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Background: Usher syndrome (USH) is a recessive inherited disease characterized by
sensorineural hearing loss, retinitis pigmentosa, and sometimes, vestibular dysfunction.
Although the molecular epidemiology of Usher syndrome has been well studied in
Europe and United States, there is a lack of studies in other regions like Africa or Central
and South America.

Methods: We designed a NGS panel that included the 10 USH causative genes
(MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, ADGRV1, WHRN, and
CLRN1), four USH associated genes (HARS, PDZD7, CEP250, and C2orf71), and the
region comprising the deep-intronic c.7595-2144A>G mutation in USH2A.

Results: NGS sequencing was performed in 11 USH patients from Cuba. All the
cases were solved. We found the responsible mutations in the USH2A, ADGRV1,
CDH23, PCDH15, and CLRN1 genes. Four mutations have not been previously
reported. Two mutations are recurrent in this study: c.619C>T (p.Arg207∗) in CLRN1,
previously reported in two unrelated Spanish families of Basque origin, and c.4488G>C
(p.Gln1496His) in CDH23, first described in a large Cuban family. Additionally,
c.4488G>C has been reported two more times in the literature in two unrelated families
of Spanish origin.

Conclusion: Although the sample size is very small, it is tempting to speculate that the
gene frequencies in Cuba are distinct from other populations mainly due to an “island
effect” and genetic drift. The two recurrent mutations appear to be of Spanish origin.
Further studies with a larger cohort are needed to elucidate the real genetic landscape
of Usher syndrome in the Cuban population.

Keywords: retinitis pigmentosa, sensorineural hearing loss, Usher syndrome, deaf-blindness, molecular genetics

INTRODUCTION

Usher syndrome (USH, OMIM 276900, OMIM 276905, OMIM 605472, ORPHA: 886) is the
most prevalent deaf-blindness of genetic origin. It is a recessive inherited disease characterized by
sensorineural hearing loss (HL), visual loss due to retinitis pigmentosa (RP), and, in some cases,
vestibular dysfunction. Prevalence estimates range from 3.2 to 6.2/100,000 (Espinós et al., 1998;
Keats and Corey, 1999).

Patients with USH are classified into three clinical subtypes (USH1, USH2, or USH3), based
on the severity and progression of hearing impairment and the presence or absence of vestibular
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dysfunction. Usher syndrome type I (USH1) is the most
severe type, characterized by severe to profound congenital
sensorineural hearing loss, vestibular dysfunction, and
prepubertal onset of RP eventually leading to legal blindness.
USH2 is characterized by moderate to severe hearing
impairment, normal vestibular function and later onset of
retinal degeneration. USH3 displays progressive hearing loss,
RP and variable vestibular phenotype (Saihan et al., 2009;
Millán et al., 2010).

Currently, up to 13 genes have been associated with
Usher syndrome: MYO7A, USH1C, CDH23, PCDH15, USH1G,
and CIB2 are responsible for USH1, although the role of
CIB2 in the Usher syndrome has recently been put on
doubt (Booth et al., 2018). USH2A, ADGRV1, and WHRN
are the three genes responsible for USH2, and the CLRN1
gene is the only one associated with USH3 cases to date.
Besides, PDZD7 has been reported to behave as a modifier
of the retinal phenotype in conjunction with USH2A, and a
contributor to digenic inheritance with ADGRV1 (Ebermann
et al., 2010). In addition, HARS was postulated as a novel
causative gene of USH3, based on a mutation found in
two patients (Puffenberger et al., 2012). Finally, mutations
in CEP250 have been reported to cause cone-rod dystrophy,
isolated RP and atypical forms of USH, characterized by
early onset hearing loss and mild RP (Khateb et al., 2014;
Fuster-García et al., 2018; Kubota et al., 2018).

In the last years, next generation sequencing (NGS) techniques
have revolutionized the world of the molecular genetic
diagnosis, allowing the whole genome, whole exome and
targeted gene sequencing more feasible, and making easier,
rapid and cost-effective the identification of disease genes
and the underlying mutations. It has been especially useful
in genetically heterogeneous diseases, such as hearing loss or
retinal dystrophies (Choi et al., 2013; Fu et al., 2013; Mutai
et al., 2013; Glöckle et al., 2014). We previously developed
a targeted next generation sequencing method for Usher
syndrome that proved to be highly efficient (Aparisi et al., 2014;
Fuster-García et al., 2018).

Although the molecular epidemiology of the Usher syndrome
and the distribution of mutations causing the disease among
these genes has been well studied in Europe and United States,
there is a lack of studies in other regions like Africa or Central
and South America.

Here, we show for the first time a molecular landscape of
the Usher syndrome in Cuba, and we provide as well a clinical
description of all the cases.

MATERIALS AND METHODS

Patients
A descriptive cross-sectional study was carried out in a series
of 11 families from Holguin (Cuba) with patients diagnosed
clinically as Usher syndrome. All the 11 patients were Caucasian.
The family trees of the families are shown in Figure 1.

The variables collected in this study were: age, sex, ethnicity,
birthplace of the patients and their ancestors, consanguinity,

age of onset HL and at diagnosis, HL degree, age of the
first symptoms of RP and current clinical stage, and vestibular
function. The institutional board of both the Ethics Committee
of the University Hospital La Fe and the University of Holguín
approved the study, according to the tenets of the Declaration of
Helsinki and reviews. A survey assessed by the researchers was
used in compliance after signing informed consent.

Ophthalmological examination included visual acuity,
funduscopy, visual field test with Goldmann perimetry, and
electroretinogram (ERG). The Audiological examination
consisted of the vestibular function study through the caloric test
and study of brainstem auditory evoked potentials (BAEP).

Hearing loss evaluation was carried out using a radio
audiometer MA31 (Grosses Klinisches Audiometer, Germany) in
the Hospital “Vladimir Ilich Lenin.” The BAEPs were obtained in
response to the monaural stimulation through TDH-39 hearing
aids, with condensation clicks with a duration of 100 µsec
and an intensity of 95 dB pSPL. The hearing loss of each
affected individual was quantified by performing a complete
tonal audiometry. Hearing loss was classified as: Mild (20–
40 dB), moderate (40–70 dB), severe (70–90 dB), or profound
(more than 90 dB).

Peripheral blood was obtained and DNA was extracted in the
National Center for Medical Genetics in Havana, and sent to the
University Hospital La Fe in Valencia (Spain).

Targeted Exome Sequencing Design
We designed a customized AmpliSeq panel using Ion AmpliSeq
Designer tool from Thermo Fisher Scientific1 to generate the
targeted library composed of all exons contemplated in all
isoforms with 10 bp padding of the flanking intron regions, and
the additional locus comprising the c.7595-2144A>G intronic
mutation (Vaché et al., 2012). These target regions were covered
by 810 amplicons of 125–175 bp length range, computing a total
panel size of 147.95 kb. The designed panel (Table 1) included
14 genes, 10 USH causative genes (MYO7A, USH1C, CDH23,
PCDH15, USH1G, CIB2, USH2A, ADGRV1, WHRN, and CLRN1)
and four USH associated genes (HARS, PDZD7, CEP250, and
C2orf71).

Sequence Enrichment and Next
Generation Sequencing
The amplification of the targets was performed according to the
Ion AmpliSeq Library Kit 2.0 protocol (Thermo Fisher Scientific,
Inc.) for Ion Torrent sequencing. The sequencing was carried out
with a theoretical minimum coverage of 500× either on the PGM
or Proton system.

Variant Filtering and Analysis
The resulting sequencing data were analyzed with the Ion
Reporter Software tool2 in regards to the human assembly
GRCh37 (also known as hg19). The annotated variants were
filtered according to a Minor Allele Frequency (MAF) value

1www.ampliseq.com
2https://ionreporter.thermofisher.com/ir/
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FIGURE 1 | Family trees of the Usher families analyzed in this study. Arrows indicate the proband that was studied through the USH targeted panel.

≤0.01, their annotation in the dbSNP3, their description in the
Usher syndrome mutation database4 and the mutation type.

3https://www.ncbi.nlm.nih.gov/SNP/
4https://grenada.lumc.nl/LOVD2/Usher_montpellier/

Those disease-causing and suspected-to-be pathogenic variants
were validated through conventional Sanger sequencing. For this,
each DNA locus comprising a selected mutation was amplified
by PCR with specific primers, and both forward and reverse
strands were sequenced using the Big Dye 3.1 Terminator

Frontiers in Genetics | www.frontiersin.org 3 May 2019 | Volume 10 | Article 501

https://www.ncbi.nlm.nih.gov/SNP/
https://grenada.lumc.nl/LOVD2/Usher_montpellier/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00501 May 20, 2019 Time: 15:44 # 4

Santana et al. Usher Syndrome in Cuba

TABLE 1 | Details of the target region studied in this study.

Chr Gene/
locus

Coding
exons

Size
(bp)

Number of
amplicons

Design
coverage

5 ADGRV1 90 20721 181 99.4%

1 USH2A 72 17043 134 98.9%

10 CDH23 73 11849 120 99.5%

10 PCDH15 43 8284 67 98.2%

20 CEP250 32 7969 58 100%

11 MYO7A 51 7642 88 98.6%

2 C2orf71 2 3907 23 99.6%

10 PDZD7 17 3474 31 97.5%

11 USH1C 29 3334 38 94.2%

9 WHRN 14 2964 26 100%

5 HARS 15 1790 14 100%

17 USH1G 4 1446 12 100%

3 CLRN1 9 1051 9 100%

15 CIB2 7 684 8 95%

1 ∗chr1:
216064460-
216064620

− 160 1 100%

Chr, chromosome number. ∗Region of the USH2A PE (Pseudo-exon 40) where
mutation c.7595-2144A>G is located. Targets are arranged according to the size
of the covered region.

Sequencing Kit (Thermo Fisher Scientific, Inc.) after enzymatic
PCR clean up with illustra ExoProStar 1-Step (GE Healthcare
Life Sciences). The purified sequence products were analyzed on
a 3500xL ABI instrument (Applied Biosystems by Thermo Fisher
Scientific, Inc.).

The novel variants found in the cohort of probands were
categorized based on the guidelines of the clinical and molecular
genetics society5 and the Unknown Variants classification system
(see text footnote 4) as pathogenic, probably pathogenic (UV4),
possibly pathogenic (UV3), possibly non-pathogenic (UV2), and
neutral (UV1), according to the type of mutation, bioinformatic
predictions and segregation analysis. The four novel mutations
were frameshift or nonsense mutations. Hence, they were
automatically stated as pathogenic variants.

The annotation of the variants was performed according
to following isoform reference sequences for each gene:
MYO7A (NM_000260.3), USH1C (NM_153676), CDH23
(NM_022124.5), PCDH15 (NM_033056.3), USH1G
(NM_173477), CIB2 (NM_006383.2), USH2A (NM_206933),
ADGRV1 (NM_032119.3), WHRN (NM_015404),
CLRN1 (NM_174878), HARS (NM_002109), PDZD7
(NM_001195263.1), CEP250 (NM_007186.4), and C2orf71
(NM_001029883.2).

MLPA Complementary Analysis
In order to ascertain if homozygous mutations could truly be
masked cases of a large deletion comprising a heterozygous
variant, we performed pertinent multiplex Multiplex ligation-
dependent probe amplification (MLPA; MRC-Holland) analysis
for the only USH genes available, USH2A and PCDH15.

5https://www.emqn.org/emqn/Best+Practice

RESULTS

Eleven index cases diagnosed of Usher syndrome from the
province of Holguín, Cuba, were screened for mutations in the
USH-associated genes of our home-designed panel.

Details of the genes, number of amplicons or coverage are
described in Table 1.

Five cases were diagnosed of USH1, whereas four cases were
USH2, and two cases were difficult to classify clinically. All the
eleven cases were solved and the specific causative mutations can
be found in Table 2.

Six families were consanguineous (54.5%) and another two
were probably consanguineous (18.2%), since the parents come
from the same small village. In total, the consanguinity or
probable consanguinity in the cohort is over 70%.

Among the USH1 cohort, two pathogenic mutations were
found in CDH23 (US-4, US-5, US-6, US-7, and US-11). In
the USH2 cohort, two pathogenic mutations were found in
ADGRV1 (US-2) and USH2A (US-16 and US-9), and PCDH15
(US-10). Regarding the unclassified cases, two mutations were
found in CLRN1 (US-8 and US-12). Patient US-2, who
carried the mutation c.15448_15449delCT in homozygosis
in the ADGRV1 gene, carried the additional c.3242G>A
(p.Arg1081Gln) missense mutation in CDH23 in heterozygous
state, which is predicted to probably damaging according to
PolyPhen-2 and benign as SIFT and PROVEAN.

Four mutations are reported in this study for the first
time, namely c.15448_15449delCT (p.Leu5150Hisfs∗6) in
ADGRV1, c.7730_7734delTCAGT (p.Phe2577Serfs∗28) in
CDH23, c.1624G>T (p.Glu542∗) in CDH23, and c.3661C>T
(p.Gln1221∗) in PCDH15.

Two mutations have been found in several USH alleles
in this study. The p.Arg207∗ mutation in CLRN1 was
found in homozygous state in two different families, both
of them consanguineous. That means 18.2% of the total
mutated alleles and 40% among the non-USH1 mutated alleles.
Among the USH1 cases, p.Gln1496His accounted for 80%
of the USH1 alleles (eight out of 10) and 36.4% of the
total USH alleles. All the USH1 patients bear mutations
in CDH23.

The sequences of each mutation are shown in Figure 2.
MLPA assays in the patients US-9, US-10, and US-16, with

homozygous mutations in either USH2A or PCDH15, revealed
no copy number variations.

Clinical Description
The clinical features of the 11 index patients are shown in Table 3.

Mutation: c.15448_15449delCT (p.Leu5150Hisfs∗6) in
ADGRV1
Proband of family US-2: The subject comes from a non-
consanguineous family (father from Mexico and mother from
Cuba) and displays a typical USH2 phenotype. She presented
with a postlingual moderate non-progressive HL, no vestibular
dysfunction and postpubertal onset of RP. This patient carries the
mutation p.Leu5150Hisfs∗6 in ADGRV1 in homozygosis.
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TABLE 2 | Genetic findings of the patients screened in this study, mutations, their effect on the protein, genes mutated, and nature of the mutations.

Patient Diagnosis Mutations Effect on protein Gene Type of References

mutation

US-2 USH2 c.15448_15449delCT p.Leu5150Hisfs∗6 ADGRV1 Frameshift This study

c.15448_15449delCT p.Leu5150Hisfs∗6

US-4 USH1 c.4488G>C p.Gln1496His CDH23 Splice site Bolz et al., 2001

c.7730_7734delTCAGT p.Phe2577Serfs∗28 Frameshift This study

US-5 USH1 c.4488G>C p.Gln1496His CDH23 Splice site Bolz et al., 2001

c.4488G>C p.Gln1496His

US-6 USH1 c.4488G>C p.Gln1496His CDH23 Splice site Bolz et al., 2001

c.4488G>C p.Gln1496His

US-7 USH1 c.4488G>C p.Gln1496His CDH23 Splice site Bolz et al., 2001

c.1624G>T p.Glu542∗ Nonsense This study

US-8 USH? c.619C>T p.Arg207∗ CLRN1 Nonsense García-García et al., 2012

c.619C>T p.Arg207∗

US-9 USH2 c.2299delG p.Glu767Serfs∗21 USH2A Frameshift Liu et al., 1999

c.2299delG p.Glu767Serfs∗21

US-10 USH2 c.3661C>T p.Gln1221∗ PCDH15 Nonsense This study

c.3661C>T p.Gln1221∗

US-11 USH1 c.4488G>C p.Gln1496His CDH23 Splice site Bolz et al., 2001

c.4488G>C p.Gln1496His

US-12 USH? c.619C>T p.Arg207∗ CLRN1 Nonsense García-García et al., 2012

c.619C>T p.Arg207∗

US-16 USH2 c.1841-2 A>G p.Gly614Aspfs∗6 USH2A Splice site Jaijo et al., 2010

c.1841-2 A>G p.Gly614Aspfs∗6

Mutation: c.619C>T (p.Arg207∗) in CLRN1
Proband of family US-8: Patient coming from a consanguineous
family, harboring the mutation p.Arg207∗ in CLRN1 in
homozygous state. She has a postlingual moderate HL
with a progression in the last 10 years. This subject
is 81 years old and the progression of the HL may
be due to age-related hearing impairment. She noticed
nyctalopia at 8 years old and the visual field was much
reduced by the age of diagnosis. She did not report any
balance problems.

Proband of family US-12: Patient carries the p.Arg207∗

mutation in CLRN1 in homozygous state. The family is
also consanguineous, since the parents are second cousins.
HL is postlingual and severe. RP signs were similar than
those of US-8, yet with a later age of onset of symptoms
and reduced visual field at age 24. ERG is abolished for
this subject. In addition, the delayed walking onset and the
reported difficulties in holding the head up as a baby suggest
balance dysfunction.

Mutation: c.1841-2 A>G (p.Gly614Aspfs∗6) in USH2A
Proband of family US-16: The subject has a typical USH2A
phenotype with a moderate postlingual non-progressive HL and
typical RP of onset in the puberty.

Mutation: c.2299delG (p.Glu767Serfs∗21) in USH2A
Proband of family US-9: The patient harbors the most common
mutation in USH2A patients of European origin, namely the
c2299delG in USH2A. She displays a typical USH2 phenotype

milder that US-16 with a mild postlingual HL and later
onset of RP symptoms.

Mutation: c.3661C>T (p.Gln1221∗) in PCDH15
Proband of family US-10: This patient carries the p.Gln1221∗

mutation in PCDH15 in homozygous state. PCDH15 is associated
to USH1 phenotype, however, this subject displayed postlingual
moderate HL, normal vestibular function and relatively late-
onset of RP.

Mutation: c.7730_7734delTCAGT
(p.Phe2577Serfs∗28) in CDH23
Proband of family US-4: The patient is a compound heterozygote
for the CDH23 mutations p.Phe2577Serfs∗28 and p.Gln1496His.
He displays a typical USH1 phenotype with a prelingual, severe
hearing loss RP onset al puberty and vestibular dysfunction.

Mutation: c.1624G>T (p.Glu542∗) in CDH23
Proband of family US-7: Compound heterozygote for the
CDH23 mutations p.Glu542∗ and p.Gln1496His. Symptoms are
distinctive of typical USH1 phenotype with a prelingual severe
HL, early onset of RP and vestibular dysfunction.

Mutation: c.4488G>C (p.Gln1496His) in CDH23
Besides the compound heterozygotes US-4 and US-7, that carry
p.Gln1496His together with other CDH23 mutations, three more
patients carry the mutation in homozygous state, namely those
from families US-5, US-6, and US-11. All of them displayed a
typical USH1 phenotype.
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FIGURE 2 | Sanger electropherograms of the mutations detected in this study.

DISCUSSION

In this work, we report the first study in a cohort of Usher
syndrome patients from Cuba. We found a total of eight
mutations in 11 cases, four of which are novel (p.Leu5150Hisfs∗6
in ADGRV1, p.Phe2577Serfs∗28 and p.Glu542∗ in CDH23, and
p.Gln1221∗ in PCDH15).

The presence in homozygosis of p.Gln1221∗ in PCDH15
led to a typical USH2 phenotype with a severe HL of
postlingual onset, no vestibular dysfunction and late onset RP,
and despite being the causative mutation a nonsense variant.
Although it is not common, mutations in genes that usually
lead to USH1 and cause a USH2 phenotype, and vice-versa,
have been reported (Bonnet et al., 2011; Aparisi et al., 2014;
Fuster-García et al., 2018).

The mutations c.1841-2A>G (p.Gly614Asp∗fs6) and
c.2299delG (p.Glu767Serfs∗21) in USH2A have been reported
many times in the literature as pathogenic in many populations.

Noteworthy, two mutations are recurrent in this study.
The c.619C>T mutation (p.Arg207∗) in CLRN1 was
described by García-García et al. and Licastro et al. almost
simultaneously in two a priori unrelated Spanish families of
Basque origin and one family of Italian origin, respectively

(García-García et al., 2012; Licastro et al., 2012). This
mutation was found in homozygous state in two Cuban
families. In the first family reported by García-García et al.,
the only affected member carried the p.Arg207∗ mutation
together with p.Tyr63∗. The patient displayed bilateral severe
progressive sensorineural HL corrected with hearing aids
and was a candidate for cochlear implantation. She showed
a delay in gait development and a vestibular hyporeflexia
and she displayed typical symptoms of RP since young.
The onset of her RP was at 9 years old, including night
blindness and peripheral visual loss. Fundus ophthalmoscopy
showed pigmentary anomalies typical of RP with a visual
acuity of 0.4 in both eyes and a rapid progression of
the visual loss.

In the second family there were two affected sibs who were
compound heterozygotes for p.Arg207∗ and p.Ile168Asn. They
displayed very discordant phenotypes. One brother had a typical
RP and normal speech acquisition and motor milestones. At
13 years old he displayed a progressive bilateral HL that ranged
79–80 dB in the last clinical examination, and the vestibular
function was normal. The other brother presented with a typical
RP as well, but displayed a prelingual severe HL that required deaf
school education.
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These findings illustrate the impressive wide spectrum of
sensorineural hearing impairment in type and degree, and the
high degree of intersubject and intrafamiliar variability due to
CLRN1 mutations, as previously reported (Pennings et al., 2003).

The other mutation, c.4488G>C (p.Gln1496His) in CDH23,
was described by Bolz et al. (2001) in a large Cuban family.
That study allowed the identification of the CDH23 gene as
responsible of Usher syndrome type 1. Although c.4488G>C is
a missense mutation (p.Gln1496His), the G>C change affects the
last exon nucleotide and computational predictions and in vitro
studies support the hypothesis of a splicing alteration leading to a
truncated protein (Bolz et al., 2001).

Additionally, c.4488G>C has been reported two more times
in the literature in two unrelated families of Spanish origin
showing a typical USH1 phenotype (Astuto et al., 2002;
Oshima et al., 2008).

It is noteworthy that the frequency of the mutated genes
varies significantly when compared to other countries. In most
populations MYO7A is the most prevalent gene among USH1
patients accounting for about 50% of the cases, except in
some endogamic populations (Roux et al., 2011; Le Quesne
Stabej et al., 2012; Glöckle et al., 2014; Yoshimura et al., 2014;
Bonnet et al., 2016; Dad et al., 2016; Eandi et al., 2017; Sun
et al., 2018). However, all the USH1 patients in this cohort
carry mutations in CDH23. Furthermore, c.4488G>C accounts
for 80% of USH1 alleles and no MYO7A mutations were
detected in the cohort.

No conclusions can be obtained from the USH2 mutation
distribution given the small size of the sample. Two out of
the three clear USH2 patients are caused by mutations in
USH2A, whereas the remaining is due to a mutation in ADGRV1.
Both USH2A mutations have been reported many times in the
literature, being c.2299delG the most frequent USH2 mutation in
populations of European origin (Dreyer et al., 2000).

The frequency of Usher syndrome due to mutations in CLRN1
in our sample is 18% (two out of 11), considerably higher than
the 5% or less in other populations. Usher syndrome resulting
from mutations in CLRN1 is rare except in Finland and among
the Ashkenazi jews, and its high frequency among USH3 patients
in these populations is due to founder mutations (Joensuu et al.,
2001; Ness et al., 2003). Here, the apparently high frequency of
CLRN1 is attributable to the presence of another unique mutation
that probably has a Spanish origin.

It must be remarked that most of the mutations found in
this study are homozygous, yet it could be possible that these
were in fact heterozygous variants in concurrence of a large

deletion, even when consanguinity is at stake. MLPA could be
performed for mutations in USH2A and PCDH15, but there is
no kit available to analyze the other implicated genes ADGRV1,
CLRN1, and CDH23.

Segregation analysis would also help to unveil this issue and
also to confirm if the compound heterozygous mutations are
indeed in trans and, thus, causative of the disease. However, the
obtainment of DNA samples of the relatives was not available.

Although the sample size is very small, it is tempting to
speculate that the gene frequencies in Cuba are distinct from
other populations, mainly due to an “island effect” and genetic
drift. Further studies with a larger sample comprising different
geographical regions of Cuba are needed to elucidate the real
genetic landscape of Usher syndrome in the Cuban population.
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