathogens, attests to their central importance
in immune surveillance and protection. In the vast majority of
cases PMNs manage to respond suitably to preserve homeostasis
and organismal health, however certain pathogenic bacteria have
evolved to subvert or evade PMNs (2). Furthermore, dysregulated
PMN responses associated with excessive tissue damage (3, 4)
are implicated in a wide array of chronic inflammatory diseases
including periodontal disease (5, 6), cancer (7–9), sepsis (10,
11), lupus (12), asthma (13), diabetes (14), and rheumatologic
diseases (15, 16).

PMNs are generated in the bone marrow by hematopoietic
precursor cells and enter the circulation where they can then be
recruited across the vascular barrier and into various tissues in
response to specific chemotactic and pro-inflammatory signals,
a process known as extravasation (17). Once in the tissue,
PMNs migrate toward the site of inflammation through highly
sensitive detection of a shallow gradient of chemotactic agents
and penetrate through the three-dimensional tissue matrix
by secretion of tissue-digestive proteases (18). At the site of
inflammation, PMNs secrete additional chemotactic signals in
order to recruit even more PMNs as well as other protective
leukocytes. As PMNs migrate through the tissue, they forge a
pathway for migration of subsequently recruited cells and leave
a trail of haptokinetic markers (19), which provide cues for
directional recruitment of follower cells. PMNs have various tools
for neutralizing pathogens including release of toxic enzymes and
proteases through degranulation, secretion of reactive oxygen
species (ROS), phagocytosis and pathogen killing within the
phagosome, and secretion of euchromatic DNA in the form of
Neutrophil Extracellular Traps (NETs) (20). These mechanisms

are elicited by a wide range of pathogens, which PMNs detect
using an array of surface-expressed innate immune receptors,
known as pattern-recognition receptors (PRRs) (21). Through
these PRRs, PMNs recognize and respond appropriately to a
wide range of pathogen-associated molecular patterns (PAMPs)
and damage-associatedmolecular patterns (DAMPs). The quality
and magnitude of the PMN response will depend on the nature
and abundance of the danger signals present. In addition to
surface expression of several families of PRRs, PMNs express
complement receptor and low and high-affinity Fc-receptors and
thereby act as effectors of complement (22, 23) and antibody
mediated inflammation (24). The diverse array of potential PMN
activities includes wide-ranging interactions with innate and
adaptive immune cells (25), which give PMNs the capacity to
influence the progression and outcome of immune responses
(26, 27).

PMNs also play an essential role in the resolution of tissue
inflammation through the secretion of anti-inflammatory lipid-
based molecules, including resolvins (28). PMN secreted NETs
can also contribute to resolution through sequestration and
turnover of pro-inflammatory factors (29). Therefore, tissue
PMNs can act either to amplify or resolve the inflammation.
Analysis of the role of PMNs in wound healing suggests that they
can either accelerate or impede the process, depending on the
specific context (30–33). The presence of specific Staphylococcus
aureus-derived virulence factors in a wound was shown to
promote early PMN recruitment and favorably influence wound
healing and closure (34). Also, PMNs have functions that are
independent of immune surveillance and protection, including
their ability to clear cellular debris (35) and to promote
angiogenesis (36).

DIVERSITY OF THE PMN RESPONSE:
ACTIVATION STATES OR SUBSETS?

Classically, PMNs have been considered a terminally
differentiated and homogenous population with a limited
lifespan (37), low transcriptional activity (38), and an inability
to return to circulation after migration to tissues (39). However,
there is a growing body of evidence that challenges these
assumptions (40). In addition to our observation that a small
population of circulating PMNs is primed for rapid recruitment
to the tissues (41), other compelling evidence has emerged
suggesting the presence of significant PMN heterogeneity (42–
48). In the majority of studies, evidence of PMN diversity has
been identified in disease states. For example, a low-density PMN
population has been shown in blood (49–53), which correlates
with clinical manifestations such as vasculitis and synovitis in
systemic lupus erythematosus (SLE). Also, myeloid-derived
suppressor cells (MDSCs), which are defined by their ability to
suppress T-cell proliferation, have been identified in specific
inflammatory disease states (54). In cancer, distinct blood
PMN subsets have been identified with opposing cancer-related
functions and an ability to switch phenotypes (7, 55), which will
be discussed in more detail below. Additionally, subsets of PMNs
have been identified that (1) reverse transmigrate from the tissue
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into the circulation (35, 56–58), (2) can migrate to local lymph
nodes and perform antigen presentation to T-cells (59, 60), and
(3) stimulate marginal zone splenic B-cells to produce diversified
immunoglobulins (61).

Although different PMN phenotypes have been identified
based on differences in functionality and cell surface marker
expression, it is currently unclear as to whether these constitute
differentiated subsets of cells, or simply PMNs that have changed
their activation state in a developmental manner and in response
to specific stimuli. Compounding this issue is the fact that
PMN surface markers are exquisitely sensitive and known to be
altered by in vitro manipulations (6, 62–65). Since PMNs are
typically isolated and labeled prior to fixation it is difficult to
exclude possible changes in functionality or immunophenotype
due to in vitro manipulations. In the absence of definitive
evidence of PMN differentiation subsets, we must for now
conclude that the phenotypes all arise from a common, terminally
differentiated PMN progenitor. Furthermore, if the changes in
PMN functionality are unidirectional, they could loosely be
considered differentiation steps. However, the short life span
of PMNs complicates this interpretation since PMN aging
and progression toward death/apoptosis, which is also directly
tied to functional exertion, is, by definition, a unidirectional
process. Although PMNs do not divide and have a limited
lifespan, this does not imply that the possible existence of bona
fide subsets is not of interest. It is difficult to define exactly
how much “difference,” for example at the epigenetic or gene
expression level, between populations of PMNs, would be enough
to delineate a true subset. We suggest that a high threshold
of proof should meet the following three criteria: (1) some
level of difference in epigenetics or transcriptional output, (2)
significant non-plastic difference in functionality, (3) divergent
differentiation at some stage of the myeloid lineage.

PMNs are derived from the granulocyte-monocyte progenitor
(GMP) in the BM, which also gives rise to monocytes and
dendritic cells (66). A recent study using a mass cytometry
(CyTOF) approach identified a proliferative precursor cell,
downstream of GMP, that gives rise exclusively to PMNs
(67). Three unique PMN populations were identified in
BM, including the pre-neutrophil cells, immature PMNs and
mature PMNs, and these subsets had distinct transcriptional
and functional signatures. Functional output, including ROS
production, phagocytosis, chemotaxis, and expression levels of
granule protein transcripts was increased with PMN maturity
level. In addition, the authors found that immature PMNs are
mobilized from the BM in tumor bearing mice, which has also
been demonstrated by others (7). In the later study, the immature
PMNs, which were associated with a T-cell-suppressive, tumor-
permissive response, were found in the low density neutrophil
(LDN) fraction of density gradients, which would be consistent
with reduced granule content, and therefore lower density,
expected from an immature PMN. Consistent with this, an early
stage committed unipotent PMN progenitor cell was recently
identified in BM of mice and humans, which is expanded in
cancer, and gives rise to PMNs with T-cell-suppressive, tumor-
permissive properties (68). Together these studies indicate that
immature PMNs, which result from BM expansion of the PMN

progenitor population in response to cancer, have unique pro-
tumor functionality.

Another study demonstrated that PMNsmature, or age, in the
circulation, in response to microbial exposure, which was mainly
characterized by surface shedding of L-selectin (CD62L) (69).
In vivo aged circulating PMNs had pro-inflammatory properties
including heightened integrin activation and an elevatedNETotic
response. Since the distinct PMN functional outcomes arise from
one common differentiated progenitor population in the BM,
current knowledge supports a model whereby PMN functional
differences occur as a consequence of aging/maturation rather
than differentiation to distinct subsets.

REGULATION OF PMN RECRUITMENT TO
TISSUES

Circulating PMNs represent a consistent and sizeable destructive
potential, which is in reserve, and therefore only fully initiated
if and when a significant threat is encountered. In homeostasis
or in response to a gradient of potential inflammatory risk,
it is important that the initiation and recruitment of PMNs
and therefore the magnitude of the PMN response is well-
tuned and balanced with respect to the threat. There are a
several mechanisms that have evolved to limit PMN responses
and restrict unsolicited recruitment. A large fraction of PMNs
marginate within the large capillary networks of major organs
and are therefore held in reserve for mobilization during
inflammation (70). Adhesive capacity or “stickiness” of PMNs is
mediated by cell-surface expression and activation of adhesion
receptors, including integrins. This function plays a major role
in regulating PMN recruitment to activated endothelia. In a
recent manuscript, we demonstrate that two differentially primed
populations of PMNs, based on surface expression of adhesion
receptors, occur in healthy circulation (41). The majority of
circulating PMNs are in a resting state (rsPMNs), characterized
by low surface expression of several adhesion receptors that are
required for tissue recruitment, including CD11b and CD66a.
Approximately 10% of circulating PMNs have elevated basal
expression of these markers in health, and are primed for rapid
recruitment to inflamed tissues. We found that, within hours of
the initiation of acute peritonitis, rsPMNs in the circulation and
in the BM undergo induced surface upregulation of adhesion
receptors. Priming occurs due to the systemic dissemination of
pro-inflammatory factors and in a manner that is proportionate
to the severity of the primary infection. Furthermore, the
adhesion receptors identified on the surface after PMN priming
are granule membrane components and some degree of primary,
secondary and tertiary degranulation was associated with this
process. These observations have important implications for
the mechanism of PMN regulation and how the signals for
recruitment are propagated and amplified systemically.

In addition to systemic PMN surface upregulation of adhesion
receptors, integrins become activated in response to sub-second
triggering through interactions at the inflamed endothelial
surface, ensuring that recruitment occurs only at relevant sites
of tissue inflammation (71). Integrin-triggering occurs through
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a catch bond mechanism, whereby engagement with relevant
ligands on the endothelial surface induces a conformational
change in αM-integrin with strong adhesive capacity. Presence
of chemoattractants at the apical endothelial surface also
combines with integrin-engagement and shear forces to promote
PMN transendothelial migration (72). In the absence of pro-
inflammatory cues at the endothelial surface, shear forces of
blood flow actively restrict PMN responses (73–75), making
tissue recruitment unlikely. In one study, patients that had
an increased risk of developing post-operative infections were
found to have had “sticky” PMNs prior to the operation (76).
The “sticky” PMNs had enhanced adhesiveness but reduced
migratory properties, suggesting that baseline PMN activation
states, which could include genetic or environmental factors, can
impact the innate immune reaction during a challenge.

PMNs are classically seen as being inducibly recruited to
tissue sites in response to an acute inflammatory event. However,
more recently it has come to be appreciated that PMNs are
constitutively recruited to healthy mucosal tissues throughout
life. This includes the gastrointestinal tract (5, 77), the respiratory
tract (78), the reproductive tract (79), and the surface of the
eye (80). To a much lesser extent PMNs are also recruited to
healthy non-mucosal tissue sites (81), although the role of these
“sentinel” PMNs in sterile tissue is unknown.

THE MOUTH AS AN IMPORTANT
INTERFACE BETWEEN THE
ENVIRONMENT AND OUR TISSUES; A
POTENTIALLY IDEAL SITE FOR
ASSESSMENT OF PMN REGULATION AND
FUNCTION

The oral cavity is an important interface between us and our
environment, where there is significant exposure to pathogenic
insults, and the constitutive recruitment of large numbers of
PMNs to the gingiva serves an important protective function
in health (5, 6, 82, 83). The importance of PMN recruitment
to the oral cavity is underscored by our findings from studies
of hematopoietic stem cell transplantation in mice and humans
(84, 85). We found that, following bone marrow engraftment,
repopulating PMNs can be detected in the oral cavity, even
before they can be detected in the blood. Based on the yield of
PMNs in saliva of healthy humans, it is estimated that 50 to 250
million PMNs are recruited to the oral cavity alone each day. Oral
PMN load increases 4–10-fold in chronic periodontal disease
(PD) (5, 86). These numbers are conservative, considering that
a significant number of PMNs die within the gingival tissue,
and therefore do not emerge into the saliva (87). Also, oral
rinse protocols only recover a portion of the total PMNs therein,
while many are swallowed. The sheer number of PMNs that are
recruited to the oral cavity indicates that shedding at mucosal
surfaces is a major mechanism for their disposal, ensuring the
sequestration and depletion of aging/activated PMNs and thus
mitigating their potential to cause damage. From this perspective,
the commensal biofilm can be seen partly to function as a sink

for continual recruitment and turnover of a significant portion of
PMNs that are being produced in the bone marrow. Armed-and-
ready PMNs are necessary in case of emergency; however, in the
absence of emergency, a mechanism for their disposal is required.

Inflammation in the oral cavity can have systemic, whole
body, effects. In PD, hyperactive PMN recruitment to the oral
cavity is accompanied by increased circulating PMNs (88) and
a massive upregulation of pro-inflammatory cytokines in tissue
and circulation (89). The oral cavity, with its varied microbial
ecosystem, as well as constitutive low-grade PMN mediated
effects, is underappreciated in terms of its impact on systemic and
overall health. Simultaneously, it represents a vital opportunity to
study tissue PMN function in the context of commensal (health)
and pathogenic (disease) bacteria, due to easy access to large
numbers of PMNs in saliva and gingival crevicular fluid.

ORAL PMNs PRUNE THE COMMENSAL
MICROBIOME AND PREVENT DYSBIOSIS

Oral PMNs, which are recruited constitutively through the
gingival lamina propria and across the junctional epithelium,
emerge into the gingival crevicular fluid and saliva, where
they perform an essential housekeeping duty to “prune,” and
therefore limit the growth of the commensal microbial biofilm
(Figure 1A). This continuous function of PMNs in the oral cavity
helps to prevent dysbiosis, which would otherwise necessitate
an augmented immune response. A wall of PMNs forms on the
apical side of the junctional epithelium (90), forming a protective
barrier to the gingival biofilm (91). These PMNs restrict biofilm
growth through the release of toxic granule contents and ROS
production, but cannot phagocytose the large biofilm structure.
Although it would be biologically consistent for oral PMNs to
preferentially kill pathogenic microbes during early colonization
of the otherwise healthy oral cavity, there is evidence that
some pathogens can, in fact, evade PMN mediated destruction
within the oral cavity (2, 92), which likely accounts for their
pathogenic properties.

Sustained oral dysbiosis leads to gingivitis and eventually
PD. Dysbiosis associated with specific keystone pathogens is
correlated with the onset of PD (2, 93–95). In addition to
increased oral PMN levels, we (6, 96, 97) and others (89, 98–
100) have shown that oral PMNs of PD patients have a hyper-
inflammatory phenotype, characterized by elevated phagocytosis
and degranulation, and greater production of ROS and NETs.
Despite this, oral PMNs are not able to contain the bacterial
infection and instead cause collateral damage to periodontal
connective tissue, loss of attachment, and loss of alveolar
bone leading to tooth loss (98). Through careful analysis of
PMN surface markers of activation, we showed that in health,
oral PMNs have a reduced, para-inflammatory activation state
compared to the pro-inflammatory phenotype of oral PMNs
from patients with PD (6). This indicates that PMNs can shift
gears and respond differently to non-pathogenic commensal
organisms or pathogenic organisms within the oral environment.

Although the self-regulating ecological attributes of
commensal microbial biofilm communities are highly
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FIGURE 1 | Dysbiosis alters the relationship between biofilm and oral PMNs in a step-wise progression to periodontal disease. (A) PMNs are constitutively recruited to

the healthy oral cavity through the gingival crevice and limit the growth of the commensal biofilm. Healthy oral PMNs are in a para-inflammatory state, meaning they

are not fully activated. (B) In the early stages of disease, keystone pathogens suppress oral PMNs, causing increased biofilm growth and dysbiosis. (C) At some

critical threshold, the dysbiosis becomes severe enough to trigger a massive innate immune response, characterized by recruitment of large numbers of

pro-inflammatory PMNs. This leads to tissue destruction and bone loss associated with PD.

FIGURE 2 | PMNs responses during health and disease. Normal PMN function includes low level recruitment to healthy mucosal tissues to limit growth of the

commensal biofilm. Pathogenic factors including infection, injury, and cancer trigger inflammatory PMN responses. In the case of an effective response

homeostasis/health is achieved. If not this can lead to chronic inflammation or death. Non-resolving chronic inflammation can produce PMN mediated tissue damage

and dysbiosis of commensal microbes, which leads to further exacerbation of inflammation. Underlying chronic inflammatory conditions, which are common in the

elderly, increase the risk of severe hyper-inflammatory responses to an unrelated secondary inflammatory trigger. These hyper-inflammatory PMN-mediated responses

including sepsis and ARDS, and are associated with high mortality. Hyperactive or defective inflammatory responses can also occur due to genetic conditions or old

age, leading to dysbiosis, chronic inflammation, and tissue damage. PMN targeted therapies can help mitigate these defects to promote normal PMN function and

health.

sophisticated, these biofilms are in a constant state of flux
due to environmental exposure and other factors. PMNs can
help to limit the relative abundance of specific microbial
strains and therefore shape the constituency of the biofilm.

A model for progression of PD pathogenesis is presented in
Figure 1. Subversion or avoidance of PMNmediated destruction
by an invading keystone pathogen could potentially impact
the ability of PMNs to limit growth of both the invading
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pathogens and the commensal organisms, eventually reaching a
hypothetical threshold where the dysbiotic microenvironment
triggers a magnified PMN-mediated inflammatory response
(Figures 1B,C). This model is supported by manifestations in the
absence of normal PMN function. PMN recruitment is defective
in leukocyte adhesion deficiency Type-I (LAD-I), and this is,
seemingly paradoxically, associated with increased inflammation
within the gingival tissues (101, 102). While the altered biofilm
associated with the absence of PMNs did not penetrate into the
diseased gingival tissues, microbial factors did penetrate into
the tissues and drive T-cell and epithelial cell-derived IL-17 and
IL-23, which induced gingival inflammation associated with
symptoms of periodontal disease progression, including bone
loss and edentation. In a situation where PMNs are suppressed
by invading keystone pathogens, or neutropenia following
chemotherapy, oral dysbiosis might trigger a similar IL-17/IL-23
axis, but could also cause a hyperinflammatory PMN recruitment
cascade which might supersede the initial suppression. Although
the clinical appearances of periodontal tissue destruction in the
absence of functional PMN-mediated protection might appear
to be similar to that seen in patients with PD, the latter being
mediated in part by hyperfunctional PMNs, the underlying
pathophysiological processes of the two are quite different. In
relation to conditions defined by reduced PMN function, the fact
that bacteria can actually invade tissues becomes more important
in that these bacteria not only stimulate other inflammatory
pathways, as alluded to above, but might also cause direct
damage to tissues by way of bacterial virulence factors (e.g.,
bacterial collagenases).

OCULAR PMNs

The surface of the eye is somewhat analogous to the mouth, in
that it has its own commensal biofilm and shows constitutive
recruitment of PMNs. PMNs accumulate at the healthy ocular
surface primarily in the closed eye environment, during sleep
(80). PMNs from the closed eye have a suppressed ability
to respond to in vitro stimuli (103, 104), suggesting that
some aspect of the ocular environment in the closed eye
limits full-scale activation of PMNs, which might serve to
protect the corneal surface from ROS and granule proteins,
while maintaining the ability of PMNs to protect the eye
from pathogens. The anti-inflammatory tear protein, lactoferrin,
was shown to partly suppress blood PMN responses to in
vitro stimuli (103). Furthermore, evidence indicates that NET
formation on the ocular surface during sleep could have anti-
inflammatory properties, with NET aggregates and associated
pro-inflammatory factors being ejected at the corner of the eye
upon waking (105). During a corneal injury, PMN recruitment
to the eye is greatly increased (106).

DEFECTIVE PMN RESPONSES

Although the vast majority of PMN mediated inflammatory
events exhibit a graded and appropriate response that limits
and contains the spread of pathogens effectively, defective PMN

responses can occur for reasons that are either genetic or
environmental, with serious consequences to human health.
Defects in production, release, recruitment, or function of PMNs
are all associated with increased risk of infection and death
(107–109). Neutropenia, or low circulating PMN counts, is
defined as an absolute PMN count of ≤ 500/mm3 and, most
often, is the result of a genetic disorder or chemotherapy (110–
112). Neutropenia is commonly treated with granulocyte colony-
stimulating factor (G-CSF) or granulocyte-macrophage colony-
stimulating factor (GM-CSF) (113), which mobilize and prime
PMNs (41, 114, 115).

In addition to neutropenia, several rare genetic defects of
PMN function exist. Chronic granulomatous disease (CGD), in
which PMNs engulf but cannot kill microorganisms, can leave
an individual more susceptible to frequent infections including,
pneumonia, infections in the lymph nodes and abscesses in
the skin, liver and other organs (107). Chédiak-Higashi disease,
caused by a defect in PMN primary granules, is also manifested
clinically by recurrent infections, severe periodontal disease and
early death (116). Leukocyte adhesion deficiencies (LAD) are due
to mutations that cause defective β2-integrin (CD18) function
(LAD I), or defective glycosylation of selectin family adhesion
receptors (LAD II). This leads to the formation of PMNs that
cannot adhere to vascular endothelium and thus cannot migrate
out of blood vessels into areas of infection (117, 118), causing
elevated blood PMN counts and severe bacterial infections,
especially within the mouth and gastrointestinal tract. LAD has
been treated successfully with bone marrow transplants.

Papillon-Lefèvre syndrome is a rare genetic disease of
chronic non-resolving inflammation characterized by a loss of
PMN NETotic ability and serine protease activity, resulting in
impaired microbicidal functions (119). PMNs in these patients
are competent at cytokine production and ROS generation and
are recruited relentlessly to sites of tissue inflammation, but fail
to successfully limit microbial growth. The resulting “frustrated”
inflammation causes the development of severe periodontal
disease leading ultimately to the loss of all teeth (deciduous
and secondary). Thus, a defect in certain PMN functions
can paradoxically result in compensatory hyper-inflammation
through other PMN functions, as a result of the non-clearance
of pathogens. PMN defects often manifests in the oral cavity,
which is a major interface between us and our microbe laden
environment, as noted above.

PMNs ARE SUBVERTED IN CANCER

Cancerous cells are derived from the human body and therefore
are “self,” however they do present specific cancer associated
patterns (CAPs) that are recognized and targeted by both innate
and adaptive immune cells. The innate immune system can
recognize unique CAPs to prevent tumor growth and metastasis
(120). However, the role of PMNs in cancer is complex, and they
are not only capable of killing tumor cells but also promoting
tumor growth (121, 122). Although PMNs have anti-tumor
potential (7), tumors can subvert PMN function (8, 54, 55),
including NET formation (123), to promote tumor growth.
PMNs can also contribute to metastasis (9, 124). Significant
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diversity of PMN populations has been identified based on gene
expression analysis in cancer. In both human non-small-cell lung
cancer (NSCLC) patients and a mouse model of NSCLC, up to 6
different tumor associated PMN populations were demonstrated
(125), based on distinct patterns of transcript expression. In a
mouse model of breast cancer, three distinct circulating PMN
populations were described, with significant functional plasticity
(7). The authors showed that early in tumor progression, PMNs
help to clear cancer cells from the circulation, however, at
later stages, tumor associated neutrophils (TANs) switch to a
pro-tumor, immunosuppressive phenotype (7, 55). One recent
study demonstrated that PMNs exhibit pro-tumor attributes in
a hypoxic tumor microenvironment, and oxygenation of the
tumor induced these PMNs to revert to their tumor killing
phenotype (126). As described in the section “Diversity of the
PMN Response: Activation States or Subsets?”, immature T-
cell-suppressive PMNs, called PMN-myeloid derived suppressor
cells (PMN-MDSCs), are associated with the tumor-permissive
PMN phenotype in cancer (54). Chemotherapeutic treatment
causes neutropenia and these patients are at risk of developing
severe infections (112). It seems reasonable to predict that the
treatment might partly be effective based on the reduction of
tumor-permissive PMNs, to our knowledge, this avenue has not
been explored.

Manipulating PMN responses could be the basis of an effective
potential cancer immunotherapy approach, the goal of which
would be to restore the pro-inflammatory function of PMNs
and direct them toward tumor associated molecular patterns
(127). A recent study has shown that pores in the endothelial
barrier, formed by extravasating PMNs, improve the delivery of
liposomes to tumors (128), and therefore could contribute to
efficacy in new cancer therapy approaches that rely on delivery
of drugs inside liposomes.

In addition to the ability of tumors to induce pro-tumor
TANs, oral cancers could be subject to the effects of PMNs
that occur naturally and constitutively in the oral cavity or as
a result of PD. Elevated oral PMNs are directly correlated with
reduced survival and increased recurrence of oral squamous cell
carcinoma (OSCC) (129). Co-culture experiments demonstrated
that PMN factors increased the invasive potential of OSCC
cells (130). Accordingly, PD, which is associated with massively
upregulated PMN recruitment to the oral cavity, is also a
major risk factor associated with oral cancers (131, 132). In
addition to increased oral PMN counts in PD as discussed
previously, evidence suggests that these PMNs exhibit an
immunosuppressive phenotype, based on production of IL-
10 (133), which is similar to the phenotype exhibited by
tumor-permissive PMNs. PMNs could also contribute to cancer
progression through matrix remodeling and angiogenesis (134),
and the nature of the chronically inflamed microenvironment
of the gingival wound in PD, to which PMN-mediated tissue
damage contributes greatly, can act as the ideal niche for tumor
seeding and progression. Finally, NETs, which are highly elevated
in PD (6), have been implicated in cancer progression (9,
135) and metastasis (136–138), and measuring NETs has been
proposed as a method to determine increased risk of metastasis
in head and neck squamous cell carcinoma (HNSCC) (139).

POTENTIAL THERAPEUTIC
PMN-SPECIFIC INTERVENTIONS

Pathological or auto-inflammatory PMN responses occur in
various disease states, and can cause significant tissue damage
and tissue liquefaction in extreme cases (4, 140). In these
instances, PMN-targeted therapies are possible (141). Current
PMN targeted therapies include inhibition of PMN recruitment,
suppression of PMN effector functions and enhancement of
PMN apoptosis (142, 143).

Sepsis, a common cause of death in hospital intensive care
units, is caused by severe polymicrobial infections, causing
cytokine storm (144) and massive systemic activation of PMNs,
followed by PMN paralysis (145). Highly activated PMNs in
circulation develop increased membrane rigidity resulting in
sequestration in the capillary beds (146–148). These PMNs
fail to transmigrate and contribute to ischemic injury and
organ damage. Damage to the vasculature causing loss of
tissue perfusion and oxygen delivery results in death due to
the failure of vital organs such as the kidneys, liver, heart,
and lungs (149–151). Limited effective treatment options are
available for sepsis (152, 153), and early intervention is critical
(154). Early PMN recruitment to resolve the initial infection
(155, 156) and early administration of antibiotics (157) are both
associated with increased survival rate. Also, pre-administration
of probiotics (158) and mesenchymal stem cell transfusion
(159) have both shown efficacy in reducing sepsis mortality in
mice by suppressing infection and inflammation. Sepsis often
results in acute respiratory distress syndrome (ARDS), with
excessive PMN recruitment to the lung alveoli associated with
increased mortality (160). In a pig model of ARDS, suppression
of PMN proteases, including matrix metalloproteinase-2 (MMP-
2), MMP-9 and elastase, effectively suppressed the development
of sepsis and ARDS (161). Although suppression of PMNs is one
potential treatment option for sepsis, it is complicated by the
fact that PMNs play both protective and destructive roles (11).
Furthermore, suppression of the inflammatory PMN response to
infectious agents, including bacteria, viruses, and parasites, will
inevitably lead to increased host susceptibility. This is illustrated
by the observation that mutant mice lacking TLR4, a receptor
for bacterial LPS, are resistant to septic shock, but more prone
to infection by gram-negative bacteria (162). The timing of
treatment in sepsis is an important factor to consider, as there
could be a therapeutic window where PMN suppression can
avoid certain aspects of the hyperinflammatory response such
as vascular damage, and simultaneously keep the PMNs on
track to deal with the infection after. PMN suppressive therapies
might be effective in combination with antibiotic treatment.
PMNs can also act as a biomarker for the diagnosis of sepsis.
Surface upregulation of the high-affinity Fc-receptor, CD64, on
circulating PMNs, is used clinically as a marker of sepsis (163,
164).

Gout is a painful arthritic disease caused by the recruitment
of PMNs to the inflamed joint in response to the build-
up of crystals of the natural metabolite, monosodium urate
(MSU). Although NSAIDs are currently used as the standard
treatment for acute gout, the microtubule depolymerizing agent,
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colchicine, has been used for this purpose for centuries (165).
Colchicine directly inhibits PMN responses to MSU crystals that
cause gout, including adhesion, chemotaxis, recruitment, ROS
production, and activation of the NLP3 inflammasome (166–
169). Interestingly, gall stones, which are also made of crystalized
MSU, require NETs in order to form (170), suggesting that PMN
targeted therapies could be useful for this common disease.

Antibodies can be used to block cytokines, PMN surface
epitopes or epithelial-expressed adhesive ligands to block PMN
recruitment to tissues. For example, Anti-TNF and anti-IL17
injection into arthritic joints are an effective method to suppress
PMN-mediated inflammation in rheumatoid arthritis (171).
Antibodies that block the PMN expressed surface carbohydrate
Sialyl Lewisx (CD15) reduce PMN chemotaxis and tissue
recruitment (172). ICAM-1 expressed on intestinal epithelial cells
acts to recruit PMNs to the gut and reduce PMN apoptosis (30)
and is, therefore, a potential target for antibody-mediated therapy
in gut inflammation.

Targeting NET production is a relatively new field with
significant potential in the treatment of specific PMN-mediated
pathologies. Auto-antibodies against endogenous NETs have
been implicated in the pathogenesis of RA and SLE (173).
In SLE, NETs were found to trigger macrophages in a
feedforward loop, stimulating further NET production, which
could contribute to flares (174). Therapies targeting NETs could
suppress macrophage activation and limit immune complex
formation and therefore suppress downstream activation of
adaptive immune responses in SLE (175). Recently it has
been shown that aggregated NETs contribute to resolution of
inflammation by sequestering and degrading pro-inflammatory
factors (29), which should be kept in mind in any therapeutic
intervention targeting NETs.

Some of the anti-inflammatory effects of cannabis are likely
through the suppression of PMN function. PMNs express the
cannabinoid receptor (CB2) (176) and evidence suggests that
cannabinoids suppress PMN function including cell migration,
production of ROS and TNF-α production (177). In vivo,
inhibition of the CB2 receptor suppressed PMN-mediated tissue
damage in a mouse model of myocardial ischemia/reperfusion
injury (178), and mice that lack CB2 expression exhibit
exacerbated PMN recruitment during infection (179).

Natural lipid factors, including resolvins, protectins, and
maresins, which are pro-resolution as opposed to anti-
inflammatory, have the potential to suppress over-exuberant or
unwanted inflammation (180). Resolvin D2 (RvD2) was shown
to reduce the innate immune response and alveolar bone loss in
a mouse model of P. gingivalis-induced periodontitis (181).

Other factors with potential therapeutic PMN-suppressive
functions include Benzyloxycarbonyl-proline-prolinal (ZPP)
(182), the endogenous glucocorticoid annexin A1 (183), galectin
1 (184), and carbon monoxide (185), hydrogen sulfide (186), and
nitrous oxide gas (187).

PMN responses can contribute to pain and other undesirable
symptoms. However, cessation of PMN function might interrupt
the body’s natural defenses and therefore worsen prognosis, and
could lead to alternative consequences that are more severe.
A recent mouse study demonstrated that retinal damage and

infection with P. aeruginosa resulted in the recruitment of PMNs
to the corneal surface of the eye, and generation of a layer
of NETs that acted as a barrier to the infecting biofilm (188).
Although the resulting inflammation caused significant keratitis-
associated damage to the eye, the alternative, demonstrated
in PAD4−/− mice that are not able to form NETs, was
the dissemination of the bacterial infection into the brain, a
decidedly more severe outcome. Similarly, NET production in
the heart causes organ damage associated with old age (189),
and PAD4−/− mice lack signs of age-related fibrosis of the
heart. However, in the absence of PMN mediated surveillance
and NETosis, other negative cardiovascular consequences and
infections would likely occur. Therefore, aging-associated tissue
fibrosis is an undesirable consequence of the natural protective
functions of PMNs.

PMNs ARE A NEXUS FOR
SIMULTANEOUSLY OCCURRING
INFLAMMATORY TRIGGERS

Several chronic inflammatory diseases including heart disease,
rheumatoid arthritis, and diabetes are reciprocally linked with
PD (190–193). In a recent longitudinal study, following a cohort
of 161,286 subjects over a 10.5 year period, a direct association
was found between reduced oral hygiene and severity of PD
with increased incidence of atrial fibrillation and heart failure
(194). The mechanisms underlying the crosstalk between two
independent inflammatory conditions occurring at different
loci within the body are unknown, however PMNs are a
good candidate cell type that could contribute, since PMN
priming and mobilization occurs systemically. Supporting the
link between oral inflammation and systemic PMN responses,
we found increased priming of PMNs in the circulation 1
week after cessation of oral hygiene practices, using a human
model of experimental gingivitis (41). Another study showed
that the presence of PD in diabetic patients exacerbated the
suppression of apoptosis of circulating PMNs compared to
diabetes alone (195). Although PMNs generally are recruited
across the inflamed endothelium in a highly targeted manner
to respond to an acute or chronic threat, what happens when a
patient has an additional underlying inflammatory complication
or comorbidity? It seems reasonable to speculate that PMNs
that are generated, demarginated or primed in response to an
inflammatory challenge will raise the innate immune highwater
mark and therefore lower the threshold of immune responses
to other challenges (196). In support of this, mice with
underlying chronic inflammation including colitis, diabetes and
lung inflammation showed increase PMN recruitment to an
unrelated secondary peritoneal site (197). In a pig model of acute
lung injury, a second “hit” introduced by injection of low dose
LPS caused more severe organ damage, which was associated
with hyper-inflammatory PMN recruitment and secretion of
MMP-9 and elastase (198). PMN therapeutic approaches could be
effective in short-circuiting the interaction between two parallel
inflammatory conditions.
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ROLE OF PMNs IN AGING

Collateral damage due to inflammation contributes to the aging
process (189, 199–201) and is a major contributor to pathological
disease progression in old age (202). The sheer abundance
of PMNs and their tissue destructive properties suggest that
cumulative PMN-mediated effects are likely to play an important
role in the aging process, including contributions to chronic and
acute disease, tissue fibrosis and periodontal bone loss. Aging-
associated accumulation of DAMPs is one mechanism whereby
PMNs could contribute to chronic low-grade inflammation in
the elderly. Furthermore, changes in the immune system during
aging, called inflammaging, are characterized by reduced PMN
function. With old age PMN functions including chemotaxis
(203), phagocytosis (204), and NETosis (205, 206) are reduced.
In spite of this, total WBC and PMN counts (207), levels of pro-
inflammatory factors in the circulation, and the risk of severe and
deadly hyper-inflammatory innate immune responses to acute
challenges (208) are all increased.

Suppressed innate immune function in old age causes the
elderly to be more susceptible to infectious disease. This is
confounded by the fact that many elderly people have underlying
health conditions to begin with. From this perspective it is helpful
to consider changes in PMN responses during aging in the
context of the double hit model of inflammation discussed in
the previous section. From this perspective, chronic low-grade
inflammation associated with common health complications
of the elderly could produce dysfunctional innate immune
responses and increased mortality during an acute health
emergency (Figure 2). This has recently been highlighted by the
increased mortality rates associated with COVID-19 infection
in the elderly. Ten to 15% of COVID-19 patients are highly
susceptible to severe outcomes including pneumonia, acute
respiratory distress syndrome (ARDS) and septic shock (209),
and this risk is much higher in the elderly population. These
adverse responses that are responsible for the high mortality
rate associated with COVID-19 infection are characterized
by excessive recruitment of PMNs to the lungs and other
vital organs. Patients suffering from acute respiratory distress
syndrome (ARDS) due to COVID-19, show massive PMN
recruitment and NETosis in the lungs (210), and elevated
NETotic DNA in the circulation (211).

CONCLUDING REMARKS

In health, PMNs are constitutively recruited to mucosal tissues,
including the oral cavity, gastrointestinal, respiratory and
reproductive tracts and the ocular surface, and a lesser extent
to naive sterile tissues throughout the body. They also help to
contain transient bacteremias (212) and can be quickly recruited
in large numbers to sites of infection throughout the body.
Through their innate immune function and as effector cells
of the adaptive immune response, PMNs consistently protect
the host organism from existential threats. Despite this, PMN
responses tend to be recognized mainly due to their tissue
destructive effects.

Some of the consequences of PMN function that might be
considered undesirable are actually protective and preferable to
the alternative. In periodontal disease, for example, a massive
influx of PMNs into the oral cavity and overt inflammation of
the gingiva results in bone resorption and tooth loss. Prior to the
development of modern dentistry, a relatively new phenomenon,
these adaptive tissue reactions were desirable outcomes, since
tooth exfoliation at sites of advanced periodontal bone loss seals
off openings through the mucosa. This functions to protect from
the systemic and local effects of chronic gingival inflammation
and limits the occurrence of severe invasive lesions such as
osteomyelitis. Consistent with the protective effects of tooth
exfoliation, PMN activation is suppressed in the oral cavity of
edentulous patients (213).

PMNs are the most abundant leukocytes and yet they are
relatively understudied. This is partly due to their highly
volatile nature and experimental intractability. Future research
using new cutting-edge approaches, such as single cell RNAseq,
mass cytometry and intravital microscopy, will help to develop
a deeper understanding of PMN subset diversity and new
opportunities for therapeutic intervention.
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