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Innate defenses at mucosal surfaces are likely of 
primary importance in protection against the 
large variety of potentially infectious pathogens 
to which animal hosts are constantly exposed 
(1). In the intestine, the fi rst line of defense in-
cludes nonimmune factors, such as gastric acid, 
mucus, antimicrobial peptides, and commensal 
bacteria. A second line of defense occurs when 
pathogens contact or invade host cells and elicit 
the production of cytokines and chemokines, 
which in turn induce an infl ux of immune 
cells that eff ect pathogen clearance. Although 
much eff ort is currently being invested in un-
derstanding innate defenses against commensal 
and pathogenic bacteria, including how intesti-
nal epithelial cells, underlying immune cells, and 
intercalating “intraepithelial” DCs sense and 
 respond to these microbes, little is known about 
innate immune responses in the intestine evoked 
by viruses.

Type I interferons (IFNs) are critical media-
tors of innate immunity and limit disease caused 
by many viruses (2, 3). Type I IFNs consist of 
15 subtypes of IFN-α, 1 subtype of IFN-β, and 
1 subtype of IFN-ω, all sharing a common type 
I IFN receptor (4). Type I IFNs are produced 
by virtually all virus-infected cells in response to 
intracellular viral dsRNA, which is detected by 
the RNA helicases, retinoic acid–inducible gene 
(RIG) I, melanoma diff erentiation-associated 
gene 5 (Mda-5), and, possibly, protein kinase 
dependent on RNA (PKR) (5, 6). Plasmacytoid 
DCs (pDCs) produce type I IFNs in response to 
exogenous viral RNA or DNA signaling via 
Toll-like receptors (TLRs) TLR7 or TLR9 (6). 
Many cells, including conventional DCs (cDCs), 
are activated by viral RNA or the synthetic 
RNA analogue polyI:polyC to produce type I 
IFNs via TLR3-dependent and -independent 
mechanisms (6). Studies using genetically defi -
cient strains of mice indicate that the contribu-
tion of each of these mechanisms (and those that 
are still unknown), as well as the cells producing 
type I IFNs during viral infections in vivo, depend 
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on specifi c viral products and the pathogenesis of the particular 
viral infection (6).

Production of type I IFNs is dependent on an autocrine 
feedback mechanism involving signaling via the common 
type I IFN receptor that consists of the IFNαR1 and IFNαR2 
chains (7). Signaling through this receptor induces the tran-
scription of a broad array of type I IFN-stimulated genes 
(ISGs) (7), such as Mx-1, PKR, and the 2’-5′ oligoadenylate 
synthetases, which are important for inducing an antiviral state 
(4, 5, 7). Furthermore, type I IFNs can activate additional 
components of innate immunity by promoting cytotoxicity of 
NK cells (8), stimulating IL-15 production to induce NK cell 
proliferation (9), and, at low doses, enhancing release of IL-12 
by DCs, which in turn can stimulate IFN-γ production by 
T cells and NK cells (10). Type I IFNs are produced in the intes-
tine during certain viral infections (11); however, the extent to 
which type I IFNs are required for viral clearance at this site 
is not clear.

Reovirus is a nonenveloped, double-stranded RNA-
 containing virus that replicates in the cytoplasm of host cells 
(12). There are three reovirus serotypes that vary in certain 
pathogenic properties, including growth in the intestine, path-
way of systemic spread, and end-organ tropism (13). Of the 
many reovirus strains characterized, strain type 1 Lang (T1L) 
is an ideal virus for use in studies of mucosal immune re-
sponses. After peroral inoculation of adult mice, reovirus T1L 
infects the follicular-associated epithelium (FAE) overlying 
the Peyer’s patches (PPs) of the small intestine (14) and in-
duces protective immunity via IgA secretion and generation 
of reovirus-specifi c CD4+ and CD8+ T cells (15–19). In adult 
mice, T1L is capable of spreading to mesenteric LNs (MLNs), 
but not to systemic sites. Intestinal infection of wild-type (WT) 
mice is cleared within 10 d.

In this study, we determined whether type I IFNs are 
 capable of protecting adult mice against reovirus T1L infec-
tion. In contrast to WT mice, mice lacking IFNαR1 (2) 
 developed lethal infection with T1L. In studies of BM chi-
meric mice, we uncovered an essential role for BM cells 
in mediating the type I IFN-dependent clearance of T1L in-
fection and survival. Remarkably, DCs, including CD11chi 
cDCs, rather than infected epithelial cells, are the major 
 producers of type I IFNs during reovirus infection. These 

fi ndings provide the fi rst evidence that type I IFNs are re-
quired for clearance of an intestinal viral infection and off er 
new  insights into the role of innate immune response cyto-
kines in control of viral dissemination from the site of entry 
into the host.

RESULTS

Type I IFNs are induced in PPs during reovirus infection

To determine whether type I IFNs are induced in PPs  during 
intestinal infection by reovirus T1L, mRNAs encoding IFN-α, 
IFN-β, and Mx-1, which is a prototype ISG (20), were mea-
sured by reverse transcription (RT) and quantitative poly-
merase chain reaction (qPCR) from whole PPs isolated before 
and after peroral inoculation of adult WT mice with T1L. The 
mRNAs encoding IFN-α and -β were up-regulated 5- and 
22-fold, respectively, by 20 h (Fig. 1), and these levels per-
sisted for at least 96 h after infection (Fig. S1, available at 
http://www.jem.org/cgi/content/full/jem.20061587/DC1). 
Mx-1 mRNA was also signifi cantly elevated over this time 
course, indicating the functional  production of type I IFNs in 
PPs after intestinal infection by T1L.

Figure 1. Type I IFN production in PPs after infection with reovirus 

T1L. WT mice were inoculated perorally with T1L, PPs were resected at 

the indicated times, and total RNA was purifi ed. IFN-α (open bars), IFN-β 

(closed bars), and Mx-1 (striped bars) mRNAs were quantifi ed by RT-qPCR. 

Levels of target mRNAs were normalized to GAPDH mRNA as an endog-

enous control. Results are presented as the mean mRNA levels obtained 

from three mice at each time point. Error bars indicate the SD.

Figure 2. Survival after infection with reovirus T1L. C57BL/6 (black 

squares; n = 50), IFNαR1 KO (red triangles; n = 21), TLR3 KO (blue 

 circles; n = 15), and MyD88 KO (green triangles; n = 15) mice were 

 inoculated perorally with T1L and monitored daily for survival for 20 d. 

The difference in survival between C57BL/6 and IFNαR1 KO mice after 

reovirus T1L infection is highly signifi cant (P < 0.0001) using a Wilcox 

log-rank test.
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Type I IFNs mediate protection against fatal reovirus 

infection of adult mice

To determine whether type I IFNs function in viral clear-
ance from intestinal sites, C57BL/6 WT and IFNαR1 KO 
mice (2) were inoculated perorally with reovirus T1L and 
monitored for survival and viral load. IFNαR1 KO mice 
succumbed to infection between 7–10 d post-inoculation, 
whereas WT mice survived (Fig. 2). Identical results were 
obtained after infection of WT and IFNαR1 KO mice on a 
129 background (not depicted). Death of IFNαR1 KO mice 
was associated with overwhelming local and systemic infec-
tion (Fig. 3). On day 4 after inoculation, T1L was detected in 
PPs and MLNs of both WT and IFNαR1 KO mice, as well 
as in spleens of IFNαR1 KO mice. On day 8, WT mice had 
virtually cleared the infection, with only low titers remain-
ing in mucosal tissues, whereas IFNαR1 KO mice had high 
viral titers in PPs, MLNs, and spleen (Fig. 3). On day 8, virus 
also was detected in heart, lung, liver, and brain of IFNαR1 
KO, but not WT, mice (Fig. S2, available at http://www.jem
.org/cgi/content/full/jem.20061587/DC1).

Examination of tissue sections from uninfected and 
 infected WT and IFNαR1 KO mice revealed striking diff er-
ences in end-organ damage between the two mouse strains. 
On day 8 after inoculation, all tissues from WT mice appeared 
normal and were indistinguishable from uninfected WT or 
IFNαR1 KO mice (Fig. 4 A and not depicted). In contrast, 
PPs and all other lymphoid organs examined from infected 
IFNαR1 KO mice at this interval showed severe diff use ne-
crosis with an overall pale appearance and loss of structural 
markings (Fig. 4 A). Nuclear staining was diminished in those 
tissues, suggesting elimination of cells, including lymphoid 
cells. Sections from liver showed patchy areas of moderate to 
severe necrotizing hepatitis containing a mixed infl ammatory 
cell infi ltrate. Areas of necrotizing enteritis were found in 
both small and large intestines, with blunted villi and degen-
eration of crypt epithelial cells. Interestingly, nonlymphoid 
organs, including heart, lung, and brain of IFNαR1 KO mice, 
appeared normal without substantial changes in tissue archi-
tecture or cellular infi ltration, even though virus was detected 
at those sites (Fig. S2 and not depicted).

In addition to the pathologic changes, large amounts of 
viral antigen were detected in lymphoid organs and within 
the infl ammatory cell infi ltrates in the liver of IFNαR1 KO 
mice (Fig. 4 B). Furthermore, we observed considerable tissue 
staining for the activated form of caspase-3 in lymphoid organs 
showing cell loss, indicating that at least some component of 
the cell death in those tissues was attributable to apoptosis (not 
depicted). Cultures of isolated splenic tissue from reovirus-
 infected IFNαR1 KO mice grew multiple bacterial species, 
including Proteus mirabilis and Enterococcus species, indicating 
systemic infection with enteric bacteria complicated initial 
 infection with reovirus. Thus, the most likely cause of death 
in these mice was sepsis after necrotizing enterocolitis. These 
data demonstrate that type I IFNs are essential for control of 
intestinal infection with reovirus T1L and prevention of its 
spread to systemic sites.

Neither TLR3− nor MyD88-dependent signaling is crucial 

for clearance of reovirus T1L infection

TLRs are pattern-recognition receptors that engage discrete 
components of microbial organisms and activate innate im-
mune response signaling pathways (21). Of particular relevance 
to this study is the observation that dsRNA is recognized 
by TLR3, which can signal to elicit production of type I 
IFNs (22). To determine whether TLR3 is responsible for 
type I IFN production during intestinal infection by reovirus 

Figure 3. Viral titers in mouse organs after reovirus T1L infection. 

C57BL/6 (black squares), IFNαR1 KO (red triangles), TLR3 KO (blue circles), 

and MyD88 KO (green triangles) mice were inoculated perorally with T1L 

and killed at the indicated times. Viral titers in homogenates of the organs 

shown were determined by plaque assay. Each data point represents viral 

titer in a tissue sample from a single mouse. Horizontal bars indicate mean 

viral titers. *, P < 0.05; ***, P < 0.001, as determined using a one-tailed 

Student’s t test. 
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T1L, TLR3 KO mice were inoculated perorally with T1L and 
monitored for survival and viral load. Like WT C57BL/6 
mice, TLR3 KO mice survived T1L infection (Fig. 2). Con-
cordantly, viral loads in PPs, MLNs, and spleen of TLR3 KO 
mice were similar to those in WT mice (Fig. 3), indicating 
that TLR3 is dispensable for protection against lethal T1L 
 infection after peroral inoculation. Similarly, we found that 
mice lacking MyD88, which is an adaptor protein used by 
all known TLRs except TLR3 (23), survived reovirus T1L 
infection, with clearance of virus indistinguishable from that 
of WT or TLR3 KO mice (Figs. 2 and 3). We conclude that 
neither TLR3- nor MyD88-dependent TLR signaling path-
ways are required for innate protection against fatal infection 
by reovirus T1L. Furthermore, because MyD88 is required 
for IL-1 and IL-18 receptor signaling (24), these data also 
eliminate a nonredundant contribution from these receptors 
to reovirus clearance.

BM cells from WT mice reverse the susceptibility of IFN𝛂R1 

KO mice to reovirus T1L infection

Because reovirus T1L productively infects epithelial cells in 
the FAE overlying PPs (14), we hypothesized that production 
of type I IFNs by infected epithelial cells protects against the 
spread of virus within permissive cells in the epithelium. To 
test this hypothesis, we generated chimeric mice with BM 
cells derived from WT C57BL/6 mice transferred into irradi-
ated IFNαR1 KO hosts and BM cells derived from IFNαR1 
KO mice into irradiated WT C57BL/6 recipients. Chimeric 

mice were inoculated perorally with reovirus T1L and moni-
tored for survival and viral load. Unexpectedly, IFNαR1 KO 
mice reconstituted with WT BM cells survived infection 
(Fig. 5). In sharp contrast, WT mice reconstituted with IFNαR1 
KO BM cells were more susceptible to infection, with 85% of 
these mice succumbing by day 10 (Fig. 5). On day 8 after 
 inoculation, viral loads in PPs and MLNs from WT mice re-
constituted with IFNαR1 KO BM cells were similar to those 
in IFNαR1 KO mice (Fig. 6). In addition, reovirus T1L was 

Figure 4. Histopathology of tissues from IFN𝛂R1 KO mice infected 

with reovirus T1L. IFNαR1 KO mice were either inoculated perorally with 

T1L or mock infected. 8 d after inoculation, PP, spleen, and liver were 

 resected, sectioned, and stained with either hematoxylin and eosin (A) 

or mAb specifi c for the T1L σ1 protein (B, red). Cell nuclei in B were 

stained using Hoechst (blue). Bars: (white) 750 μm; (black) 150 μm.

Figure 5. Survival of BM-chimeric mice after infection with 

 reovirus T1L. C57BL/6 and IFNαR1 KO mice were irradiated and recon-

stituted with BM from either C57BL/6 or IFNαR1 KO mice. Chimeric mice 

were inoculated perorally with reovirus T1L and monitored daily for survival 

for 20 d. **, P < 0.01; ***, P < 0.0001, as determined using the log-rank test.
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detected in the spleen of these mice, indicating systemic spread 
identical to that observed after infection of intact IFNαR1 
KO mice (Fig. 6). However, IFNαR1 KO mice reconsti-
tuted with WT BM cleared infection with kinetics similar to 
WT mice (Fig. 6). As controls, WT mice reconstituted with 
WT BM cells and IFNαR1 KO mice reconstituted with 
IFNαR1 KO BM cells displayed survival outcomes and viral 
loads similar to those after T1L infection of nonirradiated WT 
and IFNαR1 KO mice, respectively (Figs. 5 and 6). These 
results indicate that hematopoietic cells must be capable of 
 responding to type I IFNs to control T1L infection. More-
over, type I IFN production and responsiveness of epithelial 
cells (or other stromal cells) is not suffi  cient to limit local and 
systemic spread of reovirus T1L.

NK cells are not required for clearance of reovirus T1L

NK cells play an essential role in the early response to many, 
but not all viral infections (25). These cells are particularly im-
portant components of host defense against members of the 
herpesvirus family, several of which have developed strategies 
to attenuate NK cell killing (26). Given this central role for 
NK cells in innate immunity to viral infection and the capac-
ity of type I IFNs to mediate NK cell activation, killing, and 
survival, we next sought to determine whether NK cells are 
involved in defense against reovirus T1L infection. We fi rst 
quantifi ed NK cells in PPs after peroral inoculation with T1L. 
In the absence of infection, PPs did not contain detectable 
numbers of NK cells (Fig. 7), similar to the paucity of NK 
cells in peripheral LNs observed in a previous study (27). 
However, after peroral inoculation with T1L, NK cells infi l-
trated PPs (Fig. 7, A and B). NK cell infi ltration was similar 
in WT mice and IFNαR1 KO mice (Fig. 7), suggesting that 
NK cell recruitment is not dependent on type I IFNs.

To determine whether NK cells serve a function in de-
fense against reovirus T1L infection, we depleted NK cells in 
WT C57BL/6 mice by systemic injection of anti-asialo GM1 
antibody (Ab) (28). Mice depleted of NK cells were not more 
susceptible to reovirus T1L than undepleted mice (Fig. 7 C). 
NK cell-depleted mice survived T1L infection, and viral 
loads in organs resected from NK cell-depleted mice did not 
diff er from those in WT mice (not depicted). Therefore, ac-
tivation of NK cells by type I IFNs is unlikely to mediate 
clearance of intestinal reovirus T1L infection and does not 
explain the requirement for BM-derived cells to respond 
to type I IFN in viral clearance. To evaluate a role for B and 
T cells in this process, RAG KO mice were infected with 
reovirus T1L and monitored for survival. These mice survived 
reovirus infection, indicating that it is unlikely that direct or 
indirect eff ects of type I IFN on B and T cells are suffi  cient for 
reovirus clearance (Fig. 7 C).

DCs produce type I IFNs, which induce expression 

of the antiviral protein Mx-1 in PPs

To identify the cellular source of type I IFNs, and to defi ne 
the cells responding to type I IFNs in PPs during reovirus T1L 
infection, we quantifi ed the expression of IFN-α, IFN-β, and 

Figure 6. Viral titers in organs of BM chimeric mice after reovirus 

T1L infection. C57BL/6 mice (open black squares), IFNαR1 KO mice (open 

red triangles), IFNαR1 KO mice reconstituted with C57BL/6 BM cells (open 

green circles), and C57BL/6 mice reconstituted with IFNαR1 KO BM cells 

(open blue diamonds) were inoculated perorally with T1L and killed at 

the indicated times. Viral titers in homogenates of the organs shown 

were determined by plaque assay. Each data point represents viral titer 

in a tissue sample from a single mouse. Horizontal bars indicate mean 

viral titers. *, P < 0.05; **, P < 0.001, as determined using a one-tailed 

Student’s t test.
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Mx-1 mRNAs in cell populations isolated from PPs of in-
fected mice. Surprisingly, epithelial cells isolated from PPs of 
infected mice did not express appreciable levels of IFN-α or -β 
mRNAs either before or after reovirus T1L infection (Fig. 8). 
In contrast, both IFN-α and -β mRNAs were found in the 
nonepithelial cell fraction (total cells), which contains 98% 
BM-derived cells (Fig. 8). Furthermore, after infection by 
T1L, both IFN-α and IFN-β mRNAs were highly expressed 
in PP cell populations enriched for CD11c+ cells, whereas cell 
populations depleted of CD11c+ cells did not express type I 

IFNs after infection (Fig. 8). To confi rm these data, PP cells 
from infected and uninfected mice were purifi ed to >97% 
homogeneity by fl ow cytometry. Both cDCs (7AAD−, 
CD11chigh, and B220−) and pDCs (7AAD−, CD11cint, and 
B220+) expressed high levels of IFN-α and -β mRNAs after 
infection (Fig. 8 B). In contrast, Mx-1 mRNA was found in all 
cell fractions, including epithelial cells (Fig. 8). Collectively, these 
data suggest that CD11c+ pDCs and cDCs are the primary 
producers of type I IFNs during reovirus infection, which in 
turn induce antiviral proteins in many cell types, including 
epithelial cells.

D I S C U S S I O N 

This study demonstrates that type I IFNs are required for 
control of intestinal infection by reovirus T1L. This control is 
not dependent on either TLR-dependent signaling pathways 
or activity of NK cells. DCs, including cDCs, are the primary 
producers of type I IFNs during reovirus infection. Epithelial 
cells or other stromal cells do not appear to be major contrib-
utors to type I IFN production, and responsiveness by these 
non–BM-derived cells is not suffi  cient for viral control. These 
data support the hypothesis that reovirus T1L induces non–
TLR-dependent type I IFN production by DCs, which results 
in direct antiviral eff ects on a variety of cell types, including 
DCs, epithelial cells, and possibly other stromal cells.

Type I IFNs function in defense against many systemic 
 viral infections in mice, including those caused by encephalo-
myocarditis virus, lymphocytic choriomeningitis virus, Semliki 
Forest virus, vaccinia virus, and vesicular stomatitis virus (2, 3). 
Type I IFNs also protect against myocarditis caused by some 
strains of reovirus (29, 30). In fact, the capacity of diff erent 
reovirus strains to damage cardiac tissue in mice correlates in-
versely with the capacity to induce IFN-β in primary cultures 
of cardiac myocytes (29). In concordance with these observa-
tions, NF-κB–induced production of IFN-β in the murine 
heart during reovirus infection in vivo limits viral replication, 
apoptosis, and clinical disease (31).

Although reovirus T1L induces IFN-β in some epithelial 
cell lines (32), before this study it was not known whether 
type I IFNs are produced in intestinal tissues after reovirus 
 infection in vivo or if type I IFNs contribute to host defense 
against any intestinal virus infection. Evidence accumulated 
thus far suggests that type I IFNs have a limited role in the 
 intestine. For example, IFNαR1 KO mice are not more sus-
ceptible to oral infection by rotavirus (33), which is a member 
of the Reoviridae family that is closely related to reovirus, or 
murine norovirus 1 (34). Interestingly, some viruses that in-
fect mucosal tissues have evolved mechanisms to inhibit either 
the production or eff ects of type I IFNs (20). For example, 
rotavirus nonstructural protein 1 (NSP1) blocks type I IFN 
production by binding to the IFN-inducing transcription fac-
tor, IRF3, and targeting it for degradation (35). Therefore, 
the requirement for type I IFNs for clearance of intestinal 
reovirus infection was not an expected fi nding.

Our experiments indicate that BM-derived cells must 
be capable of responding to type I IFNs to confer protection 

Figure 7. NK cells infi ltrate PPs after infection with reovirus T1L. 

(A) Representative FACS plots showing CD3− cells from PPs of 

uninfected mice and mice 2 d after peroral inoculation with T1L. 

(B) CD3−NK1.1+DX5+ cells in PPs from C57BL/6 mice (closed bars) or 

IFNαR1 KO mice (striped bars) at the indicated times after inoculation 

were quantifi ed using FACS analysis. Results are presented as the mean 

percentage of CD3−NK1.1+DX5+ cells in PPs from three independent 

experiments and at least three mice per group. Error bars indicate the SD. 

(C) Survival after infection with reovirus T1L. C57BL/6 mice (black 

squares), C57BL/6 mice depleted of NK cells (open circles, n = 6), and 

RAG KO mice (open triangles, n = 13) were inoculated perorally with T1L 

and monitored daily for survival for 20 d.
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against intestinal reovirus T1L infection. These results are sur-
prising for two reasons. First, reovirus T1L acutely infects only 
epithelial cells in the PP FAE (14) and, possibly, PP- associated 
villi (36). This strict tissue tropism may be attributable to the 
expression of junctional adhesion molecule-A, which serves as 
a receptor for reovirus binding and infection (37). Therefore, 
our fi nding that WT mice reconstituted with IFNαR1 KO BM 
do not clear infection indicates that innate control of reovirus 
infection does not occur solely at the level of the epithelium. 
Thus, autocrine eff ects of type I IFNs produced by infected 
epithelial cells do not appear to facilitate protection against 
spread of the virus to neighboring permissive, but uninfected, 
cells. Second, WT BM-derived cells can rescue IFNαR1 KO 

mice from lethal reovirus infection. This observation indicates 
that responsiveness to type I IFNs by BM- derived cells is 
suffi  cient for innate protection.

We considered two possible explanations for the essential 
role of BM cells in conferring type I IFN-mediated protection 
against fatal reovirus disease. First, type I IFNs produced in PPs 
during reovirus infection might act by recruiting and activat-
ing BM-derived eff ector cells (7, 20). To address this possibility, 
we performed experiments to determine whether type I IFNs 
act on NK cells to enhance their cytotoxicity as a potential mech-
anism of innate protection. NK cells activated by type I IFNs 
play a role in innate immunity against several viruses, such as 
murine cytomegalovirus (9, 38). In the absence of infection, 

Figure 8. Type I IFN production in PPs by DCs after infection with 

reovirus. PPs from naive (open bars) or reovirus-infected BALB/c mice 

(2 d after infection; striped bars) were resected and fractionated to yield 

epithelial cells, total PP cells, MACS-enriched CD11c+ cells, and cells 

 depleted of CD11c+ (A) or epithelial cells (Epi), total PP cells, MACS-enriched 

CD11c+ cells, cells depleted of CD11c+, FACS-sorted cDCs (CD11c+, B220−), 

and FACS-sorted pDCs (CD11c+ B220+) (B). Total RNA was purifi ed, 

and IFN-α, IFN-β, and Mx-1 mRNAs were quantifi ed using RT-qPCR. 

 Levels of target mRNAs were normalized to GAPDH mRNA as an endog-

enous control. Bars are the mean of two to three replicates, and dots 

represent each replicate. Results are representative of at least two 

 independent experiments.
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LNs, including PPs, contain very few NK cells (Fig. 7 and 
 reference (27)). After infection by reovirus T1L, NK cells were 
recruited to PPs of both WT and IFNαR1 KO mice. How-
ever, eff ective depletion of NK cells had no eff ect on viral 
clearance. Therefore, it seems unlikely that the primary eff ect 
of type I IFNs in PPs is mediated by activation of NK cell kill-
ing of infected cells. In addition, RAG KO mice survive per-
oral reovirus T1L infection, suggesting that B and T cells are 
not involved in the early clearance of reovirus (Fig. 7 C).

Second, BM-derived cells might be the primary source of 
type I IFNs and confer protection via autocrine type I IFN 
signaling and induction of antiviral ISGs. To address this pos-
sibility, we fractionated PP cells before and after infection and 
quantifi ed type I IFN mRNA levels in diff erent cell types by 
RT-qPCR. Surprisingly, we found that epithelial cells are not 
a substantial source of type I IFN during infection. In contrast, 
CD11c+ DCs, including both cDCs and pDCs, were respon-
sible for the majority of type I IFNs produced. Although there 
is precedent for local expression of type I IFNs in a model of 
intestinal virus infection (11), the responsible cell type has not 
been identifi ed. In addition, whereas pDCs are an important 
source of type I IFNs (6), there is little information about the 
capacity of cDCs to produce type I IFN during viral infections 
in vivo. Therefore, our data highlight a new role for DCs in 
intestinal lymphoid tissues in the production of type I IFNs 
during an intestinal virus infection. We fi nd it noteworthy 
that pDCs from PPs produce little detectable type I IFNs after 
stimulation in vitro with either CpG oligodeoxynucleotides 
or infl uenza virus (unpublished data). Therefore, type I IFN 
production by pDCs in PPs is limited in steady-state condi-
tions, but can be induced under conditions of viral infection, 
possibly by a change in the local cytokine environment, re-
cruitment of new pDCs from the peripheral blood, or both. 
We have begun to determine the relative role for pDCs and 
cDCs in the production of type I IFN in reovirus infection. In 
preliminary studies, depletion of pDCs in C57BL/6 mice us-
ing 120G8 Ab (although only to 60% of untreated animals) 
did not aff ect viral clearance (unpublished data). Therefore, it 
is possible that type I IFN production by cDCs may be suffi  -
cient for protection, although this requires further study.

Our data suggest that type I IFNs produced largely by 
DCs have direct antiviral eff ects on surrounding cells. We found 
elevated levels of Mx-1 mRNA in all cell fractions from in-
fected PPs, including epithelial cells. Moreover, in the absence 
of type I IFN receptor signaling, there was widespread reovi-
rus antigen throughout lymphoid regions of PPs and spleen. 
Therefore, it is likely that a major eff ect of type I IFNs 
produced in PPs is to induce antiviral proteins in both BM-
 derived and stromal cells, resulting in limitation of local vi-
ral replication and systemic dissemination. Local production of 
type I IFNs might also activate innate eff ector cells, resulting 
in clearance of reovirus infection, or act on DCs to enhance 
cross-presentation of viral proteins to CD8+ T cells (39). 
Thus, our fi ndings suggest that innate immune responses in 
PPs are important in containing replication and dissemination 
of microbial pathogens that use M cells to invade the host.

An important conclusion from our study is that TLR-
mediated signaling is dispensable for clearance of intestinal 
reovirus T1L infection. TLRs are essential for protection 
against several viral pathogens (6, 40). Of the many TLRs 
identifi ed, TLR3 is of particular interest to us, as this pattern-
recognition receptor recognizes genomic dsRNA of reovirus 
T1L in vitro (22) and is required for type I IFN production 
during murine cytomegalovirus infection (38). In addition, 
TLR3 can promote cross priming during some viral infec-
tions in which apoptotic bodies containing dsRNA appear to 
activate DCs via TLR3 within endosomes (41). TLR3 uses 
the adaptor protein TRIF in downstream signaling (23), 
whereas other TLRs, particularly TLR7 and TLR9, which 
respond to viral nucleic acids by producing type I IFNs, use 
MyD88 as an essential signaling adaptor (21). We found that 
both TLR3 KO mice and MyD88 KO mice survived T1L 
infection and cleared virus with kinetics similar to that of WT 
mice, indicating that neither TLR3- nor MyD88-dependent 
TLRs are required for development of innate immunity to 
reovirus T1L in the intestine. Absence of a role for TLR3 in 
clearance of reovirus, which is a model dsRNA virus, is sur-
prising. However, our results are consistent with a previous 
study in which TLR3 defi ciency did not enhance the viru-
lence of reovirus strain type 3 Dearing after intracranial inoc-
ulation of newborn mice (42). Although additional studies 
are necessary to elucidate the major pathogen-recognition 
mechanisms during reovirus infection, data from our experi-
ments suggest that reovirus stimulates induction of innate 
 immune responses by TLR-independent mechanisms, such 
as the detection of intracellular dsRNA by the RNA helicases 
RIG-I and Mda-5 (5, 6, 40).

Our fi ndings indicate an essential function for type I IFNs 
in protection against reovirus infection of the murine intestine. 
Furthermore, they establish a primary role for hematopoietic 
cells in type I IFN-dependent innate immunity against this virus 
and demonstrate that DCs are the main producers of these 
antiviral cytokines. These observations challenge the notion 
that autocrine production and eff ects of type I IFNs by infected 
cells are suffi  cient for control of viral replication. Finally, we 
show that TLRs are not required for detection or clearance of 
intestinal infection by reovirus T1L. Together, these data en-
hance an understanding of mucosal immunity to viral infec-
tions and suggest that manipulating the type I IFN response at 
the level of the mucosa might augment strategies to prevent mu-
cosal viral infections and diminish viral spread to systemic sites.

MATERIALS AND METHODS
Mice. C57BL/6, BALB/c, and 129 mice were purchased from the National 

Cancer Institute. Congenic (CD45.1) C57BL6/SJL mice (used for the recon-

stitution experiments) and RAG KO mice were purchased from Taconic or 

Jackson ImmunoResearch Laboratories. IFNαR1 KO mice on either a 

C57BL/6 or a 129 background (2, 3), TLR3 KO mice (22) (a gift of R. Flavell, 

Yale University School of Medicine, New Haven, CT), and MyD88 KO mice 

(24) were bred and housed in the animal facility at the National Institutes of 

Health. All mice were maintained using pathogen-free conditions in accor-

dance with institutional guidelines for animal welfare. Animals were used for 

infectivity studies between 7 and 12 wk of age.
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Chimeric mice were obtained by irradiating mice with 950 RAD, fol-

lowed by transplantation of 3 × 106 BM cells of the relevant donor strain on 

the same day. Mice were administered water supplemented with antibiotics 

(trimethoprim/sulfamethoxazole) for 5 wk after transplantation. Reconstitu-

tion of donor BM was monitored by analysis of congenic blood leukocytes 

7–10 wk after transplantation and before use in infectivity experiments.

Virus and viral titers. Reovirus T1L is a laboratory stock. Purifi ed virion 

preparations were made using second-passage L-cell lysate stocks of twice 

plaque-purifi ed reovirus, as previously described (14, 43). The concentration 

of viral particles was calculated from protein concentration (44), and the con-

centration of infectious virus was determined by plaque assay (45). Mice were 

inoculated perorally with 1–4 × 108 PFU of reovirus T1L in 200 μl borate-

buff ered saline (0.13 M NaCl, 0.25 mM CaCl2, 1.5 mM MgCl2 × 6H20, 

20 mM H3BO3, and 0.15 mM Na2B4O7 × 10H2O) containing 5 g/L gelatin. 

Viral titers in organs from infected mice were determined from sonicated 

 tissue samples by plaque assay (45). Weights of organs were measured before 

the assay, and PFU were calculated per mg of tissue.

RT-qPCR. PPs were harvested at various times after inoculation and stored 

in RNAlater (Ambion). PPs were homogenized, and total RNA was ex-

tracted using an RNeasy mini kit (QIAGEN). Quality and quantity of RNA was 

assessed using a Bioanalyzer (Agilent Technologies, Inc.). RNA was reverse 

transcribed to cDNA using Superscript III fi rst-strand synthesis (Invitrogen). 

PCR was performed using Taqman and an Applied Biosystems 7900HT. 

IFN-α mRNAs (all genes) were detected using SYBR GREEN RT-PCR 

(10). IFN-β and Mx-1 FAM-labeled probe and primers were obtained from 

Applied Biosystems. The mRNAs were detected by following the manufac-

turer’s instructions (Assays-on-Demand). For quantitation, ∆CT was obtained 

by comparing cycle number (CT) required to reach a defi ned threshold value 

for target gene versus an endogenous control, GAPDH. The relative amount 

of mRNA was calculated as 1/(2∆CT).

Cell preparation. PPs were harvested and treated with 145 μg/ml DTT 

(Sigma-Aldrich) and 5 mM EDTA at 37°C for 10 min. Epithelial cells were 

removed by washing several times with HBSS. Single-cell suspensions were 

obtained by forcing the tissue through a cell strainer (Falcon). MACS enrich-

ment was performed using CD11c (N418) microbeads (Miltenyi Biotech).

Antibodies, cell staining, and cell depletion. Cells were incubated with 

7AAD (Sigma-Aldrich) to facilitate detection of dead cells and anti–mouse 

CD16/CD32 Ab (2.4G2) to block Fc receptors (FcγRIII/II) before staining. 

Cell-surface staining was performed using anti-CD3ε (145-2C11), anti-

NK1.1 (PK136), and anti-CD49b (DX5). Negative controls were performed 

using the corresponding isotype-matched Abs. All Abs were purchased from 

BD Biosciences. Stained cells were detected using a FACSCalibur fl ow 

 cytometer (BD Biosciences). For FACS sorting experiments, anti-CD11c 

(HL3), anti-B220 (RA3-6B2) was used for staining, and stained cells were 

sorted using a FACSAria fl ow cytometer (BD Biosciences). The T1L σ1 

structural protein was detected by immunofl uorescence in tissue sections 

 using murine mAb 5C6 (46). Biotinylated Ab specifi c for activated caspase 3 

was purchased from BD Biosciences. NK cells were depleted by inoculating 

50 μl of rabbit anti-asialo GM1 Ab (Wako Chemicals) i.p. every fourth day 

starting 2 d before peroral inoculation with virus. pDCs were depleted by 

 inoculating 0.5 mg of Ab 120G8 (Schering-Plough Laboratory of Immuno-

logical Research, Dardilly, France) i.p. every second day during the course of 

the experiment.

Immunohistochemistry and tissue staining. PPs, liver, and spleen were 

frozen in OCT embedding medium (Sakura Fineteck). Frozen sections (8 μm 

thick) were fi xed in acetone at −20°C, and immunofl uorescence staining 

was performed using the tyramide amplifi cation method (Invitrogen; 

T20932, T20935) as previously described (47). Nuclei were identifi ed by 

staining sections with Hoechst 33258 (Sigma-Aldrich) before mounting with 

Fluoromount G mounting media (Southern Biotechnology Associates, Inc.). 

Tissues were imaged using an Axioplan 2 fl uorescence microscope (Carl Zeiss 

MicroImaging, Inc.). Sections also were stained with hematoxylin and eosin 

according to standard protocols.

Statistical analysis. Statistical signifi cance of diff erences was determined 

using unpaired, one-tailed, or two-tailed Student’s t tests, using Prism 4 software 

(GraphPad Software, Inc.) or the log-rank test.

Online supplemental material. A time course of induction of mRNA 

for IFN-α, IFN-β, and Mx-1 in PPs after reovirus T1L infection is shown in 

Fig. S1. The viral load in multiple organs from WT and IFNαR1 KO mice 4 and 

8 d after reovirus T1L infection is shown in Fig. S2. Online supplemental material 

is available at http://www.jem.org/cgi/content/full/jem.20061587/DC1.
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