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Spatio‑temporal feature learning 
with reservoir computing for T‑cell 
segmentation in live‑cell Ca2+ 
fluorescence microscopy
Fatemeh Hadaeghi1*, Björn‑Philipp Diercks3, Daniel Schetelig1,2, Fabrizio Damicelli1, 
Insa M. A. Wolf3 & René Werner1,2

Advances in high-resolution live-cell Ca2+ imaging enabled subcellular localization of early Ca2+ 
signaling events in T-cells and paved the way to investigate the interplay between receptors and 
potential target channels in Ca2+ release events. The huge amount of acquired data requires efficient, 
ideally automated image processing pipelines, with cell localization/segmentation as central tasks. 
Automated segmentation in live-cell cytosolic Ca2+ imaging data is, however, challenging due to 
temporal image intensity fluctuations, low signal-to-noise ratio, and photo-bleaching. Here, we 
propose a reservoir computing (RC) framework for efficient and temporally consistent segmentation. 
Experiments were conducted with Jurkat T-cells and anti-CD3 coated beads used for T-cell activation. 
We compared the RC performance with a standard U-Net and a convolutional long short-term memory 
(LSTM) model. The RC-based models (1) perform on par in terms of segmentation accuracy with 
the deep learning models for cell-only segmentation, but show improved temporal segmentation 
consistency compared to the U-Net; (2) outperform the U-Net for two-emission wavelengths image 
segmentation and differentiation of T-cells and beads; and (3) perform on par with the convolutional 
LSTM for single-emission wavelength T-cell/bead segmentation and differentiation. In turn, RC 
models contain only a fraction of the parameters of the baseline models and reduce the training time 
considerably.

Regulation of cytosolic and organelle Ca2+ concentration and initial transient highly localized Ca2+ signals 
( Ca2+ microdomains) are essential for T-cell activation and initiation of effective immune responses1–5. While 
mechanistic details of the initial intra-cellular Ca2+ elevation and propagation of Ca2+ microdomains during 
T-cell activation remain poorly understood, advances in fluorescence microscopy enabled monitoring subcellular 
structures and early signaling events throughout T-cell activation with finer spatial and temporal resolution1, 4, 6.

With frame rates higher than 40 Hz4, a spatial resolution in the order of the diffraction limit and finer, and 
acquisition periods of several seconds to minutes, in-depth analysis of the imaging data requires efficient, ideally 
automated post-processing pipelines7. A central pipeline building block in live-cell imaging and Ca2+ micro-
domain analysis is the localization and segmentation of cells. Automated cell segmentation in high-resolution 
live-cell Ca2+ imaging data is, however, challenging due to an intrinsically low signal-to-noise ratio, fast Ca2+ 
signaling-based intensity fluctuations, overlaid by intensity changes on longer time-scales, due to, e.g., T-cell 
activation and photo-bleaching. Depending on the experimental setup, the cells further exhibit motion and 
deformation8. Moreover, if antibody-coated beads are used to mimic cell-cell interaction and to activate the 
cells4, 9, new objects with potentially similar intensity values and appearance than the cells enter the scene.

In this context, the present work describes computationally efficient segmentation approaches tailored to the 
requirements of live-cell Ca2+ microscopy and Ca2+ signaling analysis in T-cells. Methodically, the algorithms 
rely on the principles of reservoir computing (RC)10, which builds on the idea of recurrent neural networks 
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(RNNs) to extract spatio-temporal features to achieve temporally consistent data analysis results and provides a 
computationally efficient model training and light-weight models in comparison to deep learning-based RNNs.

Related work.  Image post-processing workflows for Ca2+ microscopy data commonly provide (semi-)
automatic solutions to problems directly associated with the imaging process, such as bleaching correction, 
deconvolution, and emission-channel alignment in dual-wavelength measurements4, 7, 11–13. Cell segmentation 
is often beyond the scope of standard toolkits; furthermore, due to the described peculiarities, existing solu-
tions usually require higher levels of user involvement or suffer from limited generalizability. Besides, these 
techniques are highly susceptible to cell movement and deformation8. Furthermore, proposed combinations 
of traditional image processing methods14–18 are usually applied on a frame-by-frame basis. This bears a high 
risk of temporally inconsistent segmentation results for different frames in the presence of temporal intensity 
changes. In addition, limited generalization capability and prohibitive computational complexity pose problems 
for the segmentation of typically larger volumes of data recorded from different sets of cells and under different 
acquisition conditions.

The urge to develop generic segmentation and cell tracking algorithms, therefore, prompted the use of 
machine learning principles and is at the moment shaped by deep learning methods19, 20. Currently dominat-
ing neural networks, however, usually comprise a feed-forward architecture, trained on static and independent 
frames. Due to the associated risk of temporally inconsistent segmentation results, we suggest utilizing recurrent 
neural networks (RNNs) to take advantage of temporal correlations in the data.

The applicability of recurrent neural networks, and especially deep learning-based RNNs, is nevertheless, at 
the moment, limited by the difficult and computationally expensive training process, making use of techniques 
such as temporal back-propagation21. Reservoir computing (RC) provides a computationally efficient alterna-
tive framework for RNN training22, 23. Its properties make it interesting for the biomedical domain24, 25, but, so 
far, applications are predominantly described for other fields22, 26, 27, mainly focusing on signal processing tasks. 
In turn, RC application to (biomedical) image processing can only rarely be found28, 29; and we are not aware of 
previous work on RC-based processing of spatio-temporal image data.

Contributions.  Building on our previous work30, we present, to the best of our knowledge, the first study 
that explores the capabilities of reservoir computing in the context of segmentation of spatio-temporal image 
series. Specifically, we developed RC algorithms that are suitable for application to single- and dual-wavelength 
Ca2+ imaging data and T-cell segmentation. The RC-based algorithms are compared to state-of-the-art deep 
learning architectures: a standard U-Net31 as de-facto standard in image segmentation and an U-Net-based con-
volutional long short term memory (LSTM)32 as problem-tailored state-of-the-art deep learning RNN solution.

Materials and methods
Reservoir computing for spatio‑temporal image segmentation.  The core to a reservoir comput-
ing model is a random, sparse, but fixed recurrent neural network, known as the reservoir (Fig. 1A), that non-
linearly maps a time-dependent input signal into a higher dimensional signal space through the internal states of 
this dynamical system. The time-dependent output is computed as a linear combination of these reservoir vari-
ables. In contrast to traditional deep RNN training methods, RC only adapts the output weights to minimize an 
error measure (usually the mean squared error) between the desired target and the output signals. Thus, the neu-
ron connections remain fixed, except for those from the reservoir toward the output layer, the so-called readout 
connections21. The non-linear expansion of the input signal into the high(er)-dimensional reservoir space, plus 
ease of training, enable RC models to efficiently learn to extract spatio-temporal features from time-dependent 
signals.

Using a general notation, the RC dynamics are governed by

with x(t) ∈ R
Nx denoting the time-dependent Nx-dimensional reservoir state (i.e., a reservoir with Nx units), 

�t ∈ R
+ the time sampling period, W ∈ R

Nx×Nx and Win ∈ R
Nx×Nu as internal and input weight matrices, 

respectively, and u(t) ∈ R
Nu the input at time t. The internal states are updated via the non-linear function f.

The output y(t) ∈ RNy is obtained from the extended system state z(t) = [x(t);u(t)] with [·; ·] as vertical 
vector concatenation by

with g as an output activation function and Wout ∈ R
Ny×(Nx+Nu) the readout weight matrix. Training the RC 

system then means training the readout weights (depicted by dashed lines in Fig. 1A) by computing the linear 
regression weights of the target outputs on the already harvested states of the reservoir units and the inputs via 
ridge-regression10.

Encoding temporal image series into reservoir computing input data.  A reservoir computing 
model in its standard formulation (i.e., Eq. 1) expects a single or multiple parallel time-series in the input. For 
temporal image processing applications, therefore, the temporal image series (Ii)i=1,...,N , Ii ∈ R

n1×n2 with n1 and 
n2 as number of pixels along the image axes must be converted into corresponding RC input data u . In this study, 
we defined the following encoding schemes.

(1)x(t +�t) = f (Wx(t)+Winu(t +�t)),

(2)y(t) = g(Woutz(t)),
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Encoding scheme 1.  Encoding scheme 1 is based on a straightforward vectorization of the images. For each 
image Ii , six vectors i(k) ∈ R

n1n2 ( k = 1, . . . , 6 ) were generated by i(1) = vec(Ii) , i(2) = vec
(

ITi
)

 , i(3) and i(4) as 
forward- and i(5) and i(6) as backward-shifted versions of i(1) and i(2) , i.e. i(3) =

[

0, i
(1)
1 , . . . , i

(1)
n1n2−1

]T
 and 

i(5) =
[

i
(1)
2 , . . . , i

(1)
n1n2 , 0

]T
 and similar for i(4) and i(6) . Forward- and backward-shifting as well as vectorization of 

the transposed image matrix aimed at providing spatial context to the reservoir. For a temporal image sequence 
(Ii)i=1,...,N , the input to the reservoir is eventually a real-valued matrix of size 7× (Nn1n2) with the first six rows 
corresponding to the i(k) vectors for all N time points, and the seventh row containing a fixed bias. Thus, for the 
defined encoding scheme, the variable t defined in Eq. (1) does not directly refer to the temporal index of the 
image series frames, but to the sequential pixel order in the vectors. The reservoir state update still follows Eq. (1) 
with u(t) and u(t +�t) denoting the tth and (t + 1)th entities of the 7-dimensional input to the RC model (i.e., 
�t = 1).

Using this encoding scheme, the segmentation task is formalized as a supervised binary classification problem 
with a single output node. The output node computes a linear combination of the reservoir states and returns a 
real-valued vector of length Nn1n2 . A threshold function is then applied to map this vector to a {0, 1}-vector of 
the same length; the threshold represents an additional hyperparameter. The resulting binary vector is finally 
re-ordered into the desired binary image series of length N.

Encoding scheme 2.  The encoding scheme 2 is illustrated in Fig. 2. In comparison to the straightforward encod-
ing scheme 1, it focuses on a pixel-level analysis and aims at a denser integration of spatial information. In detail, 
the number of input neurons of the reservoir is chosen to be Nu = 9 , covering the intensity information of a 
3× 3 pixel neighborhood of a pixel for each time point of an image series of length N. Different to encoding 
scheme 1, in this case, variable t of Eq. (1) indeed refers to the temporal index, i.e. the frame number, of the 
considered image time series; u(t) and u(t +�t) denote to the pixel intensities in the 3× 3 neighborhood of the 
processed pixel at t and t + 1 . Applied in a three-class segmentation context (see “Task 3: T-cell/bead segmenta-
tion and classification in single-emission measurements”), the encoding scheme is applied together with a RC 
model with a three-neuron output layer, returning the class-specific RC outputs for the considered pixel at a 
specific time point of the time series. RC inference for all image pixels leads to three temporal image series with 
N frames, which are converted into probability values via softmax layers. Based on the class-specific softmax 
values, eventually, N ternary images are generated.

Image acquisition and data characteristics.  The image data in this study were acquired by live-cell 
fluorescence microscopy as detailed by Diercks et al.33.

Briefly, imaging was carried out with a Leica IRBE2 microscope (100-fold magnification) using a Sutter DG-4 
as a light source at the image acquisition frequency of 40 Hz (data acquisition with Hamamatsu C9100 EMCCD 

Figure 1.   Illustration of the proposed models to segment and classify T-cells/beads in dual-wavelength Ca2+ 
imaging data. (A) Schematic representation of a reservoir computing model with fixed recurrent weights 
(solid lines) and trainable readout weights (dashed lines) commonly used for time-series processing. In the 
present work, temporal image series are converted into and processed as multiple parallel time-series (shown in 
green) via the encoding schemes detailed in the main text. (B) Schematic of a deep convolutional, U-Net-like 
neural network (dashed lines: trainable weights). (C) The proposed system for T-cell/bead segmentation and 
differentiation (Task 2) [Graphics created with MATLAB and the Image Processing Toolbox Release 2019b, The 
MathWorks, Inc. (http://​mathw​orks.​com/​produ​cts/​image.​html)].

http://mathworks.com/products/image.html
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camera). A dual-view module (Optical Insights, PerkinElmer Inc.) was used to split the emission wavelengths 
of the two imaged Ca2+ indicators4.

Our experiments focused on Jurkat T-cells that typically exhibit significant motion and deformation during 
imaging, allowing us to better illustrate the advantages of the proposed segmentation algorithms. In addition, 
primary T-cell data were used to analyze generalizability capabilities of RC-based cell segmentation models. 
Primary T-cells are typically smaller and, from that perspective, more challenging to segment than Jurkat T-cells. 
They, however, exhibit less motion and deformation than Jurkat T-cells and are, therefore, less suited for analysis 
and illustration of the impact of integration of temporal information into the segmentation process.

All cells were loaded with Fluo-4 and Fura Red as cytosolic Ca2+ indicators and stimulated by beads coated 
with CD3-antibodies. The beads were added after several seconds of image acquisition. A typical image frame 
had a size of 500× 250 pixel with a spatial resolution of 368 nm for each emission-wavelength; the resulting 
temporal sequence comprised > 7000 frames. Example data are shown in Fig. 3.

Application scenarios and experiments.  We focused on three segmentation scenarios: (1) single object 
segmentation; (2) T-cell and bead segmentation and differentiation exploiting two emission-wavelengths infor-
mation; and (3) T-cell/bead segmentation and differentiation in single emission-wavelength recordings. In the 
following, the developed RC algorithms are detailed and corresponding experiments described. The experi-
ments were based on ten live-cell imaging recordings (computer hardware: Intel Xeon(R) E-2186 (3.80 GHz), 32 
GB RAM, NVIDIA GeForce RTX 2080 Ti).

Task 1: single object segmentation.  The first task aimed at illustrating general feasibility and an initial evalua-
tion of RC-based object segmentation in spatio-temporal microscopy data. Given manually extracted regions 
of interest (ROIs) that include a single object and a set of sequential frames of the object, generic RC models 
were implemented to segment the object. Segmentation was performed on single emission-wavelength data, i.e., 
either Fluo-4 or Fura Red imaging data.

Reference segmentation (ground truth, GT) data for evaluation purposes was generated semi-manually. 
An unsupervised RC-based clustering model was trained for cell-customized pixel-wise data annotation. The 
model suggestions were visually presented to a human observer and rated as “well-labeled” or “bad”, reducing 
the laborious manual pixel-wise labeling to a binary classification task. The GT generation process (presented 
in Fig. S1) is detailed in Supplementary Note 1. 2000 ROIs with Jurkat T-cells (40 cells with 50 frames each; 
ROI size: 128× 128 pixel) that were judged “well-labeled” were used for subsequent model training and evalu-
ation (Fig. S2 illustrates samples of frames marked as successfully labeled). A subset of 280 frames (only Fluo-4 
emission) was also manually re-labeled. The manually annotated data were used to investigate whether the GT 

Figure 2.   Illustration of the distributed RC structure for segmentation/classification (task 3) using encoding 
scheme 2. (A) Schematic of a single reservoir computing model trained on multitudes of Nu = 9 univariate 
time-series recorded at the sites of randomly sampled adjacent pixels. The three outputs are associated with 
ternary output classes. (B) Illustration of the system functioning during model inference [Graphics created with 
MATLAB and the Image Processing Toolbox Release 2019b, The MathWorks, Inc. (http://​mathw​orks.​com/​
produ​cts/​image.​html)].

http://mathworks.com/products/image.html
http://mathworks.com/products/image.html
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generation process resulted in a potential bias toward overestimation of RC segmentation accuracy. Finally, a set 
of 22 primary T-cells (50 frames each; same ROI size than for the Jurkat T-cells) were used to test whether the 
trained RC model is able to deal with imaging data for a different cell type not seen during training.

The RC hyperparameters were optimized by 5-fold cross validation using 500 of the 2000 ROIs (i.e., 10 cells; 
final parameters: Nx = 100 , each neuron randomly connected to 10 neurons; activation function: tanh) based 
on encoding scheme 1. After parameter selection, the final RC model was trained on the entire 500 ROIs.

RC segmentation performance was compared to the U-Net (Fig. 1B; here: with a ResNet34-pretrained 
encoder34) and a state-of-the-art deep learning RNN architecture for cell segmentation that integrates the idea 
of convolutional long short-term memory networks (C-LSTM) into the U-Net by substituting the standard 
convolutional layers of the encoder with C-LSTM layers that offer recurrent connections32. Training of the deep 
learning systems (hyperparameters were the default parameters) was performed on the same 500 ROIs used for 
RC training. As an additional classical baseline, we also applied Otsu thresholding.

The segmentation approaches were evaluated in detail on the 1500 ROIs and 30 Jurkat T-cells that were not 
used during training. The generalization capability of the trained RC model was further investigated on the 
above-mentioned 22 primary T-cells and the corresponding 1100 frames. Segmentation accuracy measures were 
pixel-wise accuracy and the Dice coefficient35.

To also investigate the hypothesis that consideration of temporal correlations in the data as done in RNN-
based models helps improving temporal consistency of segmentation results, a contour evolution analysis was 
performed. Therefore, the perimeter of the segmentation masks, its orientation (angle between the image x-axis 
and the major axis of the cell), and the mask area were evaluated for different models and the Jurkat T-cell data.

Task 2: T‑cell/bead segmentation and differentiation using two‑emission‑wavelengths measurements.  To dem-
onstrate transferability of the task 1 results to a ‘real-world’ scenario, task 2 addresses the segmentation of full 
frames and temporal image data that contain multiple T-cells and antibody-coated beads. Thus, segmentation 
of T-cells not only means to reliably segment high intensity objects, but also to differentiate between T-cells and 
beads. Viewed in a single frame and emission wavelength (i.e., Fluo-4 or Fura Red), cells and beads can hardly 
be differentiated even by human observers (Fig. 3). The profound gradient between bead intensity values of cor-
responding Fluo-4 and Fura Red imaging data, however, can ameliorate the segmentation performance when the 
system is provided with the information of both cytosolic Ca2+ indicator emissions.

Figure 3.   Six snapshots (with 500× 500 pixels) of fluorescence intensity measured with Fluo-4 (left to the 
yellow border) and Fura Red (right) emissions. Cells are marked with blue crosses and beads with orange 
crosses at first appearance and, for further clarification, at t = 125 s. While there is no bead at t = 2.5 s, at t = 
10 s, five and at t = 25 s, six beads are observable in the Fluo-4 images. The beads are not captured by Fura Red. 
Visible in all Fura Red images, three Jurkat T-cells with different sizes, shapes, and temporal activities are present 
[Graphics created with MATLAB and the Image Processing Toolbox Release 2019b, The MathWorks, Inc. 
(http://​mathw​orks.​com/​produ​cts/​image.​html)].

http://mathworks.com/products/image.html
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Therefore, suitable to be integrated into dual-wavelength Ca2+ imaging systems, we propose the RC-based 
segmentation and object classification scheme outlined in Fig. 1C. The system comprises two trained reservoir 
models: one reservoir directly receives Ca2+ images from Fluo-4 measurements, and the other one is presented 
with Fura Red sequences, affinely registered to the corresponding Fluo-4 frame to compensate for a potential 
misalignment of the different emission wavelength imaging information. Methodically, the two RC systems are 
identical to the approach described in “Task 1: single object segmentation”. Subsequent to object segmentation 
in both emissions, a logical XOR operation is applied to discriminate cells and beads.

Similar to task 1, a semi-manual RC-based annotation system (depicted in Fig. S3) was implemented to create 
ternary images (classes: background, T-cell, bead) and GT data as described in Supplementary Note 2. Example 
GT data are shown in Fig. S4. RC training was based on 1155 full-size frames (231 frames from 5 Jurkat T-cell 
image series, each frame with a size of 500× 250 pixel; RC hyperparameters like in task 1, but Nx = 500 ). Test-
ing was performed on a separate set of 1155 frames from five different Jurkat T-cell image series (frame number 
chosen due to RAM limitations).

The performance of the proposed RC algorithm was again compared to U-Net and U-Net-based LSTM results. 
To ensure comparability, the deep learning approaches were set up similar to the RC system: two models were 
trained, one using Fluo-4 and one using Fura Red information and the results combined via XOR. Training and 
test data were the same as used for the RC.

Task 3: T‑cell/bead segmentation and classification in single‑emission measurements.  Simultaneous imaging of 
two Ca2+ indicators like Fluo-4 and Fura Red is motivated by the advantages of dual-wavelength ratiometric 
fluorescence microscopy: Computing the ratio between corresponding fluorescence intensity values allows, e.g., 
correcting for artifacts due to locally varying dye concentration, variations in laser intensity, and calculation of 
absolute Ca2+ concentrations36. Furthermore, being able to use one excitation wavelength for two Ca2+ indica-
tors has the advantage to detect local Ca2+ microdomains at a very high temporal and spatial resolution9.

However, aiming, for instance, at identification of players involved in the development of initial Ca2+ micro-
domains, a correlation of increased local cytosolic Ca2+ microdomains to cell organelles and Ca2+ channels is 
desirable, requiring staining the structures and measuring the corresponding fluorescence signal. For such sce-
narios, it is common to image the intracellular Ca2+ concentration using only a single Ca2+ indicator like Fluo-4. 
This, in turn, means that algorithms are required to differentiate T-cells and antibody-coated beads without extra 
information from other recording emission-wavelengths such as Fura Red in task 2.

To illustrate the complexity of this task, the temporal intensity profile of different cell and bead pixels are 
plotted in Fig. 4. The differentiation of cells and beads becomes almost impossible if taking into account the 
image information of only a single frame. The hypothesis is that RNNs are able to perform the task by making 
use of the distinct temporal patterns for bead and cell pixels.

To tackle the task by RC, we first re-used and evaluated the RC system and encoding scheme 1 as described 
for task 2. Further, to enforce the RC system to better preserve local spatial correlations of the data while simul-
taneously focusing on temporal pixel intensity patterns, we implemented and applied encoding scheme 2 (see 
“Encoding temporal image series into reservoir computing input data”).

Figure 4.   Examples of temporal signals recorded for Jurkat T-cell pixels (depicted in blue, purple and yellow) 
and antibody-coated beads (orange). The time-series highlight the notable difference in the fluorescence 
intensity levels obtained from different cells. Although the graphs recorded from sites corresponding to beads 
follow similar temporal patterns, there are lags between the times they appear in the imaging data. Near the end 
of the recording course, the fluorescence intensity at the bead sites are quite comparable to the cell intensities, 
making a frame-by-frame segmentation/classification ineffective [Graphics created with MATLAB and the 
Image Processing Toolbox Release 2019b, The MathWorks, Inc. (http://​mathw​orks.​com/​produ​cts/​image.​html)].

http://mathworks.com/products/image.html
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For the first RC system and encoding scheme, the training data was similar to the one used in task 2, except 
for using only the Fluo-4 imaging data. For the second RC encoding scheme, 20× 107 pixels from the same data 
were selected for training. Hyperparameters were kept similar to the first encoding scheme, except for replacing 
the tanh activation function by ReLU. The test dataset was the same used for task 2.

The performance of the RC algorithms was compared to the results obtained by the standard U-Net and an 
adaptation of the U-Net-LSTM for multi-class classification.

Table 1 summarizes the RC input data characteristics and reservoir parameters for the individual tasks. For 
all tasks, the outputs of the different segmentation algorithms were post-processed following Arbelle et al.32 (i.e., 
application of morphological hole closing, removal of small segmented clusters) to avoid holes within the seg-
mented objects and to reduce the number of false positive pixels. The post-processing parameters were identical 
for all segmentation approaches.

Results
Single object segmentation.  Figure 5 shows segmentation results for an exemplary Jurkat T-cell and six 
frames for the RC algorithm and a standard U-Net. Both approaches achieve a fairly good segmentation quality. 
For some frames, the U-Net segmentation is closer to the visually perceived cell border, and for some, the RC 
results appear more appropriate. The same holds true for a comparison to the U-Net-LSTM. This visual impres-
sion is also reflected by the quantitative evaluation summarized in Table 2 (upper part): For the full test dataset, 
all machine learning-based segmentation approaches achieved accuracy values between 0.94 and 0.95 and Dice 
coefficients between 0.92 and 0.93 for both cytosolic Ca2+ indicator emissions (differences between algorithms 
or emissions not significant; testing by two-sample t tests; p > 0.31 for all comparisons). In comparison, the Dice 
values for Otsu thresholding, applied as a classical baseline approach, were between 0.89 and 0.91 ( p > 0.08 for 
comparisons to the other segmentation approaches).

Table 1.   Summary of the characteristics of the input data used in the present study and the chosen reservoir 
parameters for individual tasks.

Input data characteristics Reservoir parameters

Total number of frames per image series Frame size Number of neurons Activation function f Readout function g

Task 1 50 (each containing a single cell) 128× 128 100 tanh Identity

Task 2 231 (entire image frames) 500× 250 100 tanh Identity

Task 3 231 (entire image frames) 500× 250 500 ReLU Sigmoid

Figure 5.   Illustration of task 1 results: Jurkat T-cell segmentation for six frames of a Fluo-4 Ca2+ imaging 
sequence. Blue: segmented mask border for the standard U-Net model. Orange: cell borders obtained by the 
reservoir computing model [Graphics created in MATLAB and the Image Processing Toolbox Release 2019b, 
The MathWorks, Inc. (http://​mathw​orks.​com/​produ​cts/​image.​html)].

http://mathworks.com/products/image.html
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The sub-analysis on the potential bias due to the GT generation process is summarized in Table 2 (lower 
part). There exist no significant difference between the metrics values for the semi- and the entirely manually 
annotated data that would indicate existence of a bias.

The results of the analysis of the temporal consistency of the segmentation masks are illustrated in Fig. 6 and 
supplemental video S1. The incorporation of temporal information by the RC system leads to smoother contour 
trajectories. While for the U-Net (i.e., frame-by-frame segmentation), the contour length, the mask orientation, 
and the mask area show abrupt changes between different frames, respective measures for the RC system show a 
smoother and more plausible evolution. For the deep learning-based RNN approach (U-Net-LSTM), the results 
are similar to the RC system (presented in Fig. S5, supplementary document).

Application of the RC model trained for segmentation of Jurkat T-cells to unseen primary T-cells led to a drop 
of the Dice values compared to Jurkat T-cell segmentation. For Fluo-4 emission measurements, the accuracy 
and the Dice value were 0.9476 and 0.8137, respectively; for Fura Red emission data, the accuracy and the Dice 
value were 0.9674 and 0.8670. The Dice values indicate a potential overfitting of the RC model to Jurkat T-cell 
data characteristics. However, Otsu thresholding applied to the same data yielded Dice values of 0.7189 (Fluo-4; 
p = 0.004 for comparison to RC Dice values) and 0.8138 (Fura Red; p = 0.008 ). Thus, the information learned 
by the RC model appears helpful compared to the basic intensity-based two-class pixel differentiation even for 
the different cell type data.

T‑cell/Bead segmentation and differentiation using two‑emission‑wavelenghts measure‑
ments.  The results for task 2 are summarized in Table 3. Given the different appearance of the beads for the 
two emission wavelengths, this task appears relatively straight-forward. However, the accuracy and Dice values 
indicate that incorporation of temporal information already helps improving segmentation and classification 
performance for this task: While the RC and the U-Net-LSTM systems perform on par, they both outperform 
the standard U-Net that was applied frame-by-frame (statistical testing omitted due to limited number of inde-
pendent samples, i.e., five imaging sequences). In addition, the segmentation of the beads appears to be more 
complex for all three systems, with the standard U-Net almost entirely failing.

T‑cell/bead segmentation and classification using single‑emission measurements.  The quanti-
tative results for task 3 are summarized in Table 4. The standard U-Net was, similar to task 2, not able to provide 
acceptable results and was discarded from further analyses.

Table 4 illustrates that the RC encoding style, i.e., the approach to convert the images into a format that is 
suitable for RC-based processing, plays an important role. Compared to the straightforward encoding scheme 1 
that is based on direct vectorization of the image matrices, the second scheme led to a significant increase of 
segmentation accuracy. Exemplary RC (with encoding scheme 2) segmentation results are shown in Fig. 7 and 
the supplementary video S2. A separation of close-by beads is, however, not always feasible; this remains for 
further methodological refinement.

Table 2.   Quantitative evaluation of the segmentation accuracy of the considered machine learning models 
for task 1: reservoir computing, a standard U-Net, and an U-Net-based LSTM (evaluation metrics: mean 
class-wise accuracy and Dice coefficient). As a classical baseline approach, segmentation results for standard 
Otsu thresholding are also listed for the semi-manually generated test set. This test set consisted of 1500 frames 
captured from 30 Jurkat T-cells, i.e., 50 frames/cell. The subset used for the investigation of a potential bias 
due to the proposed semi-manual GT generation approach comprised a subset of 280 frames that were also 
manually labeled ( Ca2+ indicator: Fluo-4).

Accuracy Dice value

Evaluation using full semi-manual test set

 RC
Fluo-4 0.9453 0.9321

Fura Red 0.9446 0.9315

 U-Net
Fluo-4 0.9447 0.9297

Fura Red 0.9415 0.9265

 U-Net-LSTM
Fluo-4 0.9459 0.9321

Fura Red 0.9369 0.9232

 Otsu thresholding
Fluo-4 0.9402 0.8902

Fura Red 0.9371 0.9096

Comparison of performance for manual/semi-manual subset

 RC
Manual 0.9242 0.9102

Semi-manual 0.9252 0.9131

 U-Net
Manual 0.9397 0.9233

Semi-manual 0.9383 0.9232

 U-Net-LSTM
Manual 0.8929 0.8748

Semi-manual 0.8995 0.8862
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Compared to the RC models, the mean accuracy and Dice values for the U-Net-LSTM are, although being 
in the same range, slightly higher. It should, however, be kept in mind that the implemented RC models have 
a drastically lower number of trainable parameters (approximately 1500 in the current study) than the U-Net-
LSTM ( > 6.5× 106 ) and the standard U-Net ( > 3.6× 109 ). In the current experiment, this led to a reduction 
of training time from 26 h for the U-Net-LSTM to 1 h for the RC system, although the U-Net-LSTM training 
was performed on GPU and was already highly optimized for GPU usage, while the RC training was on CPU 
and was not optimized for parallel computing.

Figure 6.   Predicted temporal contours evolution for a representative Jurkat T-cell and segmentation in the 
Fluo-4 emission data. (A) Unlike the discrete contour trajectory returned by the standard U-Net, the contours 
predicted by the RC method evolve continuously. (B) Frame-to-frame changes in contour length (in number of 
pixels) of the predicted masks. (C) Mask orientation, the angle (in degree) between the horizontal image axis 
(i.e., x-axis) and the major axis of an ellipse with the same second-moments as the segmented object, over time. 
(D) Normalized mask area over time. The area of the object was divided by the total number of pixels in each 
frame. The same illustration for the results of the U-Net-LSTM is presented in the supplementary materials 
(Fig. S5) [Graphics created with MATLAB and the Image Processing Toolbox Release 2019b, The MathWorks, 
Inc. (http://​mathw​orks.​com/​produ​cts/​image.​html)].

Table 3.   Performance evaluation of the reservoir computing model and the deep learning models for task 2 
(test set based on 1155 frames extracted from five Ca2+ imaging sequences).

Objects Accuracy Dice value

 RC
T-cells 0.9653 0.8795

Beads 0.9518 0.5819

 U-Net
T-cells 0.9367 0.8164

Beads 0.9437 0.1389

 U-Net-LSTM
T-cells 0.9631 0.8842

Beads 0.9483 0.5836

Table 4.   Performance evaluation of reservoir computing models and the U-Net-based LSTM for Jurkat T-cell 
and bead segmentation and differentiation in single-emission recordings (task 3; test set: 1155 frames from five 
imaging sequences). Corresponding class-wise normalized confusion matrices are presented in Fig. S6.

Objects Accuracy Dice value

 RC (encoding 1)
T-cells 0.9226 0.7623

Beads 0.9266 0.3534

 RC (encoding 2)
T-cells 0.9520 0.8528

Beads 0.9459 0.5909

 U-Net-LSTM
T-cells 0.9497 0.8540

Beads 0.9579 0.6242

http://mathworks.com/products/image.html
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Discussion
High-resolution Ca2+ imaging methods allow characterizing spatio-temporal dynamics of initial Ca2+ signaling 
in T-cells, a fundamental process in the adaptive immune system. The increasing amount of acquired data results 
in a need for efficient image processing and analysis solutions. The present study explores the potential of reser-
voir computing (RC) for temporally consistent object and, in particular, T-cell segmentation in spatio-temporal 
Ca2+ imaging data. The underlying rationale was that RC represents a computationally efficient RNN-based 
approach to learn spatio-temporal features and can help to overcome drawbacks of current deep learning systems.

Applied to Jurkat T-cell segmentation as well as bead and cell segmentation and classification using either 
single- or two-emission wavelengths imaging information, the RC models perform in terms of segmentation 
accuracy at least on par with the de-facto standard in biomedical image segmentation, the standard U-Net. For 
differentiation of T-cells and beads, which requires integration of temporal information, RC outperforms the 
U-Net, demonstrating the potential of spatio-temporal learning inherent to the RC paradigm.

Compared to a U-Net-based LSTM as a state-of-the-art RNN architecture, the RC models show a similar per-
formance both in terms of segmentation accuracy and temporal consistency of the segmentation results. At this, 
it should be noted that the semi-manual GT generation pursued in the present study included a frame-by-frame 
visual quality check and application of frame-specific thresholds. This partly led to temporal inconsistencies of 
the annotations for the temporal images series used for system training (see supplemental video S2). The obtained 
temporally mainly consistent segmentation results therefore also illustrate a certain degree of robustness of both 
RNN approaches with respect to corresponding training data imperfections. However, convolutional LSTMs are 
computationally expensive, difficult to train, and, consequently, still rarely applied in biomedical context. In the 
current work, the LSTM training took, for instance, more than a day on GPU, while RC training required one 
hour on CPU. Furthermore, the RC model comprised 1500 trainable parameters—whereas the LSTM > 6.5× 106 
parameters. Thus, a similar segmentation performance was achieved with only 0.023% of trainable parameters.

Despite faster training, due to the current CPU implementation, the proposed RC-based image segmentation 
is, however, not real time-capable: RC inference for a single 128 × 128 pixel frame takes approximately 0.5 s for the 
described hardware, and the inference time scales with the number of pixels. Optimization for parallel comput-
ing and re-implementation for GPU usage is, nevertheless, expected to result in a significant shortening of RC 
inference times especially for the proposed encoding scheme 2, rendering real-time RC segmentation realistic.

With regard to the presented results, we would like to note that the spatio-temporal Jurkat T-cell image series 
considered in our study are representative for the imaging conditions and data characteristics at our laboratory4, 

9, 33. However, it remains to be shown that our methods and observations can be transferred to and confirmed for 
different, maybe larger or more heterogeneous datasets and data acquired under different imaging conditions. In 
particular altered imaging conditions, but also cell and cell dynamics characteristics not present in the training 
data will necessitate retraining the models. This becomes already evident by the drop of the Dice values seen for 
segmentation of primary T-cells by means of the RC model trained for Jurkat T-cell segmentation (see results for 
task 1). To foster testing of the proposed approaches on other datasets, we provide the RC source code, together 
with the models and example data, as open source (see Data Availability statement).

For future work from a method perspective, it remains to extend our RC architecture by additional reservoir 
layers to extract multiple-scale temporal and/or spatial features. We expect the incorporation of multi-scale 
information to further improve segmentation accuracy.

Figure 7.   Boundaries of segmented Jurkat T-cells (blue) and anti-body coated beads (orange) in four frames of 
Fluo-4 Ca2+ imaging data, computed by the proposed RC model with encoding scheme 2. Despite cellular and 
beads movement and significant local and temporal variation of fluorescence intensity, the algorithm provides 
a robust and efficient solution to the task [Graphics created with MATLAB and the Image Processing Toolbox 
Release 2019b, The MathWorks, Inc. (http://​mathw​orks.​com/​produ​cts/​image.​html)].

http://mathworks.com/products/image.html
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Conclusions
The current work demonstrates reservoir computing to be an efficient alternative to computationally expensive 
deep learning-based networks for temporally consistent cell segmentation in high-resolution live-cell Ca2+ 
imaging.

Data availability
The RC source code, the models, and example data are provided publicly available at https://​github.​com/​IPMI-​
ICNS-​UKE/​Jurkat_​cell_​segme​ntati​on.
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