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Recent studies show that vitamin D deficiency may be responsible for muscle atrophy. The purpose of this study was to investigate
markers of muscle atrophy, signalling proteins, and mitochondrial capacity in patients with chronic low back pain with a focus on
gender and serum vitamin D level. The study involved patients with chronic low back pain (LBP) qualified for posterior lumbar
interbody fusion (PLIF). Patients were divided into three groups: supplemented (SUPL) with vitamin D (3200 IU/day for
5 weeks), placebo with normal levels of vitamin D (SUF), and the placebo group with vitamin D deficiency (DEF). The marker
of muscle atrophy including atrogin-1 and protein content for IGF-1, Akt, FOXO3a, PGC-1α, and citrate synthase (CS) activity
were determined in collected multifidus muscle. In the paraspinal muscle, IGF-1 levels were higher in the SUF group as
compared to both the SUPL and DEF groups (p < 0 05). In the SUPL group, we found significantly increased protein content for
pAkt (p < 0 05) and decreased level of FOXO3a (p < 0 05). Atrogin-1 content was significantly different between men and
women (p < 0 05). The protein content of PGC-1α was significantly higher in the SUF group as compared to the DEF group
(p < 0 05). CS activity in the paraspinal muscle was higher in the SUPL group than in the DEF group (p < 0 05). Our results
suggest that vitamin D deficiency is associated with elevated oxidative stress, muscle atrophy, and reduced mitochondrial
function in the multifidus muscle. Therefore, vitamin D-deficient LBP patients might have reduced possibilities on early and
effective rehabilitation after PLIF surgery.

1. Introduction

Skeletal muscle atrophy occurs when the normal balance
between synthesis and degradation of muscle structural
proteins is disturbed. Chronic low back pain (LBP), one of
the most prevalent musculoskeletal disorders in modern

society [1], leads to the atrophy of paraspinal muscles [2].
Muscle atrophy Fbox (MAFbx/atrogin-1), was identified as
a gene of muscle specific ubiquitin ligase (E3). This ligase,
along with muscle RING finger 1 (MuRF1), is responsible
for the degradation of the muscle structural proteins in
atrophied skeletal muscles that are caused by immobilization
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[3], disuse, dietary restriction, aging, cancer, etc. [4–6]. In
particular, these genes have been known to be significantly
responsible for muscle atrophy since their inhibition reduces
muscle atrophy caused by denervation. Additionally, they
have been shown to play a key role in the induction of muscle
atrophy in multiple animal disuse models [4, 5, 7]. Notwith-
standing this data, the exact mechanism underlying muscle
atrophy has not been fully elucidated.

LBP may be caused by different factors including the loss
of lumbar spinal stability through nonsufficient activation of
the deep lumbar stabilizing muscles such as the multifidus
muscle [8]. Hence, reduced activation of the multifidus
muscle is a major cause of its progressive muscle atrophy
and upregulation of atrogin-1 gene expression. The serine/
threonine-specific protein kinase (Akt)/forkhead box O3
(FOXO3) axis controls the expression of atrogin-1 gene [9].
FOXO transcription factors are thought to control half of
the genes identified in the molecular “common atrophy
blueprint” present in different atrophy types [10, 11]. Akt
is a protein kinase, which is important in signalling path-
ways involved in protein synthesis and skeletal muscle
growth [12]. Also, overproduction of reactive oxygen spe-
cies (ROS), disturbed redox status, and a weakened antiox-
idant defense system are known as the major contributing
factors toward atrophy [13]. Recently, we demonstrated
that vitamin D deficiency is associated with higher oxidative
stress and elevated activity of antioxidant enzymes in the
paraspinal muscle of patients with LBP [14].

Vitamin D seems to act as a multifunctional regulator in
skeletal muscle [15]. Vitamin D contributes to maintain
musculoskeletal health in healthy subjects as well as in
patients who display the combination of paraspinal muscle
wasting and weakness such as LBP patients [16]. Cross-
sectional studies found a positive association between
vitamin D status and total or appendicular muscle mass in
men and women [17–19]. The actions of the vitamin D
hormone are mediated by the vitamin D receptor (VDR),
a ligand-activated transcription factor that controls gene
expression [20, 21]. An increasing number of studies in both
nonhuman and human skeletal muscle cells report that the
actions of vitamin D are also mediated by the VDR located
within skeletal muscle cells [22–24]. Interestingly, the recent
study shows that pharmacologically induced muscle loss in
VDR-/- mice is greater in slow muscles, such as the multifidus
muscle, than in fast muscles [25]. The exact mechanism of
action of vitamin D in the muscle remains unknown.
Insulin-like growth factor 1 (IGF-1), an anabolic hormone,
has been shown to positively correlate with 25-hydroxy vita-
min D serum level [26]. Therefore, we assume that vitamin D
deficiency might be associated with downregulated IGF-1 in
the atrophied skeletal muscle. Recently, we have reported
that long term of vitamin D deficiency leads to VDR ablation,
oxidative stress, and consequence mitochondrial dysfunc-
tion, which induces muscle atrophy [27].

The purpose of this study was to estimate and compare
the levels of selected markers of muscle atrophy, signalling
proteins, and mitochondrial capacity in the skeletal muscles
of patients deficient in and with normal vitamin D level,
and patients supplemented with vitamin D or placebo.

Moreover, based on the recent data [14], we assumed that
the possible mechanism of vitamin D in the prevention of
muscle atrophy may be mediated through oxidative stress
and the IGF-1/Akt/FOXO3 pathway. Specifically, we propose
that muscle atrophy linked with serum vitamin D deficiency
is associated with a reduction of IGF-1 and deactivation and
activation of Akt and FOXO3. Furthermore, normalized
levels of serum vitamin D would ameliorate relative muscle
atrophy and maintain physiological mitochondrial function.

2. Materials and Methods

2.1. LBP Patients. The study population was previously
described by Dzik and coworkers [14]. Briefly, nineteen
women and nineteen men participated in the study. All
patients were Caucasian. Pregnant or lactating women were
not included. All patients had experienced chronic LBP
secondary to the degenerative disease and general instability
and were qualified for lumbar spine surgery utilizing static
or dynamic implants (posterior lumbar interbody fusion
(PLIF)). There were no significant differences in pain
duration and intensity between genders. In all cases, the
LBP causes were nonspecific and mechanical. All subjects
gave their informed consent for inclusion before they partic-
ipated in the study. The study was conducted in accordance
with the Declaration of Helsinki, and the protocol was
approved by the local institutional Bioethical Committee in
Gdansk (No. NKBBN/120/2012).

2.2. Study Design. The study design was previously described
by Dzik and coworkers [14]. Briefly, patients were randomly
assigned to the group supplemented with 3200 IU of
25(OH)D3/day for 5 weeks (SUPL, n = 14) or the placebo
group supplemented with vegetable oil. Blood samples were
taken at baseline and after 5 weeks of supplementation for
the determination of serum vitamin D concentration. Based
on serum vitamin D concentration, patients from the placebo
group were divided into two groups: the placebo group with
normal concentration of vitamin D (SUF, n = 10) with
25(OH)D3 level above 50 nmol/L and the placebo group with
vitamin D deficiency (DEF, n = 14) with 25(OH)D3 serum
level between 30 and 49 nmol/L [28]. After 5 weeks of supple-
mentation, multifidus muscle samples were obtained from all
the patients during PLIF surgery. Patients’ characteristics are
summarized in Table 1.

2.3. Blood Analysis and Collection. Blood samples were taken
at baseline and after 5 weeks of supplementation. The
samples were centrifuged at 2000 g for 10 min at 4°C. The
separated serum samples were frozen and kept at -80°C until
later analysis. The tubes containing the serum samples were
number-coded in order to blind the laboratory personnel
regarding the treatment group and the sequence of sample
collection. IGF-1 in serum was measured with an immu-
noassay kit (DG100, R&D Systems, USA) according to
the manufacturer’s instructions.

2.4. Human Muscle Sample. After 5 weeks of supplementa-
tion, multifidus muscle samples were obtained from all
patients during PLIF surgery. All muscle samples were
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taken between the tenth thoracic and fifth lumbar vertebrae.
40-150 mg multifidus muscle specimens were collected and
immediately frozen at -80°C.

2.5. Muscle Homogenization. The tissue samples were
reconstituted in ice-cold lysis buffer containing 50 mM
Tris-HCl, 1 mM EDTA, 1.15% KCl, 0.5 mM DTT, 0.2%
protease inhibitor cocktail (Sigma-Aldrich, P834), and phos-
phatase inhibitor tablets PhosSTOP (Roche, Italy). The final
homogenate concentration was 8%. The samples were centri-
fuged at 750 g for 10 min at 4°C, and the supernatant was
divided into serial aliquots for enzyme activity, enzyme-
linked immunosorbent assay (ELISA), and western blot
(WB) measurements. Samples for WB were centrifuged
at 16000 g and for ELISA at 5000 g. Protein concentra-
tion was determined using the Bradford protein assay
(Sigma-Aldrich, B6916) according to the manufacturer’s
instructions.

2.6. Assays: Muscle Analysis. Insulin-like growth factor 1
(IGF-1) and atrogin-1 in muscle homogenates were deter-
mined using immunoassay kits (IGF-1-SEA050Hu. Cloud
Clone Corporation; atrogin-1- EH4228, Fine Test), accord-
ing to the manufacturer’s instructions.

2.7. Mitochondrial Citrate Synthase Activity. Citrate synthase
(CS) activity was measured at 37°C according to De Lisio
et al. [29]. Briefly, 30 μl of supernatant (diluted to 4% final
concentration; 750 g) was added to 850 μl of buffer (0.1 M
Tris-HCl, 5 mM EDTA, 0.05% Triton-X100, pH 8.1), plus
100 μl of freshly made DTNB (1 mM), 10 μl acetyl-CoA
(10 μM), and 10 μl of freshly made oxaloacetic acid
(10 mM) to initiate the reaction. The reactions were con-
ducted in duplicate, and absorbance was read at 412 nm in
a spectrophotometer (CE9200, Cecil Instruments Limited,
Cambridge, UK). CS activity was expressed as nmol/min/mg
of protein.

2.8. Western Blotting. Equal amounts of total tissue lysates
were separated on either 4-20%, 30 μl Mini-PROTEAN
TGX™ gels (Bio-Rad Laboratories, USA) or 10% SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred onto a polyvinylidene difluoride (PVDF) membrane.
The membranes were then blocked with a solution con-
taining 10 mM Tris-buffered saline, 0.05% Tween 20,
and 5% nonfat dry milk or 5% bovine serum albumin
(BSA) (Sigma-Aldrich) and then incubated with primary
antibodies including PGC-1α (Santa Cruz, sc-13067, dilution
1 : 500), Akt 1/2/3, (Santa Cruz, sc-8312, dilution 1 : 500),
P-Akt 1/2/3 (Ser473) (Santa Cruz, sc-7985-R, dilution
1 : 500), FoxO3a (Cell Signaling, 2497, dilution 1 : 500),
P-FoxO3a (Abcam, ab154786, dilution 1 : 500), Fbx32
(Abcam, ab168372, dilution 1 : 1000), and β-tubulin (Cell
Signaling, 2146, dilution 1 : 500) over night at 4°C. The
membranes were treated with secondary anti-rabbit and
anti-mouse antibody (dilution 1 : 20000) for 1 h at room
temperature. Following treatment with the appropriate sec-
ondary antibody, the bands were visualized using Image-
Quant LAS 500 (GE Healthcare). The changes in the
protein level were quantified by a densitometric method
using the LASImage software. β-Tubulin was used as a lane
loading control. The immunoblotting was performed at least
two times.

2.9. Statistical Analysis. Statistical analyses were performed
using a software package (Statistica v. 13.1, StatSoft Inc.,
Tulsa, OK, USA). The results are expressed as the mean ±
SEM. The differences between men and women in the
same group were tested by Student’s t-test. To identify sig-
nificant differences between groups, results were analyzed
by ANOVA followed by the Least Significant Difference
(LSD) test. Differences with a p value of at least p ≤ 0 05
were considered statistically significant.

3. Results

Data with patients’ serum 25(OH)D3 level before and after
the supplementation were previously published [14] and
are summarized in Table 1. Briefly, serum 25(OH)D3 level
was significantly different between the placebo groups, the
DEF and SUF groups, both before and after the supplemen-
tation period. Five weeks of supplementation with a daily

Table 1: Characteristics of LBP patients.

Age BMI 25(OH)D3 (nmol/L) Before 25(OH)D3 (nmol/L) After p

DEF (n = 14) 49 7 ± 2 6 30 3 ± 0 9 39 8 ± 2 4 38 2 ± 2 1 n.s

F (n = 6) 51 2 ± 5 2 28 0 ± 0 8 37 6 ± 4 2 36 9 ± 3 9 n.s

M (n = 8) 48 8 ± 2 5 32 3 ± 1 1 41 5 ± 3 0 39 1 ± 2 4 n.s

SUF (n = 10) 45 8 ± 3 1 27 9 ± 0 9 73 3 ± 2 9∗ 72 5 ± 6 8# n.s

F (n = 5) 45 8 ± 2 6 27 3 ± 1 4 71 5 ± 5 2∗ 72 1 ± 7 1# n.s

M (n = 5) 45 8 ± 6 0 28 5 ± 1 2 75 1 ± 3 1∗ 72 9 ± 12 5# n.s

SUPL (n = 14) 48 2 ± 2 8 28 5 ± 1 4 52 8 ± 3 0 86 6 ± 3 2 <0.005
F (n = 8) 50 5 ± 3 4 28 1 ± 1 9 50 8 ± 3 8 85 1 ± 4 0 <0.005
M (n = 6) 45 2 ± 4 9 29 4 ± 0 4 55 4 ± 4 9 88 7 ± 5 3 <0.005
Values are the means (±SEM). F: female; M: male. ∗p < 0 001—difference between the indicated result/mean and DEF and SUPL groups at the same time point.
#p < 0 001—difference between the indicated result/mean and DEF group at the same time point.
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dose of 3200 IU vitamin D3 raised serum vitamin D level
by an average of 53 nmol/L in the SUPL group and placed
the level of serum 25(OH)D3 above 87 nmol/L, which is
12 nmol/L higher than the level indicated as a threshold
for optimal vitamin D level for adults [28, 30].

Circulating IGF-1 content was significantly higher in the
SUF group as compared to both the DEF and SUPL groups
before and after the supplementation. Before the supplemen-
tation, serum IGF-1 content was 108 3 ± 4 2, 104 1 ± 6 3, and
132 6 ± 7 4 ng/mL in the SUPL, DEF, and SUF groups,
respectively (Figure 1(a), p < 0 05). After the supplementa-
tion, serum IGF-1 level was as 103 1 ± 6 5 ng/mL in the
SUPL group, 101 9 ± 7 3 ng/mL in the DEF group, and
129 7 ± 13 3 ng/mL in the SUF group (Figure 1(a), p < 0 05).
We did not observe any difference neither before and after
the supplementation nor between men and women in par-
ticular groups. Muscle IGF-1 concentration was the highest
in the SUF group, 71 9 ± 8 2 ng/mL. It was significantly
lower in the DEF and SUPL groups (Figure 1(b), p < 0 05).
The level of IGF-1 in the DEF group was 39 5 ± 9 8 and
41 8 ± 7 5 ng/mL in the SUPL group. We did not find any
difference between men and women in muscle IGF-1 levels.

Western blotting analysis of the muscle atrophy marker
Fbx32 (atrogin-1) showed that in the DEF atrogin-1 content
was 38.7% higher than in the SUP group and 22% higher
than in the SUF group (Figure 2(a)). The muscular concen-
tration of atrogin-1, measured with ELISA, was the highest
in the DEF group (35 7 ± 8 5 ng/mg protein). In the SUF
and SUPL groups, the content of atrogin-1 was 23 1 ± 2 6
and 24 8 ± 4 1 ng/mg, respectively (Figure 2(b)). There was
a significant difference in atrogin-1 muscle content between
men and women overall. Muscle atrogin-1 level was 50%
higher in women as compared to men (36 9 ± 5 4 ng/mg
and 17 9 ± 1 9 ng/mg, respectively). There was no difference
among men in atrogin-1 content in the muscle (15 9 ± 1 8,
23 4 ± 4 2, and 15 2 ± 3 4 ng/mg protein in the DEF,
SUF, and SUPL groups, respectively). However, there was

a difference observed among women between the three
groups. Women in the DEF group had significantly higher
atrogin-1 level as compared to those in the SUF group
(Figure 2(b), p < 0 05). Vitamin D-deficient women had an
average of 55 4 ± 12 7 ng/mg, and women sufficient in vita-
min D had an average of 22 7 ± 3 6 ng/mg. Among women
supplemented with vitamin D, the protein content of
atrogin-1 was 32 0 ± 5 6 ng/mg. Furthermore, women in
the DEF and SUPL groups had significantly higher atrogin-
1 content as compared to the corresponding groups of men
(Figure 2(b), p < 0 05). There was no difference between
men and women in the SUF group.

The activity of citrate synthase (CS) in the muscle, which
is commonly used as a marker of mitochondrial function
[31], was significantly higher in the SUPL group when com-
pared with the DEF group. In the SUF group, CS activity
tended to be higher than in the DEF group, but the difference
was not significant. The activity of CS in all patients was
67 7 ± 7 4, 61 5 ± 12 3, and 41 6 ± 4 5 nmol/min/mg of
protein in the SUPL, SUF, and DEF groups, respectively
(Figure 3, p < 0 05). Among women, we did not observe
any differences between the groups, whereas in men there
was significantly higher CS activity in the SUPL group when
compared with the DEF group (Figure 3, p < 0 05).

The protein content of the mitochondrial biogenesis
transcription factor—PGC-1α—was significantly higher in
the SUF group as compared to the DEF group (Figure 4,
p < 0 05). In the SUPL group, the PGC-1α content was
also higher than in the DEF group, but the difference
did not reach the significance.

To determine the possible mechanism of vitamin D on
muscle atrophy, we investigated the phosphorylation states
of Akt and FOXO3a. The protein content of phosphorylated
Akt (pAkt) and phosphorylated FOXO3a (pFOXO3a) was
similar in the DEF and SUF groups. In the SUPL group,
we observed significantly higher levels of pAkt (Figure 5,
p < 0 05) and decreased level of FOXO3a (Figure 6, p < 0 05).
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Figure 1: The level of IGF-1 in (a) serum and (b) skeletal muscle of LBP patients. Results were expressed as the mean ± SEM. (a) DEF
(n = 13), SUF (n = 9), and SUPL (n = 14). (b) SUF (n = 4), DEF (n = 6), and SUPL (n = 8). ∗p < 0 05—difference between the indicated
result/mean and DEF and SUPL groups at the same time point. #p < 0 005—difference between the indicated result/mean and DEF and
SUPL groups at the same time point.
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4. Discussion

The main findings of our study are that LBP patients with
serum vitamin D deficiency show attenuated CS activity,
increased content of atrogin-1, and decreased PGC-1α
protein content in the multifidus muscle. In addition, we
noticed higher IGF-1 content, in both serum and muscle,
in patients with sufficient vitamin D level. Moreover, we

observed significantly increased level of pAkt and decreased
level of FOXO3a in patients supplemented with vitamin D.
Together, our results suggest that the action of vitamin D in
the muscle may be triggered through either the Akt/FOXO3a
pathway or PGC-1α as a result of ROS generation.

Hitherto, the interplay between vitamin D and IGF-1, a
hormone which displays an anabolic effect on skeletal
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Figure 2: The level of atrogin-1 (Fbx32) visualized by representative western blotting (a) and measured with ELISA (b) in all LBP patients,
female and male in skeletal muscle. Changes in WB protein densitometry levels were normalized against β-tubulin. a.u.: arbitrary
units; F: female; M: male. Results were expressed as the mean ± SEM. (a) SUF (n = 6), DEF (n = 7), and SUPL (n = 6). (b) SUF
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expressed as the mean ± SEM. SUF (n = 5), DEF (n = 4), and SUPL
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muscle, has been well described in reference to their circula-
tion level. Wei and coworkers showed that IGF-1 caused an
increase in the blood levels of 1,25(OH)2D3, the hormonally
active vitamin D metabolite, by stimulating the expres-
sion and activity of the hydroxylase-1α that produces
1,25(OH)2D3 in the kidney [32]. Moreover, when vitamin

D was administered to humans, IGF-1 levels in the blood
increased [33]. On the other hand, another study showed that
one year of high-dose vitamin D supplementation did not
significantly alter serum IGF-1 among women at a high risk
of breast cancer [34] nor in prediabetes subjects [35]. Our
results revealed that patients in the SUF group had higher
serum IGF-1 level than patients in the DEF and SUPL
groups, both before and after the supplementation period.
Patients with normal vitamin D levels presented with
approximately a 20% higher IGF-1 serum concentration than
those deficient in vitamin D or those supplemented with it.
However, we did not observe any changes regarding supple-
mentation itself within particular groups. Muscle IGF-1
content was higher in patients with sufficient serum vitamin
D level as compared to the other groups, and this was consis-
tent with circulating IGF-1 level. Surprisingly, we did not find
any difference between patients supplemented with vitamin
D and patients deficient in it. Recently, Hayakawa and
coworkers showed that IGF-1 is not directly affected by
1,25(OH)2D3 in the skeletal muscle. They suggested that
vitamin D stimulated IGF-1 production in tissues other than
the skeletal muscle and that the induced IGF-1 could enter
systemic circulation and exert hypertrophic effects on the
muscle tissue or supportive effects on muscle function [15].
In this study, we showed elevated serum and muscle IGF-1
content in LBP patients sufficient in vitamin D. The lack of
an increase in IGF-1 in the SUPL group suggests that either
IGF-1 is not directly influenced by vitamin D or its induction
is time dependent. This raises an interesting point that
should be addressed in future studies. Notably, how long
sufficient vitamin D level must be present in circulation in
order to increase IGF-1 muscle content in humans who were
previously deficient in vitamin D? It is important to note that
we do not find any correlation between IGF-1 and atrogin-1,
which suggests that the mechanism of action of vitamin D on
skeletal muscle atrophy might involve other factors.

In the present study, we analyzed the muscle content of
atrogin-1 and showed that atrogin-1 was the highest in
patients deficient in vitamin D and lowest in patients suffi-
cient in it. Vitamin D supplementation seems to repel atro-
phic changes since we observed almost as low a content of
atrogin-1 in the SUPL group as in the SUF group. Notwith-
standing, these results are not significant when we consider
men and women together. The present study shows that
women and men respond differently to vitamin D deficiency
and supplementation. Men seem to be less responsive to
vitamin D in regard to paraspinal muscle atrophy. Notably,
among women, there was an elevated level of atrogin-1 in
the group deficient in vitamin D as compared to those
sufficient in it. It seems that vitamin D deficiency escalates
muscle atrophy among women. Our findings are consistent
with the latest study on the effect of long-term vitamin D
supplementation on the global transcriptomic profile which
showed that vitamin D regulates 3.2-fold more genes in
women than in men [36]. Hereby, we could detect a stronger
effect of vitamin D supplementation on gene expression in
women when compared to men. Moreover, we observed
almost the same level of atrogin-1 among women sufficient
in vitamin D as in women supplemented with vitamin D
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who were deficient in vitamin D at baseline and whose serum
vitamin D level increased to normal levels. This observation
may suggest a need for vitamin D supplementation for
women in order to delay the onset muscle atrophy.

Mitochondrial dysfunction in vitamin D-deficient indi-
viduals was attributed to intramitochondrial calcium defi-
ciency [37] or deficient enzyme function of the oxidative
pathway [38]. In the present study, we report that mitochon-
drial function was improved in patients supplemented with
vitamin D and those with normal levels of vitamin D as
compared with patients deficient in it. The activity of CS
was 32% lower in the DEF group than in the SUF group
and 38% lower compared to the SUPL group. Our data are
consistent with the studies undertaken in symptomatic,
vitamin D-deficient individuals, which showed that vitamin
D therapy augmented muscle mitochondrial maximal
oxidative phosphorylation after exercise [39] and increased
skeletal muscle CS activity and exercise-mediated cardiore-
spiratory fitness [40]. Also, recent studies of Ryan and
coworkers demonstrated an increased oxygen consumption
rate of skeletal muscle cells after treatment with vitamin D,
indicating vitamin D action in the regulation of mitochon-
drial oxygen consumption and dynamics [41]. In addition,
our study shows that CS activity was the highest in the SUPL
group among men and women as well, when compared with
other groups of the same sex. Both women and men in the
DEF group had the lowest CS activity among other groups
within the same sex. We also found lower protein content
of PGC-1α, a transcriptional coactivator involved in the
formation of slow-twitch fibers and mitochondria biogenesis
[42]. This suggests that vitamin D induces PGC-1α synthesis
and thus may be involved in mitigating muscle atrophy
through enhanced mitochondrial function. Although it is
well established that the decrease in protein synthesis con-
tributes to disuse atrophy, to date, there has been no data
suggesting that PGC-1α signalling directly mediates protein
synthesis pathways [43]. However, PGC-1α transcriptional
activity was shown to prevent muscle protein degradation.
This was firstly demonstrated by Sandri and coworkers,
who showed that overexpression of PGC-1α in mice pre-
vented denervation-induced muscle atrophy by preventing
the expression of key genes in the ubiquitin proteasome
pathway and autophagy [44]. Also, a study on human
skeletal muscle showed that PGC-1α mRNA is signifi-
cantly downregulated during both the early and late phases
of immobilization-induced muscle atrophy [45]. What is
more, the expression of PGC-1α in skeletal muscle protects
from age-related and denervation-induced muscle atrophy,
as well as delays the onset of mitochondrial myopathies
[46]. Recently, we demonstrated that vitamin D deficiency
caused oxidative stress and higher activity of antioxidant
enzymes: manganese superoxide dismutase (MnSOD) and
glutathione peroxidase (GPx) in the muscle [14]. Taken
together, the lower activity of CS and decreased PGC-1α
protein content and a higher activity of MnSOD in the
muscle indicate impaired mitochondrial function in vitamin
D-deficient LBP patients.

As mentioned above, vitamin D acts through the VDR.
VDR gene expression is known to be regulated by a variety

of hormones including parathyroid hormone, retinoic acid
[47], and glucocorticoids [48]. Also, a recent study on HuLM
cells showed that estrogen inhibits VDR and that vitamin D
has the potential to suppress the expression of estrogen
receptor-α [49]. Another study reported that 16 weeks of
vitamin D intervention induced a 20% increase in human
skeletal muscle VDR gene expression in older, mobility-
limited, vitamin D-insufficient women [50]. Previously, we
presented that VDR muscle content was higher in patients
sufficient and supplemented with vitamin D. Furthermore,
we showed that lower content of VDR in patients with
vitamin D deficiency evokes ROS generation with higher
markers of lipid and protein peroxidation as well as increased
muscle antioxidant enzyme activity [14]. In order to investi-
gate the possible link between vitamin D and muscle atrophy,
we examined PGC-1α, FOXO3a, and Akt muscle protein
content. FOXO proteins are an important factor in muscle
atrophy, which induce the expression of proteasomal genes,
MuRF1 and atrogin-1. It is important to note that elevated
PGC-1α content, besides its function in mitochondrial bio-
genesis, prevents transcriptional activity of FOXO3a [44],
and therefore, the mitochondria might be involved in the
progression of skeletal muscle atrophy.

Akt blocks the function of FOXO3 by phosphorylation of
conserved residues, leading to their sequestration in the
cytoplasm away from target genes [51]. Phosphorylated
FOXO3a does not translocate to the nucleus, and conse-
quently, the expression of atrogin-1 and MuRF, both target
genes of FOXO, is inhibited. It was shown that FOXO3might
also be regulated by the action of peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α)
[44], which is widely accepted to be the master controller of
mitochondrial biogenesis as well as a regulator of many genes
involved in energy metabolism [52]. In the present study, we
found increased levels of Akt and decreased protein content
of FOXO3a in the group supplemented with vitamin D as
compared to the DEF and SUF groups. Moreover, we
observed higher protein content of PGC-1α in the muscle
of LBP patients with normal vitamin D level and after supple-
mentation with vitamin D. This observation suggests that
both vitamin D sufficiency and vitamin D supplementation
may contribute to the reversion of atrophic changes. The
possible mechanism of action of vitamin D in the skeletal
muscle still needs to be addressed in future studies. Accord-
ing to one proposed model, in cases of muscle atrophy
associated with disuse, decreases in IGF-1 cause the
inhibition of Akt and dephosphorylation of FOXO3a.
Dephosphorylated FOXO3a translocates to the nucleus and
promotes the expression of atrogin-1 and MuRF1 and subse-
quently accelerates the degradation of muscle proteins [10].
Our data confirms that the possible action of vitamin D in
the prevention of muscle atrophy may be mediated through
the IGF-1/Akt/FOXO3a pathway. Nevertheless, with no
changes in serum IGF-1 in the supplemented patients, our
observations indicate that PGC-1α and mitochondria may
play a crucial role in muscle atrophy through regulating
mitochondrial function. Also, as mentioned above, PGC-1α
might inactivate FOXO3a and therefore contribute to resist-
ing muscle atrophy and restore the physiological functions of
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the mitochondria. Moreover, it was shown that FOXO3a
activation caused the upregulation of MnSOD gene expres-
sion and downregulation of mitochondrial gene expression
[53]. Our previously published data confirms this observa-
tion. We reported increased MnSOD activity in vitamin
D-deficient patients. Taken together, our findings show
that the action of vitamin D may be mediated through
the IGF-1/Akt/FOXO3 pathway or through PGC-1α and
FOXO3a independently (Figure 7).

In summary, we show that vitamin D deficiency is associ-
ated with attenuated CS activity, decreased protein content of
PGC-1α, and previously published oxidative stress in the
multifidus muscle of LBP patients [14]. We detected
increased protein content of atrogin-1, in the muscle of
women with lower vitamin D level. These results suggest that
vitamin D deficiency induces muscle atrophy and reduces
mitochondrial function in the paraspinal muscle. In addition,
we observed higher IGF-1 content in both serum and muscle
in patients with sufficient vitamin D level. Our results suggest
that the action of vitamin D in the muscle may be triggered
through either the Akt/FOXO3a pathway or PGC-1α and
mitochondria. Supplementation with vitamin D to sufficient
serum vitamin D level in LBP patients increased mitochon-
drial function and inhibited muscle atrophy in the multifidus

muscle, and it may have a beneficial impact on an effective
early rehabilitation in LBP patients. However, future studies
on muscular function should also consider the supplementa-
tion of patients sufficient in vitamin D and patients with
different BMI and age for better understanding of the mech-
anism of vitamin D function. There should be patients’ strat-
ification according to BMI and different hormonal and
physiological gender responses.
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Figure 7: The vitamin D action in the skeletal muscle under the vitamin D deficiency conditions. Bold lines represent established pathways
confirmed with our results while thin lines represent possible interactions as a result of vitamin D deficiency. Vitamin D deficiency decreases
IGF-1 and PGC-1α via VDR—the nuclear receptor. IGF-1/Akt/FOXO3a signalling cascade triggers the muscle atrophy through atrogin-1.
ROS generation causes the inhibition of PGC-1α and potentially activates FOXO3a thus inducing the muscle atrophy through atrogin-1.
The lower protein content of PGC-1α directly aggravates mitochondrial biogenesis and function and may cause the oxidative stress.
Furthermore, mitochondria are both the source and target of ROS generation. We assume that vitamin D deficiency induces oxidative
stress, which is involved and played an important role in muscle atrophy and leads to mitochondrial dysfunction.
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