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Abstract. No targeting sequence for peroxisomal inte- 
gral membrane proteins has yet been identified. We 
have previously shown that a region of 67 amino acids 
is necessary to target Pmp47, a protein that spans the 
membrane six times, to peroxisomes. This region com- 
prises two membrane spans and the intervening loop. 
We now demonstrate that the 20 amino acid loop, 
which is predicted to face the matrix, is both necessary 
and sufficient for peroxisomal targeting. Sufficiency 

was demonstrated with both chloramphenicol acetyl- 
transferase and green fluorescent protein as carriers. 
There is a cluster of basic amino acids in the middle of 
the loop that we predict protrudes from the membrane 
surface into the matrix by a flanking stem structure. We 
show that the targeting signal is composed of this basic 
cluster and a block of amino acids immediately down- 
stream from it. 

M 
OST organellar proteins are synthesized in the cy- 
toplasm and are directed to their destination by 
cis-actmg sequences. These sequences are rec- 

ognized either by cytoplasmic factors (such as the signal 
recognition particle) or by receptors upon arrival at the 
target membrane. The translocation apparatus is then en- 
gaged. The protein will either assemble into the mem- 
brane or will be fully translocated into the internal com- 
partment. This bifurcation of import pathways is usually 
not a function of targeting signals but is rather dictated by 
the presence of hydrophobic domains that serve as stop- 
transfer sequences (Blobel et al., 1979; Yost et al., 1983). 

The details of these steps that occur at the surface of the 
ER (Gorlich and Rapoport, 1993; Jungnickel et al., 1994), 
mitochondria (Hannavy et al., 1993; Schwarz and Neupert, 
1994), and inner membrane of Escherichia coli (Bassford 
et al., 1991; Economu and Wickner, 1994) are becoming 
well understood due to intensive research. The corre- 
sponding events at the peroxisomal membrane are less 
clear and may be different in significant ways. 

Peroxisomes comprise a matrix compartment surrounded 
by a single membrane. Peroxisomal matrix proteins are 
synthesized on free polysomes and are posttranslationally 
imported into the organelle (Lazarow and Fujiki, 1985). 
About half of peroxisomal matrix proteins contain the car- 
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boxy-terminal tripeptide sequence Ser-Lys-Leu, or varia- 
tions of this sequence, which was the first peroxisomal tar- 
geting sequence, termed PTS1, to be defined (Gould et al., 
1989). A second peroxisomal targeting sequence (PTS2) 
has been found on the NH2 terminus of 3-ketoacyl-CoA 
thiolase and three other proteins (Swinkels et al., 1991). 
This sequence is 16-26 amino acids in length and may or 
may not be cleaved upon import. Perlp from Hansenula 
polyrnorpha is unique in that it has both a PTS1 and a 
PTS2 sequence (Waterham et al., 1994). Other peroxiso- 
mal proteins do not contain either sequence. Recent evi- 
dence is accumulating that demonstrates that both PTS1- 
and PTS2-containing proteins can be imported as oligo- 
meric complexes (Glover et al., 1994; McNew and Good- 
man, 1994). Furthermore, the import of highly cross- 
linked substrates and even 9-nm gold particles into peroxi- 
somes suggests that the oligomeric proteins do not have to 
be disassembled and unfolded on the surface before im- 
port (Walton et al., 1995). 

Peroxisomal membrane proteins (Pmp) 1 are also syn- 
thesized on free polysomes (with one possible exception) 
(Bodnar and Rachubinski, 1991) and are posttranslation- 
ally targeted to the organelle (Lazarow and Fujiki, 1985). 
However, much less is known about their targeting and as- 
sembly. In vitro studies indicate that membrane insertion 
is temperature dependent but does not require ATP hy- 
drolysis (Diestelk6tter and Just, 1993). With one excep- 
tion (Liu et al., 1995), integral membrane proteins do not 
contain a recognizable PTS1 or PTS2 sequence. Previous 

1. Abbreviat ions used in this paper. CAT, chloramphenicol acetyltrans- 
ferase; GFP, green fluorescent protein; HA, hemagglutinin; Pmp, peroxi- 
somal membrane protein. 
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studies using an integral Pmp from Candida boidinii, Pmp47, 
demonstrated that the targeting signal was contained 
within an internal region of the protein sequence (Mc- 
Cammon et al., 1994). Pmp47 has homology to members 
of the mitochondrial family of solute transporters, which 
span the membrane six times (Kuan and Saier, 1993). The 
important targeting information on this protein was found 
within the region consisting of spans 4 and 5 and the inter- 
vening loop. Here we show that this loop sequence of 
Pmp47, which is predicted to face the matrix based on pro- 
tease mapping (McCammon et al., 1994), is both necessary 
and sufficient for sorting to peroxisomes. This is the first 
report of a sorting sequence, termed mPTS, for a peroxiso- 
mal integral membrane protein. 

Materials and Methods 

Strains and Culturing Conditions 
Standard recombinant techniques (Sambrook et al., 1989) were per- 
formed using E. coli strains XL1-Blue (recA1 endA1 gyrA96 thi-1 hsdR17 
supE44 relA1 lac [F'proAB laclOZDM15, Tn10 (teff)]) and TG-1 (F' traD36 
laclq A[lacZ]M15 proA +B+/supE A[hsdM-mcrB]5 [rk-mk-McrB- ] thi 
A(lac-proAB)). E. coli strain CJ236 (F' cat[=pCJl05; M13 s Cmrl/dut ungl 
thi-1 tel A1 spoT1 mcrA) was used for site-directed mutagenesis (Kunkel 
et al., 1987). Yeast expression experiments were performed using Saccha- 
romyces cerevisiae strain M M Y O l l  (MATa ade 2-1 his3-11,15 1eu2-3,112 
trpl-I urn3-1 canl-lO0 0le +) (McCammon et al., 1994) or paslO-1 (MATa 
leu2 his4 trpl::URA3) (van der Leij et al., 1992). Yeast transformants were 
maintained on synthetic dextrose plates (2% glucose and 0.67% yeast ni- 
trogen base without amino acids [Difco Laboratories, Detroit, MI]) sup- 
plemented with appropriate amino acids and bases. Liquid culturing for 
the induction of peroxisomes and subsequent expression of galactose- 
inducible vectors were performed in M M Y O l l  essentially as described 
(McNew and Goodman, 1994). Briefly, yeast were inoculated into 250 ml 
of SGd medium (3% glycerol, 0.1% glucose, 0.67% yeast nitrogen base, 
and appropriate auxotrophic substrates) and grown for 2 d at 30°C in an 
air shaker at 300 rpm. 250 OD~0 U were transferred to a new flask and 
"boosted" with 1 × YP (1% yeast extract, 2% peptone) for 4 h. The cells 
were harvested by centrifugation at 7,000 g for 10 min and resuspended in 
250 ml of semisynthetic oleate medium (0.05% yeast extract and 0.1% 
oleic acid) (McCammon et al., 1990) containing appropriate amino acids 
and bases. Cells were grown for another 15 h, and galactose was added to 
a final concentration of 0.1%. The cells were harvested 24 h later by cen- 
trifugation at 7,000 g for 10 min. For peroxisomal induction of cells carry- 
ing oleate-inducible plasmids, the same protocol was followed as de- 
scribed above, with the following changes: 500 ml cultures were typically 
used, cells were harvested 20 h after growth in oleic acid-containing me- 
dium, and no galactose was added. 

Expression of oleate-inducible plasmids in paslO-1 was performed by 
culturing the cells in 1 liter SGd to an OD600 of 0.1 to 0.6 (as indicated in 
the legend Of Fig. 4). Oleic acid was then added to a final concentration of 
0.1%, and the cells were cultured for an additional 18-22 h. Cells were 
harvested and organelles were isolated as described below. 

Preparation of Spheroplasts and 
Organelle Fractionation 
Cells from either the galactose or oleic acid induction protocol were pro- 
cessed by the same fractionation procedure. The harvested cells were 
washed with 20 ml of distilled water and spun at 7,000 g for 10 min. The 
cell pellet was washed once more with 20 ml of water, resuspended in 20 
ml of 0.1 M Tris-SO4, pH 9.2, 10 mM D'IT, and incubated for 15 rain at 
30°C, at 300 rpm. The cells were pelleted at 7,000 g for 10 min, washed 
once in 20 ml of 1 M sorbitol, and brought up in 20 ml of 1 M sorbitol, 20 
mM KHPO4, pH 7.5. Zymolyase 100T (ICN Biomedicats, Irvine, CA) was 
added at 0.4 I~g/ODez0 U of cells. Incubations were performed for ~1 h at 
30°C, at 300 rpm. Spheroplasting was microscopically verified by osmotic 
lysis. Spheroplasts were collected by centrifugation at 7,000 g for 10 min at 
4°C and were resuspended in 2 ml of I M SMA (1 M sorbitol, 5 mM 2-[N- 
morpholinoethanesulfonate], pH 5.5, and 0.2 mM [4-[2-aminoethyl} ben- 

zenesulfonylfluoride HCI]). Spheroplasts were osmotically lysed by add- 
ing 6 ml of 0.25 M SMA (equivalent to 1 M SMA except the concentration 
of sorbitol is 0.25 M) and then reequilibrated with 6 ml of 1.75 M SMA. 

Unbroken spheroplasts, nuclei, and cell debris were cleared by centri- 
fugation at 1,000 g for 5 min at 4°C. The postnuclear supernatant was 
transferred to a new tube, and the remaining cell pellet was reextracted 
with 2 ml of 1 M SMA. After spinning, the supernatants were combined 
and spun once more at low speed to ensure removal of particulates. The 
supernatant was then spun at 25,000 g for 25 rain at 4°C to obtain a pellet 
consisting of mainly peroxisomes and mitochondria. The supernatant of 
this spin was saved, and the pellet was redissolved in 200 pd of 1 M SMA. 
For SDS-PAGE analysis, 2% of the total volume of supernatant and pel- 
let fractions was precipitated in 10% TCA, and 0.4% of each was analyzed 
by SDS-PAGE. 

Peroxisomes and mitochondria were resolved on a 15--45% continuous 
Nycodenz gradient (McNew and Goodman, 1994). 200 ILl of the 25,000 g 
crude organellar fraction were loaded onto the gradient, and the samples 
were spun at 100,000 g for 55 rain at 3°C in a vertical rotor (VTi65; Beck- 
man Instruments, Inc., Palo Alto, CA). The gradients were fractionated 
from the bottom into 12 samples. 50 ixl of each sample was dissolved in 20 
p,1 of 4x  sample buffer, and 30 ixl was analyzed by SDS-PAGE. 

For the experiment shown in Fig. 1, whole cell lysates were prepared 
and assayed for protein as previously described (Veenhuis and Goodman, 
1990). 

Extraction of Nycodenz Gradient Fractions and 
Flotation of Membranes 
50 pA of each Nycodenz gradient fraction (prepared from cells expressing 
chloramphenicol acetyltransferase [CAT]-loop-hemagglutinin [HA]) were 
diluted 1:5 with either I M SMA, 1 M SMA containing 1 M NaCl, or 200 
mM Na2CO 3, The samples were vortexed for 1 min at 4°C, kept on ice for 
1 h, vortexed again for 1 min at 4°C, and then spun at 100,000 g for 15 min 
at 4°C. For the flotation experiment, a crude organellar pellet was resus- 
pended in 60% wt/wt sucrose containing 30 mM Tris, pH 8.9. Layers of 40 
and 15% sucrose were added, and the samples were centrifuged for 18 h at 
55,000 rpm in a rotor (SW60; Beckman Instruments, Inc.). Peroxisomal 
membranes were harvested in and above the 15-40% sucrose interface. 

SDS-PAGE and lmmunoblotting 
All polyacrylamide gel electrophoreses were performed by the Laemmli 
system (Laemmli, 1970), with the stacking gel at pH 6.8 and resolving gel 
at pH 9.2. Samples were generally analyzed using 4% stacking and 9% re- 
solving gels. Prestained and unstained molecular weight markers were 
purchased from Bio-Rad Laboratories (Hercules, CA). 

Proteins were transferred to nitrocellulose for immunoblotting (Tow- 
bin et al., 1979). Antibodies used in these studies included the anti-CAT 
polyclonal antibody (1:1,000) (5 Prime-3; Prime Inc., Denver, CO), the 
anti-thiolase polyclonal antibody (1:40,000) (kind gift of Jon Rothblatt, 
Dartmouth Medical School, Hanover, NH), the anti-Pmp27 polyclonal an- 
tibody (1:1,000) (Marshall et al., 1995), the anti-acyl CoA oxidase poly- 
clonal antibody (1:500) (McNew et al., 1993), the anti-HA mAb 12CA5 
(1:1,000; 1:200) (Boehringer Mannheim Biochemicals, Indianapolis, IN), 
and the anti-myc mAb 9El0 (kind gift of Richard Anderson, University of 
Texas Southwestern, Dallas, TX). 

Vector Constructions: General Methods and Reagents 
Restriction enzymes and other DNA modifying enzymes were purchased 
from New England Biolabs (Beverly, MA) or Boehringer Mannheim Bio- 
chemicals and were used as recommended by the suppliers. All mutagene- 
sis reactions were performed using site-directed mutagenesis techniques 
(Kunkel et al., 1987) or annealed synthetic oligonucleotides (synthesized 
by Molecular Cardiology, University of Texas Southwestern, Dallas, TX). 
All DNA manipulations resulting in changes in coding sequence were ver- 
ified using di-deoxy sequencing methods and the Sequenase Reaction Kit 
(United States Biochemical Corp., Cleveland, OH). 

Construction of COOH-terminal Deletions of Pmp47 
Fused to the HA Epitope Tag 
An EcoRI/XbaI fragment, encoding amino acids 1-267 of Pmp47 plus a 
short region of 5' untranslated sequence, served as the starting point for 
the construction of progressive COOH-tenninal  deletions. The EcoRI-  
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XbaI fragment was isolated from pRS47/EP (McCammon et al., 1990) and 
subcloned into pBluescript KS-  (Stratagene, La Jolla, CA) to generate 
the plasmid pEX. A silent PstI site was introduced at nucleotide position 
1281 (codon 150) to facilitate subcloning of a smaller piece of Pmp47 for 
further mutagenesis. The site was created using the PstI oligo (Table I) to 
generate plasmid pEPX. The 350-bp PstI-XbaI fragment was subcloned 
into pKS- to generate plasmid pPX. 

SpeI sites were inserted into pPX after nucleotide positions 1,436 
(amino acid 200), 1,508 (amino acid 224), and 1,568 (amino acid 244) using 
oligos Spe-1436, Spe-1508, and Spe-1568, respectively. The resulting plas- 
mids were called pPSX-1436, pPSX-1508, and pPSX-1568, respectively. 
These sites delimit the beginning of transmembrane span 4 (amino acid 
200), the end of span 4 (amino acid 224), and the end of the loop sequence 
(amino acid 244). The end of transmembrane span 5 is delimited by the 
endogenous Xbal site (amino acid 267) (McCammon et al., 1994). The 
SpeI sites were introduced in the same reading frame as the endogenous 
XbaI site. They also provided compatible cohesive ends with XbaI upon 
restriction digestion. 

To fuse the truncation mutants of Pmp47 with the HA epitope tag, it 
was necessary to modify the polylinker of pBluescript KS- to create a 
NotI site that was in frame with the XbaI site of Pmp47. This was accom- 
plished by subcloning a synthetic double-stranded linker (annealed oligos 
Recon-1 and Recon-2) into the XbaI~Sacl sites of pKS-.  The resulting 
vector was called pKS-recon. The synthetic fragment contains an in-frame 
NotI site (for subcloning the HA sequence) just downstream of the XbaI 
site, includes a stop codon after the NotI site, and provides a BglII site for 
cloning the fragment into yeast expression vectors. Three copies of the 
HA epitope sequence were cloned into this vector by transferring the 

NotI fragment from plasmid pSM491 (kindly provided by Carol Berkower 
and Susan Michaelis, Johns Hopkins University, Baltimore, MD) into the 
NotI site to generate plasmid pKSr-HA. The EcoRI-XbaI fragment of 
Pmp47 was transferred from vector pEPX into the EcoRI-XbaI sites of 
pKSr-HA to generate plasmid pKS-267PHA. The truncation mutants 
were constructed by replacing the wild-type PstI-XbaI fragment of pKS- 
267HA with the PstI--SpeI fragments of the pPSX series described above. 
The resulting plasmids were called pKS-200PHA, pKS-224PHA, and pKS- 
244PHA, respectively. 

The truncation mutants were transferred to a yeast expression vector 
by subcloning the EcoRI-Bglll fragments of pKS-267PHA, pKS-244PHA, 
pKS-224PHA, and pKS-200PHA into the EcoRI-BamHI sites of pgC20p 
(McNew and Goodman, 1994) to generate plasmids pY267PHA, pY244PHA, 
pY224PHA, and pY200PHA, respectively (GALI-IO, ARS1-CEN4, URA3). 

Construction of an Oleate-inducible Expression 
Cassette Using the Pmp27 Promoter and Terminator 
The ClaI-BamHI fragment of pRS313-PMP27, containing the entire open 
reading frame of Pmp27 (Marshall et al., 1995) and 650 bp of 5' and 200 bp 
of 3' sequence, was transferred to the ClaI-BamHI sites of pKS- to gen- 
erate the plasmid pKS-27. Site-directed mutagenesis was used to intro- 
duce HindlII, EcoRI, and SmaI sites immediately before the endogenous 
ATG start codon (primer 5'-HES). A second primer (3'-SPB) was used to 
introduce SmaI, Pstl, and BgllI sites immediately upstream of the endoge- 
nous stop codon. Cleavage of the resulting plasmid with SmaI, followed by 
religation of the vector piece, effectively replaced the Pmp27 coding re- 

Table I. Sequence of Synthetic Oligonucleotides 

Oligo name Sequence (5'-3') 

3'-SPB 
5'-HES 
244-Bsp 
Block- 1 
Block-2 
Block-3 
CAT-seq 
Flag-bottom 
Flag-top 
GAKL-bottom 
GAKL-top 
GMyc-bottom 
GMyc-top 
Gseq 
Gstop-bottom 
Gstop-top 
Linker- 1 
Linker-2 
Myc-bottom 
Myc-top 
Poly- 1 
Poly-2 
PstI oligo 
Recon- 1 
Recon-2 
SB 1-bottom 
SBl-top 
SB2-bottom 
SB2-top 
SB23-bottom 
SB23-top 
SB3-bottom 
SB3-top 
Spe-1436 
Spe- 1508 
Spe- 1568 
Spe-repair 
SR-bottom 
SR-top 

GACATGTGGAAAGCTCCCGGGCTGCAGAGATCTTAGCTTTCTTTTCATC 

GTAATAGTATAATCAATAAGCTTGAATTCCCCGGGGTCTGTGATACACTG 

CAATACACAATTTTTTCCGGAGAACAATTAAAATCA 

CAATACACAATTTTTGGAGGTGGCGGAGCCGGCGGTGGAAAAATTAAAAAGAGAAAT 

CAATTAAAATCATTTATTGTTGGAGGTGCCGGCGGTAATATTACACCTGTTGATGC 

GTTAAAATTAAAAAGAGAGGAGGTGGTGCCGGCGGAGGTTTATTATTAGGTGCTTTTGG 

CCGCTGGCGATTCAGTGGTT 

GATCTCTGCAGGGATCCTTATTTATCGTCATCATCTTTATAATCAGCGC 

GGCCGCGCTGATTATAAAGATGATGACGATAAATAAGGATCCCTGCAGA 

GAGATCTTTATAATTTAGCACCT 

CCGGAGGTGCTAAATTATAAAGATCTCTGCA 

GATCTCTGCAGTTAATTTAAATCTTCTTCTGAAATTAATTTTTGTTCCATT 

CCGGAATGGAACAAAAATTAATTTCAGAAGAAGATTTAAATTAACTGCAGA 
GCCCTTTCGAAAGATCCC 

GAGATCTTTAACCT 

CCGGAGGTTAAAGATCTCTGCA 

CCGGAGAACAATTAAAATCATTTATTGTTAAAATTAAAAAGAGAAATATTACACCTGTTGATGCTG 

CCGGCAGCATCAACAGGTGTAATATTTCTCTTTTTAATTTTAACAATAAATGATTTTAATTGTTCT 

GATCTCTGCAGGGATCCTTAATTTAAATCTTCTTCTGAAATTAATTTTTGTTCCATACCGC 

GGCCGCGGTATGGAACAAAAATTAATTTCAGAAGAAGATTTAAATTAAGGATCCCTGCAGA 

CCGGCACTAGTAGCGGCCGCTCTAGATAGCTGCAGTAGCTAACTAGAGATCTG 

GATCCAGATCTCTAGTTAGCTACTGCAGCTATCTAGAGCGGCCGCTACTAGTG 
GAGTATGGCTGCAGGTGCAGTTGCT 

CTAGAAGCGGCCGCTAAAGATCTGAGCT 

CAGATCTTTAGCGGCCGCTT 

GGCCGCCACCAACAATAAATGATTTTAATTGTTCCCCACCG 

CCGGCGGTGGGGAACAATTAAAATCATTTATTGTTGGTGGC 

GGCCGCCACCTCTCTTTTTAATTTTCCCACCG 

CCGGCGGTGGGAAAATTAAAAAGAGAGGTGGC 

GGCCGCCACCAGCATCAACAGGTGTAATATTTCTCTTTTTAATTTTCCCACCG 

CCGGCGGTGGGAAAATTAAAAAGAGAAATATTACACCTGTTGATGCTGGTGGC 

GGCCGCCACCAGCATCAACAGGTGTAATATTCCCACCG 

CCGGCGGTGGGAATATTACACCTGTTGATGCTGGTGGC 
GAAAAATGAAGGCTGGACTAGTCAAAAATTGTTTACTG 

CAATACACAATTTTTACTAGTGAACAATTAAAATCA 

ACACCTGTTGATGCTACTAGTTTATTATTAGGTGCT 
GGTGCCGGCGGAGGTACTAGTTTATTATTAGGTGCT 

CAGATCTCCTAG 

GATCCTAGGAGATCTGGTAC 
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gion with a polylinker consisting of HindlII, EcoRI, SmaI, Pstl, and BgllI 
restriction sites. This plasmid is called pKS-27poly. 

Construction of Glycine Block Replacements in the 
Loop of 1-244 
pPSX-1568, which is the parent plasmid for the 1-244 deletion mutant (de- 
scribed above), was used for the introduction of the glycine block muta- 
tions. The glycine blocks were introduced using site-directed mutagenesis 
with primers Block-l, Block-2, Block-3, and Spe-repair (Table I). The gly- 
cine blocks replaced the first eight, middle five, and last seven amino acids 
of the loop sequence (amino acids 225-244). The Spe-repair primer was 
needed to reintroduce the SpeI site of the Block-3 mutant. The glycine 
primers included a NgoMI site for diagnostic purposes, which resulted in 
the presence of a single alanine within the block of glycine residues (see 
Fig. 5). The resulting plasmids were called pPSX-1568-BI, pPSX-1568-BII, 
and pPSX-1568-BIII. 

The glycine block mutants were returned to the 1-244 context by re- 
placing the wild-type PstI-XbaI fragment of pKS-267PHA with the Pstl-  
SpeI fragments of the pPSX series described above. The resulting plasmids 
were called pKS244-BI-HA, pKS244-BII-HA, and pKS244-BIII-HA, re- 
spectively. The coding sequence of each block mutant was transferred to 
the oleate-inducible expression cassette by subcloning an EcoRI-BgllI 
fragment into the EcoRI-BgllI sites of pKS-27poly. The 1-244 deletion 
mutant (without glycine blocks) was also transferred from plasmid 
pKS244-PHA to serve as a positive control for sorting experiments. The 
subsequent plasmids were called pKS-27-B0, pKS-27-BI, pKS-27-BII, and 
pKS-27-BIII. The gene cassettes were transferred to a yeast shuttle vector 
by subcloning a Kpnl-XbaI fragment into the Kpnl-Xbal sites of pRS316 
(Sikorski and Hieter, 1989). The final constructs were called p27U-B0, 
p27U-BI, p27U-BII, and p27U-BIII (CEN6, URA3). The KpnI-SacI frag- 
ment of pKS-27-B0 was also transferred to pRS314 for expression in 
paslO-1 (CENr, TRP1). 

Construction of CAT-loop, CAT-loop-HA, 
and CAT-HA 
The CAT coding sequence was transferred to pBluescript K S -  by sub- 
cloning a HindIII-BamHI fragment from pgC20p (McNew and Good- 
man, 1994) into the HindIII-BamHI sites of pKS- .  The loop sequence of 
Pmp47 was fused to the COOH terminus of CAT by subcloning synthetic, 
annealed oligonucleotides (Linker-1 and -2) into the NgoMI site of CAT, 
which is located immediately upstream of the stop codon. Ligation of the 
loop sequence knocked out the 5' NgoMI site, which was done for diag- 
nostic and further cloning purposes (see below). The resulting plasmid 
was called pKS-CATL. The CAT-loop fusion was transferred back to the 
pgC20p yeast expression vector as a HindIII-BamHI fragment to gener- 
ate clone pYCATL (CEN6, URA3). 

The HindIII-BamHI fragment of pgC20p was also transferred to 
pUC18 (New England Biolabs) to generate plasmid pCAT-18. To facili- 
tate the fusion of other sequences to the COOH terminus of CAT, the 3' 
end of the CAT gene was reconstructed by subcloning a synthetic an- 
nealed fragment (oligos poly-1 and poly-2) into the NgoMI-BamHI sites 
of pCAT-18. The synthetic linker introduced SpeI, NotI, XbaI, stop 
codon, PstI, three frame-shifted stop codons, and BglII sequences imme- 
diately downstream of the CAT NgoMI site. The mutation was verified 
using the CAT-seq sequencing primer. The resulting plasmid was called 
pCAT18-poly. 

CAT-loop-HA and CAT-HA were initially constructed by subcloning 
three copies of the HA epitope (taken as a NotI fragment from pSM491) 
into the NotI site of pCAT18-poly to generate the plasmid pCAT18-HA. 
The CAT-loop sequence was fused to HA by replacing the HindIII- 
NgoMI fragment of pCAT-18HA with the HindfII-NgoMI fragment of 
pKS-CATL. The resulting plasmid was called pCAT18-LHA. The HA se- 
quences of both pCAT18-LHA and pCAT18-HA were truncated to two 
copies of the HA epitope by replacing their BamHI-Kpnl fragments with 
a synthetic annealed fragment (oligos SR-top and SR-bottom) that intro- 
duced a stop codon immediately after the BamHI site of the HA se- 
quence. A Styl site was included for diagnostic purposes. A BglII site was 
also included to provide a site for liberation of the coding sequence. The 
subsequent plasmids were called pCAT18-LHAA and pCAT18-HAA. 

The CAT sequences were transferred to the oleate-inducible cassette 
by subcloning the HindIII-BglII fragments of pCAT18-LHAA and 
pCAT18-HAA into the HindlII-BglII sites of pKS-27poly. The resulting 
plasmids were called pKS27-LHA and pKS27-HA, respectively. Finally, 

the KpnI-XbaI fragment of pKS27-LHA was transferred to the KpnI-  
XbaI sites of YEpIacll2 (Gietz and Sugino, 1988) to generate YEpCAT- 
LHA, and the KpnI--Sacll fragment of pKS27-HA was transferred to the 
Kpnf-SaclI sites of pRS314 (Sikorski and Hieter, 1989) to generate p27T- 
CAT-HA (CEN6, TRP1). 

Construction of CAT-sufficiency Block Mutants 
The sufficiency block mutants were constructed by subcloning synthetic, 
annealed oligos into the NgoMI-NotI sites of pCAT18-HAA (oligos SB 1- 
top and -bottom, SB2-top and -bottom, SB3-top and -bottom, and SB23- 
top and -bottom). Each sufficiency block sequence was flanked on each 
side by three glycine residues to provide distance and flexibility between 
the block, CAT, and HA. The CAT-sufficiency mutants were inserted 
into the pKS-27poly vector (using HindIII-BglII sites) to pick up the ole- 
ate-inducible c/s elements and then transferred to YEplac112 using KpnI-  
XbaI sites. The final plasmids were called YEp-SB1, YEp-SB2, YEp-SB3, 
and YEp-SB23 (2 p.m, TRP1). 

Replacement of HA with the FLAG or Myc Sequences 
in the Key Prop47 Sorting Constructs 
The HA tag was replaced in the 1-244 deletion mutant by digestion of 
pKS-244PHA with NotI and BglII and subcloning synthetic annealed oli- 
gos encoding for FLAG or myc sequences (oligos Flag-top and -bottom, 
Myc-top and -bottom, respectively). The FLAG sequence encoded an ala- 
nine followed by the eight-residue epitope D Y K D D D D K, a stop 
codon, and BamHI and PstI restriction sites (to be used for subsequent 
cloning steps; see below). The myc sequence encoded a glycine followed 
by the 12-residue epitope M E Q K L I S E E D L N (Evan et al., 1985), a 
stop codon, and BamHI and Pstl restriction sites. The sequences were ver- 
ified by di-deoxy sequencing, using Spe-1508 as a primer. The correspond- 
ing fusions between 1-224, Flag, and myc were generated by swapping the 
EcoRI-NotI fragment from pKS-224PHA into the 1-244 fusions. All fu- 
sions were then transferred to a yeast expression vector by subcloning an 
EcoRI-BgllI fragment into the EcoRI-BamHI sites of pgC20p (McNew 
and Goodman, 1994). The resulting vectors (pY244-Myc, pY244-Flag, 
pY224-Myc, and pY224-Flag) allow galactose-inducible expression in S. 
cerevisiae ( GALI-IO, CEN4, URA3). 

Fusion of the Prop47 Loop to the Green 
Fluorescent Protein 
The plasmid pGFP-C1, which is a mammalian expression vector that car- 
ries the gene for the green fluorescent protein (GFP), was purchased from 
Clontech (Palo Alto, CA). To facilitate fusion of the Prop47 loop to GFP, 
a BspEI site was introduced immediately upstream of the loop sequence 
in plasmid pKS-244-myc (primer 244-Bsp). The mutagenesis was verified 
by sequencing from the BspEI to the PstI site, just downstream of the myc 
tag (sequencing primer Spe-1436). The loop-myc sequence was fused to 
GFP by transferring the BspEI-Bglll fragment to pGFP-C1. The 
Eco47III-BamHI fragment (which encodes the GFP-loop-myc fusion) 
was transferred to the SmaI-BgllI sites of pKS-27poly to pick up the ole- 
ate-inducible Pmp27 promoter/terminator elements. This expression cas- 
sette was transferred to the high-copy yeast expression vector pRS424 (2 
~m, TRP1) by subcloning a KpnI-SacI fragment. The final vector was 
called p27T-GFP-LM. 

Several control constructs were created by adding myc, AKL (a PTS1), 
or a stop codon to the end of the GFP sequence. The AKL and stop codon 
sequences were fused to the end of GFP by digestion of pGFP-C1 with 
BspEI-PstI and subcloning synthetic annealed oligos (GAKL-top and 
-bottom, Gstop-top and -bottom, respectively). The AKL oligos encoded 
a spacer of two glycines, the alanine, lysine, and leucine motif, a stop 
codon, and then a BglII site. The stop codon sequences encoded just the 
two glycines, the stop codon, and the BgllI site. The mutations were veri- 
fied by sequencing (primer Gseq). The fusion sequences were transferred 
to pKS-27poly by subcloning an Eco47III-BgllI fragment into the SmaI- 
BgllI sites. The plasmids were called pKS27-GAKL and pKS27-Gstop. 
The gene cassettes were then transferred to the yeast expression vector 
pRS424 by subcloning a KpnI-SacI fragment. The resulting vectors were 
called p27T-GFP-AKL and p27T-GFP-stop (2 I.tm, TRP1). 

The myc epitope was fused to GFP by cloning overlapping synthetic 
oligos into the BspEI-BglII sites of pKS27-GAKL (oligos Gmyc-top and 
-bottom). The primers encoded a glycine residue, the myc epitope se- 
quence (described above), a stop codon, and a PstI site. After verification 
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by sequencing, the GFP-myc fusion was transferred to yeast vector 
pRS424 by subcloning a KpnI~Sacl fragment. The final plasmid was called 
p27T-GFP-myc. 

Results 

Loop Sequence between Membrane Spans 4 and 5 Is 
Essential for  Sorting to Peroxisomes 

To define the region of sorting information within Pmp47 
more precisely, we constructed a series of carboxy-termi- 
nal deletion mutants that were truncated at the junctions 
of span 4, loop, or span 5 (Fig. 1 A). Three copies of the 
H A  epitope tag were fused to the carboxy termini to allow 
detection, and the constructs were expressed in S. cerevi- 
siae under control of the GALI-IO promoter. The size of 
the fusion proteins on immunoblots suggested that each of 
the truncation mutants was synthesized correctly (Fig. 1 
B), although the 1-200 mutant was much less stable than 
the others and often could not be detected. 

We next determined the subcellular location of the mu- 
tants. A crude organellar pellet consisting of mostly perox- 
isomes and mitochondria was first prepared from cells ex- 
pressing the constructs by differential centrifugation, and 
the peroxisomes and mitochondria were then separated on 
a 15-45% continuous Nycodenz gradient. Coomassie 

Figure 1. Expression of COOH-terminal deletions of Pmp47. (A) 
Topology map of Pmp47. Amino acid numbers at probable mem- 
brane interfaces of spans 4 and 5 are indicated. (B) Expression of 
HA fusions. Whole cell lysates from cells expressing the dele- 
tions, with the HA epitope fused to their carboxy termini, were 
subjected to SDS-PAGE and immunoblotting with the anti-HA 
antibody. Numbers above the lanes, the region of Pmp47 present; 
numbers to the left, the masses of standard proteins. The 1-200- 
HA construct was unstable and sometimes not detectable. The 
cross-reactive high molecular weight band serves as an internal 
loading control. 

staining of the Nycodenz fractions (Fig. 2 A) revealed that 
most of the protein mass was in the mitochondrial frac- 
tions (the four fractions at the top of the gradient) com- 
pared to the peroxisomal fractions near the bottom of the 
gradient (Fig. 2 B), as we have seen previously (McNew 
and Goodman, 1994). 

Both the Pmp47 1-267-HA and 1-244-HA fusions tar- 
geted to peroxisomes (Fig. 2 C), demonstrating that mem- 
brane span 5 (amino acids 245-267) was not necessary for 
peroxisomal targeting. While the distribution of fusion 
proteins between organellar supernatants and pellets was 
somewhat variable from experiment to experiment, the 
1-244-HA construct always sorted better to the pellet than 
the 1-267-HA construct within any experiment. In con- 
trast, removal of the loop sequence (to generate 1-224-HA) 
always obliterated peroxisomal targeting. The instability 
of the 1-200-HA protein made it difficult to reproducibly 
detect after Nycodenz fractionation, but long exposures of 
Western blots confirmed that it also did not sort to peroxi- 
somes (data not shown), confirming a previous result with 
a 1-199-DHFR construct (McCammon et al., 1994). These 
results show that the hydrophilic loop between spans 4 and 
5 is necessary for sorting of Pmp47 to peroxisomes. 

Loop Can Target Chloramphenicol Acetyltransferase 
to Peroxisomes 

Since our deletion experiments suggested that only the 
loop was important for targeting Pmp47, we then deter- 
mined whether this region alone was sufficient for this 
function. Initially, we fused the loop to the C O O H  termi- 
nus of chloramphenicol acetyltransferase and expressed 
the fusion on a low-copy plasmid in S. cerevisiae under 
control of the GALI-IO promoter. This construct, how- 
ever, was extremely unstable (confirmed by pulse-chase 
experiments; not shown), and we could not confirm its 
subcellular localization. To improve stability and detec- 
tion, we expressed the fusion on a high-copy plasmid and 
added two copies of the H A  epitope to the carboxy termi- 
nus, generating CAT-loop-HA. We also replaced the 
GALI-IO promoter with the PMP27 oleate-responsive 
promoter (Marshall et al., 1995). The use of the PMP27 
promoter allowed synthesis of the fusions during peroxiso- 
mal proliferation (galactose inhibits this process) and de- 
tection of sorting even before proliferation was completed. 
Although protein staining of Nycodenz gradients revealed 
that peroxisomes and mitochondria assayed at this time 
(16-20 h after addition of oleic acid) were still resolved, 
blotting of peroxisomal marker proteins showed more ex- 
tensive trailing toward the top of the gradient (Fig. 3). The 
lighter organelles in the trail probably consist of peroxiso- 
mal tubules and young maturing peroxisomes (Erdmann 
and Blobel, 1995). This is supported by the observation 
that the marker for peroxisomal membranes (Pmp27) is 
more enriched at higher fractions toward the top of the 
gradient than matrix proteins. 

The CAT-loop-HA fusion sorted to peroxisomes (Fig. 
3), indicating that the 20-amino acid loop was sufficient for 
sorting in the context of CAT and HA. It had a very simi- 
lar blotting pattern in a Nycodenz gradient as the peroxi- 
somal markers Pmp27 and thiolase. The negative control 
construct, CAT-HA, was almost exclusively cytoplasmic, 
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Figure 2. The loop between 
spans 4 and 5 is necessary for 
peroxisomal targeting. (A) 
The indicated fractions from 
cells expressing 1-244-HA 
were subjected to SDS- 
PAGE and Coomassie blue 
staining to show total protein 
and distribution of peroxi- 
somes and mitochondria at 
the bottom and top of the 
gradient, respectively. Anal- 
ysis of strains expressing the 
other fusions gave indistin- 
guishable results. (B) Identi- 
cal fractions to those shown 
in A were immunoblotted 
with antibodies to the indi- 
cated peroxisomal enzymes. 
(C) Sorting of deletion con- 
structs. Analysis was similar 
to that shown in B except the 
anti-HA antibody was used. 
Constructs were driven by 
the GA LI-I O promoter. 

and none of this protein was seen in peroxisomal fractions. 
We term the targeting information within the loop mPTS. 

To confirm that the loop was indeed targeting CAT to 
peroxisomes and not simply aggregating or sorting to or- 
ganelles that comigrated with peroxisomes, we expressed 
CAT-loop-HA in cells containing a mutation in PASIO 
(van der Leij et al., 1992). This strain has abnormal peroxi- 
somal membranes and fails to sort PTSl-containing pro- 
teins; we reasoned that its peroxisomes would migrate ab- 
errantly in Nycodenz gradients. Furthermore, we allowed 
these cells to grow in oleic acid under conditions that pro- 
moted either a small or large extent of peroxisomal prolif- 
eration. These two conditions greatly influenced the mi- 
gration pattern of peroxisomal marker proteins (Fig. 4, A 
and B). It can be seen in the figure that most of CAT-loop- 
HA comigrated with peroxisomal markers under both of 
these conditions. The nature of the minor fraction of CAT- 
loop-HA at the very bottom of the gradient shown in Fig. 

4 B is unknown. As expected, CAT-HA failed to sort 
(data not shown). We also expressed the Pmp47 1-244- 
HA fusion in the paslO-1 strain, and again this construct 
comigrated with peroxisomal markers (Fig. 4 C). There- 
fore, we conclude that these loop-containing constructs 
are mainly associated with peroxisomes and not in protein 
aggregates or targeting to comigrating organelles. It should 
be noted that in the paslO-1 strain there were lower levels 
of peroxisomal marker proteins detected by Coomassie 
blue staining of organellar fractions, compared to those 
from the control strain. This explains the very weak signals 
of thiolase and Pmp27 in the supernatant and pellet fractions. 

To probe the nature of the interaction between CAT- 
loop-HA and peroxisomes, a series of extractions was per- 
formed (data not shown). All of CAT-loop-HA in the 
Nycodenz gradient was particulate and spun down with 
membranes under low salt conditions. Much of CAT-loop- 
HA that was associated with peroxisomes was removed by 
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Figure 3. The loop is suffi- 
cient for peroxisomal target- 
ing. Cells expressing the 
CAT-loop-HA construct were 
fractionationed and analyzed 
by immunoblots as in Fig. 2 
for thiolase (Th.), Pmp27 
(27), or fusion protein (HA). 
CAT-HA, the negative con- 
trol, did not fractionate with 
peroxisomes. Constructs were 
driven by the oleate-induc- 
ible PMP27 promoter. 

the addition of 1 M NaCI and also did not remain with per- 
oxisomal membranes when they were floated on a sucrose 
gradient. About half of CAT-loop-HA could not be re- 
moved from peroxisomes purified on Nycodenz, even with 
0.1 M Na2CO3, pH 11. Clearly, the relationship of CAT- 
loop-HA with the peroxisomal membrane is complex, with 
a fraction bound peripherally and the rest bound more 
tightly, perhaps denatured within the membrane. 

No Single Group of  Amino Acids within the Loop Is 
Essential for  Targeting 

The sequence of the loop is E Q L K S F I V K I K K R N 
I T P V D A. An obvious feature of the loop is a block of 
basic residues (KIKKR) in the middle. To determine the 
relative importance of this basic cluster (termed Block II) 
and the flanking regions of the loop (Blocks I and III) for 

targeting, two complementary strategies were taken. First, 
in a loss-of-function approach, we modified the Pmp47 
1-244--HA fusion such that glycines (with one alanine for 
construction purposes) were substituted for each block. 
Glycine residues were chosen instead of alanines since re- 
petitive stretches of alanines might favor the formation of 
a helical structure (Chou and Fasman, 1978), which in turn 
might disrupt the nucleation of important secondary or 
tertiary interactions in the loop (e.g., a hairpin-like struc- 
ture in which the first and last regions of the loop sequence 
interact). 

Analysis of these glycine block replacement mutants 
driven by the PMP27 promoter demonstrated that they all 
cofractionated, although to different extents, with the per- 
oxisomal membrane marker (Fig. 5). Replacement of 
Block I with glycines (in the construct ABI) had the least 
effect; targeting of this construct most closely resembled 

Figure 4. The loop targets in 
paslO-1 cells. (A) CAT-loop- 
HA was expressed in the 
paslO-1 strain. Cells were 
cultured as in Materials and 
Methods. Oleic acid was 
added when the cells were at 
OD600 of 0.1 and cultured for 
an additional 18 h. (B) Same 
as A except oleic acid was 
added at ODr00 0.6 and cul- 
tured for an additional 22 h. 
(C) Cells expressing Pmp47 
1-244-HA were cultured to 
an ODr00 of 0.4. Oleic acid 
was added, and cells were 
harvested after an additional 
20 h. N.A., not available. 
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Figure 5. No single block of amino acids within the loop is required for targeting. Amino acids within the loop were grouped into Blocks 
I, II, or III, as indicated in the first construct, here termed ABO, which is identical to 1-244-HA. Constructs were made in which glycines 
and alanines (g and a) substituted for each block, as indicated. Their sorting was analyzed by SDS-PAGE and immunoblotting, as in 
previous figures. The thiolase and Pmp27 markers corresponded to the strain expressing 1-244-HA (ABO). Constructs were driven by 
the oleate-inducible PMP27 promoter. 

the positive control, 1-244-HA (shown in the figure as 
ABO). In contrast, substitution of Block II  or Block I I I  sig- 
nificantly reduced the efficiency of targeting (compare the 
ratio of signal in the peroxisomal vs mitochondrial region), 
although neither substitution totally abolished targeting. 
Replacement of Block II  usually resulted in weaker sort- 
ing than replacement of Block IlL The colocalization of 
these constructs with mitochondria may reflect a competi- 
tion between recognition of degenerate mitochondrial sig- 
nals in Pmp47 (Pmp47 is likely to contain some residual 
mitochondrial targeting information; it mislocalizes to this 
organeUe in the absence of peroxisomal proliferation [Mc- 
Cammon et al., 1990; Sulter et al., 1993]), or nonspecific 
binding, since mitochondria comprise most of the protein 
mass within the Nycodenz gradient. 

We conclude from the block substitution experiments 
that no single region of the loop is absolutely required for 
sorting to peroxisomes, provided that the remaining parts 
of the loop are still present. Since substitution of Block I 
with glycines had the least effect on targeting, the simplest 
interpretation of these data is that the targeting informa- 
tion is contained within Blocks II and III, and that Block II  
is most important for this function. 

Block H or Block III  Is Sufficient for Sorting CAT 
to Peroxisomes 

To determine whether Blocks II  or I I I  were sufficient for 
peroxisomal targeting, each block, or both in combination, 
were placed between CAT and HA, and their ability to 
sort to peroxisomes was tested. The results from this gain- 
of-function approach are presented in Fig. 6. They demon- 
strate that both Blocks II and III  contain information that 
is sufficient for targeting, although the targeting of Block 
II was stronger. Both blocks together sort with higher effi- 
ciency than either alone. In contrast, Block I is least able 
to target CAT-HA to peroxisomes. Although the Block 
I-containing fusion protein can be detected in the gradi- 
ent, the blotting pattern is very different than that of the 
peroxisomal membrane marker. These results are com- 
pletely consistent with the behavior of the glycine-block 
substitution mutations shown in Fig. 5. 

Expression of CAT-Block I I I -HA resulted in two bands 
that were detected by Western blotting. The unexpected 
additional band migrates as a species 3 kD higher than the 
expected molecular weight of the construct. The sequence 
of Block III, N I T P V D A, contains the canonical N X T 

Figure 6. Block II or Ill is 
sufficient for peroxisomal 
targeting. Cells expressing 
the indicated constructs were 
fractionated and analyzed 
on Nycodenz gradients. The 
marker Pmp27 was analyzed 
for the CAT-BI-HA strain. 
Constructs were driven by 
the oleate-inducible PMP27 
promoter. 
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Figure 7. Loop can target a 
different carrier protein to 
peroxisomes. Strains contain- 
ing GFP-loop-rnyc and GFP- 
myc were analyzed for tar- 
geting. Thiolase and Pmp27 
were analyzed from the GFP- 
loop-myc containing strain. 

sequence for N-linked glycosylation, and the molecular 
weight difference between the two bands is very close to 
that expected for a core glycosylation unit (GlucNac2- 
Man9-Glu3). Digestion of the sample with N-glycosidase F, 
however, had no effect on the higher molecular weight 
species (data not shown). Therefore, the nature of the co- 
valent modification remains unknown. 

Peroxisomal Targeting by the mPTS Does Not Require 
CA T or HA 

To test whether the epitope tag HA contributed in any 
way to the sorting of the Pmp47 truncation mutants, we 
substituted both FLAG and myc epitope tags for HA in 
the context of Pmp47 1-244. All of these proteins targeted 
with equal efficiency (not shown), demonstrating that the 
HA epitope did not contribute to the sorting signal. 

To show that the targeting of the loop was not depen- 
dent on CAT, we placed it in a different context, substitut- 
ing GFP for CAT and myc for HA. Fig. 7 shows that the 
loop was necessary and sufficient for peroxisomal target- 
ing in this different context. Organellar GFP-loop-myc 

could not be visualized by fluorescence in yeast, in con- 
trast to GFP-PTS1, which gave a clear punctate pattern 
(data not shown). Membrane flotation experiments indi- 
cated that GFP-loop-myc strongly interacted with the 
membrane. This association may have led to denaturation 
of the protein or thermal deexcitation, causing quenching 
of fluorescence. 

Discussion 

Sorting Sequence of Pmp47 Is Located within a 
Hydrophilic Loop 

The mitochondrial carrier family of proteins, of which 
Pmp47 is a member, is predicted to span the membrane six 
times (Jank et al., 1993; Kuan and Saier, 1993). Internal 
stretches of homology suggest that this family arose by 
gene triplication, in which transmembrane spans 1, 2, and 
the intervening sequence are the repeating unit. Sorting 
analysis of the ADP/ATP translocator suggests that the 
mitochondrial sorting information may be present in each 

Table II. Sequence Comparison of the Pmp47 Loop with Other Peroxisomal Membrane Proteins 

Preceding hydrophobic region 

Number of Sequence Average hydropathy 
residues position index* Block I Block II Block HI 

Pmp47A* 19 2 0 6 - 2 2 4  1.7 E QLK S F I V K I K K R N I T P VD A 
Pmp47B* 19 2 0 6 - 2 2 4  1.7 E Q L K S F  I V  K I K K R  N V T P V D A  
H u m a n  47  homologue  § / I  _ - E GLK R Q L L K K R MK L S S LD V 
S.c. 47 h o m o l o g u e  1 19 186 -204  1.3 D T L K Q R K L  R R K R E  N G L D I H L T N L E T  

Per8p** 12 182-193  2.5 K NVA N L R K L WG AT KT V QD S 
Per9p** 20 16 -35  1.4 K LAE L N E RLKEENF AKE (] I K R R FK QT Q ND C 
Pas3p §~ 22 1 8 - 3 9  2.2 KRWL Y K Q Q L R I T E Q H F I K E  Q I K R R  F E Q T Q E D S  
Car Iplltt 19 307-325 1.9 N RWR R W L ARTWR K T K K I M S TT G GE G 

Prop70 I'I 19 221-239 I. I S GL F L T R L R R P I GK MT I ME Q 

Consensus  1 2 - 2 0  - L7  (4-17 a.a.) x x (K/R) (K/R) (3-7 a.a.) (T/S) x x (D/E) x 

*Kyte and Doolittle, 1982. 
tMoreno et al., 1994. 
Possible homologue from human EST library. GenBank accession number: R54274. Sequence corresponds to aa 220-209 of Prop47. Sequence identity (similarity) = 26% (54%). 

UNot sequenced. 
1 Possible homologue from Yeast Genome Sequencing project. ID: YIL 134W. Sequence identity,(similarity) = 27% (52%). 
**Tan et al., 1995. 
t* Baerends et al:, manuscript.submitted for publication. 
~§H6hfeld et aL, 1991. 
HBerteaux-Lecellier et all  1'995. 
I!  Kamijo el~ al., 1990: 
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of the repeated regions (Adrian et al., 1986; Pfanner et al., 
1987; Smagula and Douglas, 1988). Overexpression of 
Pmp47 in the absence of activated peroxisomes leads to 
targeting to mitochondria, suggesting that Prop47 may re, 
tain a low affinity for the mitochondrial sorting machinery 
(McCammon et al., 1990; Sulter et al,, 1993). However, in 
addition to the loss of strong mitoehondrial targeting se- 
quences, Pmp47 must have gained a targeting sequence 
that caused it to be directed to peroxisomes. 

Previous results demonstrated that the region between 
amino acids 199-267 of Pmp47, which comprises mem- 
brane spans 4, 5, and the intervening loop, was necessary 
for sorting to peroxisomes (McCammon et al., 1994). In 
the present study, we have shown that the loop itself is suf- 
ficient for targeting. Furthermore, we have shown by both 
loss-of+function and gain-of-function experiments that the 
sorting information resides in the last 12 amino acids of 
the loop, 

Characteristics o f  the mPTS and a Hypothetical 
Structural Model 

Since the peroxisomal targeting information within the 
loop is likely to have resulted from a gain-of-function mu- 
tation over the course of evolution, the nature of the tar- 
geting signal might be gleaned by noting which properties 
of the loop sequence are most different from the other mi- 
tochondrial carrier family proteins. Analysis of the align- 
ment by Kuan and Saier (1993) reveals three unique fea- 
tures of the Pmp47 loop sequence (underlined residues in 
Table II). The first and most striking difference of the 
Pmp47 loop is the presence of a cluster of basic residues in 
the middle of the loop sequence (Block II). Second, this 
cluster is flanked on each side by a short stretch of hydro- 
phobic residues that are enriched in branched-13 amino ac. 

ids (Ile and Thr in Blocks II and III, respectively). Third, 
Block III is terminated by a unique aspartic acid residue. 

These motifs are also found in several other peroxiso- 
mal membrane proteins (bold residues in Table II). Block 
I appears to be least conserved in sequence content and 
length among these sequences, suggesting that it contains 
little if any sorting information. However, it may contrib- 
ute to structural features of the signal conformation (see 
below). Blocks II and III are more highly conserved, espe- 
cially in those elements that are most different from the 
mitochondrial carrier family sequences. There are at least 
two contiguous basic residues in each basic cluster, and the 
spacing between the threonine and aspartic acid residues 
is well conserved. Another feature that became apparent 
in analyzing these sequences is that the loop regions were 
always preceded by an extensive stretch of hydrophobic 
residues, most of which are predicted to be transmem- 
brane spans. Although this stretch of residues is not neces- 
sary for targeting to peroxisomes, it may play an important 
role in the assembly of the protein into the lipid bilayer 
(see below). 

Based on minimalist rules for de novo design (DeGrado 
et al., 1989) and secondary structure predictions (Chou 
and Fasman, 1978; Leszcynski and Rose, 1986), we suggest 
that the loop sequence itself may favor the formation of a 
stem-loop structure (Fig. 8 A). This model suggests that 
Block I begins as a short, hydrophilic, helical extension of 
transmembrane span 4. The rest of Block I and beginning 
of Block III form a short anti-parallel G-sheet. Block II is 
the intervening loop, which generates a bulb of positive 
charge. In this conformation, the sorting signal would be 
extended out from the body of the Prop47 protein, thus pro- 
moting its accessibility to the sorting machinery. 

Although Blocks II or III probably cannot adopt these 
structural properties when fused singly behind CAT, it 

Figure 8. (A) Proposed 
structure of the Pmp47 tar- 
geting loop (see text for de- 
tails). (B) A hypothetical 
model of the assembly of 
Pmp47 into the peroxisomal 
membrane, In the cytoplasm, 
span 4, the most hydrophobic 
span (light shading), is 
shielded from the aqueous 
environment by the other 
more amphipathic spans. 
PmlM7 binds to its receptor/ 
assembly complex (darkly 
shaded ob]ecO, which induces 
a conformational change, 
forcing Pmp47 into the mem- 
brane. This may promote 
closer interaction of span 4 
with the bilayer and lateral 
diffusion of the carrier away 
from the receptor complex. 
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may not be necessary to generate these structures to ex- 
pose the sorting information within the context of this car- 
rier protein. The formal alternative is that the loop se- 
quence may be less organized than we propose, such that 
each region of the loop operates independently of the 
other. 

A Model for Peroxisomal Membrane Protein Assembly 

In vitro studies using Pmp22 led Diestek6tter and Just 
(1993) to propose a two-step mechanism for the assembly 
of peroxisomal membrane proteins. The first step was the 
binding of the protein to the membrane, which could occur 
at low temperatures but was strongly reduced by pretreat- 
ment of peroxisomes with protease. This step was followed 
by insertion, which was blocked at low temperatures and 
completely abolished by pretreatment with protease. 
These data imply that binding and subsequent insertion 
are mediated by a proteinaceous receptor. 

The properties of mPTS described in this paper are fully 
consistent with this model. The loop, which contains the 
targeting information, is a hydrophilic sequence that likely 
requires a proteinaceous receptor for binding to the mem- 
brane. Blocks II and III may be recognized by a single re- 
ceptor (Fig. 8 B), or the receptor may have several protein 
components. The presence of two targeting sequences 
(Block II and III) may be important for correctly orienting 
the incoming protein with respect to the assembly machin- 
ery. The interaction between the stem-loop and receptor 
may promote a conformational change that facilitates ex- 
posure of the lipid environment to the hydrophobic span 
that precedes the loop. This would in turn drive the pro- 
tein into the bilayer. 

This model may also explain our data with CAT- and 
GFP-Ioop fusions. We performed a series of extractions 
on peroxisomes isolated from cells expressing CAT-loop- 
HA to investigate the interaction between the loop se- 
quence and the peroxisomal membrane. Since CAT nor- 
mally exists as a stable trimeric molecule, and the CAT- 
loop-HA fusion protein lacked a hydrophobic span before 
the loop, we suspected that the presence of the bulky hy- 
drophilic carrier protein might prevent proper assembly in 
the membrane. 

Our extraction data suggest that CAT-loop-HA might 
be engaged with a surface-bound receptor or might have 
simply denatured on the surface of the organelle or within 
the bilayer after interacting with the membrane assembly 
machinery. We have tried, without success, to localize 
CAT-loop-HA by immunofluorescence and immunoelec- 
tron microscopy in yeast and mammalian cells. We specu- 
late that the interaction of CAT-loop-HA with the mem- 
brane sterically hindered the accessibility of the CAT or 
HA antibody. In contrast, we were able to easily localize 
CAT-PTS1 or CAT-HA (when coimported with CAT- 
PTS1) constructs within the peroxisomal matrix (McNew 
and Goodman, 1994; McNew and Goodman, 1996). 

We had similar difficulties in analyzing the GFP-loop- 
myc fusion protein. Biochemically, it is clear that GFP- 
loop-myc is found predominantly in the organellar pellet 
fraction (Fig. 7) and is observed in peroxisomal fractions. 
In addition, there is nearly the same amount of GFP-loop- 
myc protein present as the negative control construct 

GFP-myc, which is clearly cytoplasmic. However, fluores- 
cence analysis of living cells expressing GFP-loop-myc 
showed very little fluorescence, while cells expressing 
GFP-myc showed high levels of cytoplasmic fluorescence 
(data not shown). Although it could be argued that the ad- 
dition of the loop to GFP destabilizes the protein, it is 
more likely that the protein is entangled in the membrane, 
resulting in quenching of fluorescence. 

Now that an mPTS has been identified, it may be easier 
to identify components of the machinery that catalyze the 
assembly of integral peroxisomal membrane proteins. Sev- 
eral cytoplasmic and peroxisomal factors have already 
been described that catalyze the targeting and import of 
matrix proteins. It will be interesting to determine whether 
the assembly of membrane proteins requires a completely 
separate machine, or whether a common import pathway 
exists for the two classes of proteins. 
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