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The usage of expressed somatic mutations may have a unique advantage in identifying
active cancer driver mutations. However, accurately calling mutations from RNA-seq data
is difficult due to confounding factors such as RNA-editing, reverse transcription, and gap
alignment. In the present study, we proposed a framework (named RNA-SSNV, https://
github.com/pmglab/RNA-SSNV) to call somatic single nucleotide variants (SSNV) from
tumor bulk RNA-seq data. Based on a comprehensive multi-filtering strategy and a
machine-learning classification model trained with comprehensively curated features,
RNA-SSNV achieved the best precision–recall rate (0.880–0.884) in a testing dataset
and robustly retained 0.94 AUC for the precision–recall curve in three validation adult-
based TCGA (The Cancer Genome Atlas) datasets. We further showed that the somatic
mutations called by RNA-SSNV tended to have a higher functional impact and therapeutic
power in known driver genes. Furthermore, VAF (variant allele fraction) analysis revealed
that subclonal harboring expressed mutations had evolutional selection advantage and
RNA had higher detection power to rescue DNA-omitted mutations. In sum, RNA-SSNV
will be a useful approach to accurately call expressed somatic mutations for a more
insightful analysis of cancer drive genes and carcinogenic mechanisms.
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INTRODUCTION

Cancer is the leading cause of death and an important barrier to increasing life expectancy (Sung
et al., 2021). According to GLOBOCAN 2020 estimates of cancer incidence and mortality, 19.3
million new cancer cases and 10.0 million cancer deaths occurred in 2020 (Sung et al., 2021). Somatic
mutations are usually induced by environmental factors, and it is well known that their accumulation
with aging and evolution in human cells will lead to malignant transformation and eventually cancer
(Watson et al., 2013). Thus, comprehensive somatic mutation identification in cancer such as the
Catalogue Of Somatic Mutations In Cancer (Tate et al., 2019) (COSMIC database) can help
characterize its genomic complexities (Watson et al., 2013) and discover oncogenic mutations
and driver genes which significantly influence cancer development (Bailey et al., 2018). Furthermore,
person-level somatic mutations also have their own oncogenic and therapeutic implications in
multiple cancers (lung cancer (Skoulidis and Heymach,2019), bladder cancer (Cazier et al., 2014;
Wen et al., 2021), and glioblastoma (Lin et al., 2021; McDonald et al., 2015)), targeting the
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corresponding mutant proteins or pathways. Currently, most
somatic mutation identification studies were based on DNA-
level, actionable practices in somatic mutation detection within
whole-genome or whole-exome sequencing data have been
developed to facilitate precision oncology (Xiao et al., 2021).

Mutations within exons are supposed to be transcribed into
RNA, and be reflected in the translated protein. However, many
DNAmutations within exons were not found in RNA because they
were located in the non-transcribed allele or had no or low
expression (O Brien et al., 2015). Yizhak et al. (2019) reported
that 65% of DNA somatic mutations within 243 TCGA tumor
samples were not detected in RNA. Rashid et al.(2014) found that
only 27% ofmutated alleles got expressed inmultiple myeloma. The
significant lack of DNA mutations in RNA indicated that not all
DNA mutations have certain effects finally. RNA can be a reliable
source to distinguish mutations that have been expressed to affect
cellular functions. Although RNA-seq is mainly used for gene
expression and fusion discoveries in clinical oncology (Wang
et al., 2020), previous studies showed that calling genomic
variants in expressed exons using RNA-seq data was feasible and
cost-effective (Chepelev et al., 2009; Cirulli et al., 2010; Gonorazky
et al., 2019; Piskol et al., 2013; Quinn et al., 2013). The advantages
included making the most abundant RNA-seq data resources and
discovering rare somatic mutations with the low-level DNA allele
fraction at higher sequencing depths in sufficiently expressed genes
(Chepelev et al., 2009; Cirulli et al., 2010; Gonorazky et al., 2019;
Piskol et al., 2013; Quinn et al., 2013; Liu et al., 2014). However,
calling somatic mutations within RNA-seq data was challenging
compared with calling variants in WES data. The main challenge
was the high false-positive rate, deriving from errors during reverse
transcription, misalignment near splicing junctions (exon ends),
RNA editing, and modification during post-transcriptional
processing (Cirulli et al., 2010; Xu, 2018). Multiple RNA somatic
mutation calling tools and pipelines have been developed to remove
these false-positive calls, which can be divided into two categories:
statistical filtering strategy-based (García-Nieto et al., 2019; Neums
et al., 2018; Yizhak et al., 2019) and machine learning–based
approaches (Muyas et al., 2020; Sheng et al., 2016). For instance,
GLMVC (Sheng et al., 2016) calls RNA somatic mutations based on
a bias-reduced generalized linear model trained by the
characteristics of RNA-seq data. VaDiR (Neums et al., 2018)
integrates results from three variant callers and produced higher
precision results through consensus combination but sacrificed
sensitivity. RNA-MuTect (Yizhak et al., 2019) comprehensively
filtered mutations within artifact sites and achieved optimal
performance. RF-RNAMut (Muyas et al., 2020) utilized a
machine learning model to distinguish somatic variants from
germline variants identified in RNA-seq data. Although existed
tools have their advantages and highlights, they had their
limitations: (1) unsatisfying precision–recall performance with
the maximum reported precision–recall to be 0.87–0.72 (Yizhak
et al., 2019), (2) required restricted resources such as DNA and
RNA panel of normal (PoN) calls from ~6500 GTEx samples to
achieve a desired result (Yizhak et al., 2019), and (3) model not
specifically trained to recognize excessive artifacts in RNA but to
identify germline mutations as negative (Muyas et al., 2020).

Here, we introduce a framework named RNA-SSNV
(https://github.com/pmglab/RNA-SSNV). It is a unified
framework containing a universal pipeline to call RNA
somatic single nucleotide variants from the combination of
tumor RNA-seq and normal WES data, a multi-filtering
strategy to remove doubtful calls with little loss of
sensitivity and a supervised machine learning model to
identify somatic mutations and artifacts. Our framework
achieved the best overall performance for precision and
recall, requiring only public reference resources. To
validate the generalization performance of our framework,
we utilized RNA-SSNV within TCGA lung squamous cell
carcinoma (LUSC), bladder urothelial carcinoma (BLCA),
and glioblastoma multiforme (GBM) independent datasets.
RNA-SSNV achieved similar performance in the area under
curve (AUC) for the precision–recall curve with 0.94 for all
three datasets. Given its high precision–recall performance,
RNA-SSNV will help exploit expressed somatic variants,
further extend the range of RNA-seq applications and
make full use of abundant RNA-seq data resources.

MATERIALS AND METHODS

Framework Overview
Our RNA somatic single nucleotide variant identification
framework (RNA-SSNV) consists of three major
components, including a RNA somatic mutation calling
step, a multi-step filtering process and a machine-learning
based prediction (Figure 1). The underlying hypothesis of
RNA-SSNV is that RNA-specific mutations have unique
biological and technique features; thus, a comprehensive
filtration process and a machine learning model based on
these features can substantially improve the accuracy of RNA
somatic mutation calling.

Datasets
Our datasets were retrieved from GDC, which had harmonized
pipelines (https://docs.gdc.cancer.gov/Data/Introduction/) to
generate RNA-seq and DNA-seq data. All RNA-seq datasets
were aligned to GRCh38 build using a two-pass method with
STAR, which required preprocessing before mutation calling. All
DNA-seq datasets were aligned to the GRCh38 reference using
bwa (Li and Durbin, 2009) and co-cleaned using the GATK
toolkit (McKenna et al., 2010), which can directly be utilized in
mutation calling.

We chose the TCGA lung adenocarcinoma (LUAD) cohort
as the training dataset that contained the largest patient scale
(511) compared with other available cancer cohorts. Our
training dataset comprised paired tumor RNA-seq and
tumor/normal WES data derived from 511 LUAD patients,
which simultaneously generated DNA and RNA somatic
mutations. Our independent validation datasets comprised
paired tumor RNA-seq and normal WES data derived from
498 LUSC, 441 BLCA, and 198 GBM patients, for which we
called RNA somatic mutations to get validating records.
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Mutation Calling
Theoretically, calling somatic mutations within RNA-seq data
can be easily conducted using callers designed for DNA.
Haplotype-based callers (GATK Mutect2 (Benjamin et al.,
2019; Cibulskis et al., 2013), TNscope) had been proven to
outperform position-based variant callers due to their
inherent technical advantage in complex variants and high
mutation loading regions (Pei et al., 2020; Xu, 2018). In
addition, we queried the TCGA helpdesk and learned that
our RNA-seq data (TCGA LUAD, LUSC, GBM, and BLCA
projects) were sequenced by the UNC center using poly-T
mRNA enriching strategy, which indicated that only
transcribed exon regions (GENCODE v22 annotated exon
regions) within mature mRNA can be sequenced (Kukurba
and Montgomery, 2015) and our paired normal targeted
capture exome sequencing (WES) data had a canonical
target region (Agilent SureSelect TargetInterval). Thus, we
chose to utilize Mutect2 to perform somatic variant calling
and only retain mutations within targeted coding regions
(overlap of exons and WES targets).

Normally, our STAR-2-pass aligned RNA-seq data required a
co-cleaning process to conduct mutation calling. Following
GATK recommended procedures (RNAseq Best Practice), our
aligned RNA-seq bam was passed to the MarkDuplicates tool to
identify duplicate reads and help remove PCR-related artifacts.
Next, SplitNCigarReads hard-clipped and reformat some
alignments which span introns causing large-scale mistaken
indels. Finally, it shall undergo base quality recalibration
conducted by BaseRecalibrator and ApplyBQSR to detect and
correct patterns of systematic errors in the base quality scores.

After obtaining analysis-ready bam files, we utilized Mutect2
to call RNA somatic mutations from paired tumor RNA-seq and
normal WES data, DNA somatic mutations from tumor and
normal WES data. For the TCGA LUAD training set, we called
RNA and DNA somatic mutations to help construct the training
dataset. For TCGA LUSC, GBM, and BLCA validation sets,
calling RNA somatic mutations were sufficient to validate our
framework’s performance. For DNA somatic mutations omitted
in RNA which required verification, we applied the force-calling
mode in Mutect2 to retrieve their RNAmutational status. Finally,

FIGURE 1 | Schematic overview of the framework for RNA somatic mutation identification. RNA calling: RNA-seq and WES data were aligned and co-cleaned
accordingly. Mutect2 was used to conduct RNA somatic calling with paired tumor RNA-seq and normal WES data. Features were extracted from outputs of
FilterMutectCalls and Funcotator. Multi-filtering: multi-filtering strategy was conducted in Mutect2 called mutations by removing multiallelic, RNA-editing, immunoglobin,
and HLA sites. Model prediction: using the trained model, mutations with extracted features were predicted as positive or negative, only positives were regarded as
reliable mutations. Result analysis: pairwise analysis can be conducted when DNA evidence was available. RNA-SSNV will output a generic entry table containing all
features and predicting information to facilitate downstream analysis.
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we utilized FilterMutectCalls to generate quality information as
training features and assess the performance for Mutect2’s default
filtering, Funcotator to annotate variants and facilitate
downstream analysis.

Multi-Filtering Strategy
Before model training or predicting, RNA somatic mutations
shall be comprehensively filtered to remove known possible
artifacts (García-Nieto et al., 2019; Yizhak et al., 2019). Our
multi-filtering strategy included removing multi-allelic
mutations, RNA-editing sites, IgG, and HLA regions. For
multi-allelic mutations, we removed mutations containing
three or more allele types to avoid misaligning artifacts. For
RNA editing events, we combined A-to-I RNA editing
information from the REDIportal (Mansi et al., 2021) database
and further editing information from the DARNED (Kiran et al.,
2013) database. We removed all mutations which located in the
union set of RNA editing events to prevent these false-positive
calls. For IgG regions, we removed mutations falling into IgG
genes to avoid noisy alignments (Ye et al., 2013). For HLA
regions, we removed the HLA mutations in chromosome 6
which contained a high density of germline variants (Buhler
and Sanchez-Mazas, 2011).

Construct a Training Dataset
For all TCGA projects involved in our study, the GDC Data
Portal (https://portal.gdc.cancer.gov/) already provided open-
access DNA somatic mutations detected by four different
callers MuSE, MuTect2, SomaticSniper, and VarScan (Ellrott
et al., 2018) with stringent thresholds. Using the GDC MAF
Concatenation Tool (https://github.com/wwysoc2/gdc-maf-
tool), we combined the curated mutations from four callers,
and constructed a union set of all available DNA somatic
mutations for each cancer type (LUAD, LUSC, BLCA, and
GBM) to maximize the sensitivity. In addition, given that
GDC somatic variant calling pipeline had strict criteria leading
to the loss of some true positive somatic mutations, we called our
own DNA somatic mutations using raw sequencing data and
retrieved GDC-omitted DNA somatic mutations.

Normally, variations in DNA will be passed and presented in
RNA through transcription. Reciprocally, any RNA somatic
mutations presented in DNA should be true positive since
they have got evidence from DNA. Moreover, other RNA
somatic mutations lacking support from DNA will be regarded
as true negative. To construct a reliable training dataset for model
training, we split our RNA somatic mutations into three
categories (Figure 2) based on evidence from the GDC
database and GDC-omitted DNA somatic mutations. Finally,
based on the information from FilterMutectCalls output and
annotation information of Funcotator, we systematically
extracted features for each training record with three
categories: variant, genotype, and annotation levels
(Supplementary Table S1).

Performance Metrics
Due to the extreme distribution bias for true positive and true
negative classes (TP : TN = 1:8), our main purpose was to identify
true positive RNA somatic mutations correctly. We chose
precision, recall, F1 scores, and areas under the
precision–recall curve (PR-AUC) as major performance
metrics in our study because they are insensitive to class
imbalance. Other metrics derived from the confusion matrix
(Table 1) were also introduced for evaluation.

Precision � True Positive
True Positive + False Positive

,

Recall � True Positive
True Positive + False Negative

,

F1 � 2 p
Precision p Recall
Precision + Recall

,

False positive rate � False Positive
False Positive + True Negative

,

False negative rate � False Negative
False Negative + True Negative

,

True negative rate � True Negative
False Negative + True Negative

.

Model Training and Validation
Records within the training dataset were split into training and
testing subsets (9:1). We utilized the training subset for model
parameter tuning, feature selection, and model training. For the
testing subset, we utilized them for testing the model’s
generalization performance.

To handle the imbalanced distribution for TP and TN classes,
we chose a weighted random forest classifier
(RandomForestClassifier, scikit-learn 0.24.2) to reduce the bias

FIGURE 2 | Venn diagram of training dataset categories. True positive:
RNA somatic mutations overlapping with GDC mutations. Ambiguity: RNA
somatic mutations overlapping with GDC omitted somatic mutations. True
negative: RNA somatic mutations without DNA support.

TABLE 1 | Confusion matrix demonstration.

Predicted condition

Label Positive Negative

True condition Positive True positive False negative
Negative False positive True negative
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by assigning inversely proportioned weights to different classes
(Zhu and Pierskalla, 2016). First, we utilized recursive feature
elimination with 10-fold cross-validation (RFECV, scikit-learn
0.24.2) to select optimal features. Second, we utilized a 10-fold
cross-validated grid-search over a parameter grid
(GridSearchCV, scikit-learn 0.24.2) to fine-tune optimal
parameters (max_depth, min_samples_split, min_samples_leaf,
max_features, etc.). Finally, we constructed a machine learning
model for RNA somatic mutation identification with optimal
features and parameters, and applied it in testing subset to assess
its generalization performance.

Following the procedures mentioned earlier, we conducted
somatic single nucleotide variants calling in LUSC, BLCA, and
GBM cohorts, utilized a multi-filtering strategy and built
validation datasets based on extracted features. We applied our
discriminant model in these validation datasets and retrieved
assessing metrics to further demonstrate the generalization
performance.

Also, we validated the necessity of introducing a new training
dataset from another cancer type. We added the GBM dataset
into the initial training dataset and constructed a new random-
forest classifier. After retrieving and assessing metrics for the new
random-forest classifier within LUSC and BLCA independent
validation datasets, we compared them with our initial model’s
performance.

Model Interpretation and Visualization
We utilized impurity-based feature importance for tree-based
machine learning models to help interpret features’ contributions
within our model. The higher its contribution, the more
important the feature. Impurity-based feature importance
(Gini importance) is computed as the total reduction of the
criterion brought by that feature and retrieved through our
model’s attribute feature_importances_. Because traditional
feature importance mainly focused on overall model
interpretation, we also introduced the SHAP (SHapley
Additive exPlanations, https://github.com/slundberg/shap)
(Lundberg and Lee, 2017) python package to help visualize
prediction (Lundberg et al., 2018) and provide local
explanations (Lundberg et al., 2020). We provided feature
contributions calculated by SHAP for predicted probability
and conducted a single prediction’s visualization by invoking
the force_plot function. We also investigated the feature
contributions of the training dataset. We calculated and
visualized the sum of SHAP value magnitudes by summary_
plot function in SHAP to show the distribution of each feature’s
impacts on themodel output (lift or lower prediction probability).

Whole Framework Implementation
We built our whole framework using Snakemake (Köster and
Rahmann, 2012) and class-oriented python scripts. Snakemake
(https://github.com/snakemake/snakemake) was applied to
manage standard bioinformatic workflows involved in this
study (co-cleaning, calling, and annotation) and conduct task
auto-management without complicating shell scripts. Function-
oriented python scripts contained feature extraction, model
training and testing, and model utilizing function. Both

Snakemake-based workflows and python scripts were available
within our project repository (https://github.com/pmglab/RNA-
SSNV), which helped create reproducible analysis.

Analyze RNA Mutations With DNA Evidence
We integrated predicted RNA somatic mutations with known
DNA mutations to analyze the relevance between RNA and
DNA. We examined their intersectionality and split them into
three parts (RNA–DNA overlap, DNA-only, and RNA-only)
and two sub-categories (positive and negative class, Figure 3).
Each part and sub-category had its biological implication and
interpretation requiring further investigation. The RNA–DNA
overlap part stood for RNA mutations with DNA evidence
support. DNA-only part stood for DNA mutations not
detected in RNA, and we utilized the Mutect2 force-call
mode to inspect their coverage status in RNA. RNA-only
part stood for RNA mutations not detected in DNA, and
most of them were artifacts due to lack of DNA evidence or
low sequence qualities.

Cancer driver genes were under positive selection during
tumorigenesis (Martinez-Jimenez et al., 2020). Here, we
focused on cancer-specific driver genes (https://www.intogen.
org/) to explore their enrichment patterns (number
distribution, functional impact, and therapeutic power)
between expressed (RNA–DNA overlap part) and un-
expressed (DNA-only part) somatic mutation panels. For
pathogenicity prediction, Combined Annotation–Dependent
Depletion (CADD) (Rentzsch et al., 2019), Eigen Principal
Components (Eigen-PC) (Ionita-Laza et al., 2016),
Polymorphism Phenotyping version 2 (PolyPhen-2) (Adzhubei
et al., 2010), Protein Variation Effect Analyzer (PROVEAN)
(Choi et al., 2012), UMD-Predictor (Ioannidis et al., 2016),
Rare Exome Variant Ensemble Learner (REVEL) (Frederic
et al., 2009), and Sorting Intolerant From Tolerant (SIFT) (Ng,
2003) were top-performing prediction tools on somatic variants

FIGURE 3 |Graphical introduction for the DNA-only, DNA–RNA overlap,
and RNA-only parts. Graphical introduction for detailed combination of RNA
and DNA somatic mutations. DNA-only: DNA somatic mutations not detected
(expressed) in RNA. RNA–DNA overlap: somatic mutations detected in
both RNA and DNA. RNA-only: RNA somatic mutations without any DNA
evidence.
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(Suybeng et al., 2020). Thus, we used the dbNSFP v4.1a (Liu et al.,
2020) database to annotate missense mutations with the
aforementioned prediction scores. The chi-squared test was
used to calculate the significance (p-value) of enriched
distribution and odds ratio (OR). A two-sided independent
t-test was used to determine the significance (p-value) of the
difference between the means of two prediction groups.

We also conducted an analysis of transcriptome-wide allele-
specific expression (ASE) to identify ASE events in somatic

mutations and their impacts on gene expression which affected
carcinogenesis. We chose cases containing both tumor and
paired-normal RNA-seq data from LUSC and BLCA cohorts
(LUSC: 49 cases, BLCA: 19 cases), and curated their gene
expression profiles from the UCSC Xena database (https://
xena.ucsc.edu/). Then, we chose only heterozygous SNVs in
both tumor RNA-seq andWES data (RNA–DNA overlap part),
and implemented chi-squared tests on the RNA and DNA
allelic depths with a significance cutoff of p-value 0.01 to

FIGURE 4 |Multi-filtering strategy and machine-learning model performance in testing and validation datasets. (A) Loss of GDCmutations (true positive) and non-
GDC mutations after the removal of multiallelic, RNA-editing, immunoglobulin, and HLA sites. (B) Change in cross-validated F1 score with the number of features
decreasing using the Recursive Feature Elimination with Cross-Validation (RFECV) method. Initial number of features was 40 and each iteration removed one least
important feature. (C) P–R (blue) curve for the testing dataset. RNA-SSNV achieved 0.880 precision and 0.884 recall rate (red point) in the testing dataset under the
default 0.5 threshold. RNA-Mutect (green point) and RF-RNAmut (orange point) had reported precision–recall with 0.87–0.72 and 0.85–0.71, respectively. (D)
Probability distribution of the predicted scores for the testing dataset. Most somatic mutation records were at the upper or lower ends of the plot, conforming a clear
classification boundary. (E) P–R curves for independent validation datasets. P–R curves for LUSC (blue), BLCA (orange), and GBM (green) had identical 0.94 AUC. The
peaks meant slightly different P–R performances for our model using the default 0.5 threshold in three datasets: LUSC (0.872–0.894), BLCA (0.876–0.870), and GBM
(0.902–0.825). P–Rs for RNA-Mutect and RF-RNAmut were also used for comparison. (F) Precision and recall distribution for each case across three types of cancer
(LUSC, BLCA, and GBM). Box plots showedmedian, 25th and 75th quantiles, outliers were presented as dots. (G) Relative importance distribution for each feature. Gini
impurity-based feature importance values were normalized to sum to one.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8653136

Long et al. RNA Somatic SNV Identification Framework

https://xena.ucsc.edu/
https://xena.ucsc.edu/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


identify somatic SNV ASEs (Heap et al., 2010; Liu et al., 2016).
Finally, we compared the TPM value of tumor and paired-
normal samples of cases harboring the somatic SNV ASEs to
examine the alteration of total gene expression, and defined the
TPM fold change (FC) of 2 and 1/2 as the thresholds of
upregulated and downregulated genes (Liu et al., 2018).

RESULTS

General Performance of the Framework
After the initial RNA somatic mutation calling andmulti-filtering
step, we collected 467,654 mutations in the LUAD training
dataset and 721,234, 323,323, and 126,449 mutations in LUSC,
BLCA, and GBM independent validation datasets, respectively.
To evaluate the effectiveness of multi-filtering strategy, we
validated the loss of GDC mutations in the LUAD training
dataset (Figure 4A) and LUSC, BLCA, and GBM independent
validation datasets (Supplementary Figure S1). We found that
the loss was negligible (0.1%), whereas the reduction of possible
artifact calls was rather significant (70%); such preprocessing
guaranteed a relatively pure mutation set for training and
predicting. Furthermore, our framework’s built-in machine
learning model was trained and fine-tuned by 10-fold cross-
validation. In total, 37 features from three categories were kept for
model training after feature selection conducted in the initial 40
features (Figure 4B). Finally, our framework achieved 88.0%
precision and 88.4% recall rate within the testing dataset
(Figure 4C), and other assessing metrics (Table 2) were also
satisfying. For example, the false-positive rate was 0.014, the false-
negative rate was 0.013, and the true-negative rate was 0.987.
Moreover, most RNA somatic mutations were at the upper or
lower ends of the bay plan plot according to the predicted
probability distribution of the testing dataset (Figure 4D),
which suggested a clear classification result.

To inspect the generalization performance of our framework,
we applied our RNA somatic mutation discriminant model to
three independent validation datasets. As a result, RNA-SSNV
successfully discriminated GDC high confidence somatic variants
from WES-targeted coding RNA mutations with significantly
higher precision, recall, and PR-AUC (LUSC P–R: 0.872–0.894,
BLCA P–R: 0.876–0.870, and GBMP–R: 0.902–0.825, Figure 4E),
compared with other RNA somatic detection tools such as RNA-
Mutect (Yizhak et al., 2019) (precision: 0.87, recall: 0.72) and RF-
RNAmut (Muyas et al., 2020) (precision: 0.85, recall: 0.71).
Specially, RNA somatic mutations within cancer-specific driver
genes had better performance (LUSC P–R: 0.924–0.921, BLCA
P–R: 0.929–0.896, and GBM P–R: 0.921–0.883) and they had
higher coverages than total RNA somatic mutations (median

sequencing coverages—LUSC overall: 42, driver: 60, two-sided
independent t-test p-value: 1.06e-7; BLCA overall: 41, driver: 44,
p-value: 7.35e-7; GBM overall: 46, driver: 76, p-value: 1.12 e-8).
Thus, critical mutations within cancer driver genes can be reliably
identified in RNA-seq data, which also guarantees our
framework’s clinical value.

For case-level performance, as expected, LUSC and BLCA
retained a median precision of 0.885 and 0.876 across cases, but
GBM only reached 0.739 median precision (Figure 4F),
contradicting its general precision of 0.902. Such contradiction
was caused by four high-mutation-rate (harbored more than 100
DNA mutations) cases having high precision (>0.950). In
contrast, most GBM cases had extremely low somatic
mutation rates with less than 30 DNA mutations transcribed
in RNA. Thus, some less identifiable RNA editing events and
novel mutations rescued by RNA can easily twist GBM’s case-
level precision but are hard to affect GBM’s general precision. In
addition, LUSC, BLCA, and GBM reached a median recall of
0.905, 0.880, and 0.857, concordant with their general recall. Also,
RNA somatic mutation counts were highly correlated with DNA
(Pearson correlation coefficient: LUSC: 0.905, BLCA: 0.937, and
GBM: 0.607, Supplementary Figure S2) after excluding outlier
cases with extreme mutation counts, suggesting the high accuracy
of our framework.

We investigated the contributions of 37 features using an
importance plot based on Gini impurity (Figure 4G) which
showed that STRANDQ was the most important feature for
discriminating RNA somatic mutations, followed by AF_tumor,
TLOD, ROQ, and ECNT with nontrivial feature importance
scores. In addition, features containing other sequencing qualities
and population allele frequencies also played a role in prediction
because they representedmutations’ reliability and germline evidence.
We found that the prevalent RNA editing allelic changes “A>G” came
at the bottom of the importance list, which indicated that our multi-
filtering strategy adequately removed these editing sites and reduced
their influence. Furthermore, we, in detail, illustrated the effects of 37
features on the prediction model by SHAP (Muyas et al., 2020) and
ascertained whether their variations lowered or lifted the predicted
probability (Supplementary Figure S3). After feature selection, we
excluded “A>C,” “A>T,” and “MMQ_alt” features. Among all allelic
change features, “A>G,” “C>A,” “C>G,” and “G>A” were retained.
Out of which, “A>G” and “G>A” represented A-to-I (Wang et al.,
2021) and C-to-U (Lerner et al., 2019) RNA editing events, and their
existence had negative impacts on the model output. On the contrary,
“C>A” and “C>G” represented RNA-editing exclusive allelic changes
that exhibited positive impacts. Interestingly, we also found that high
tumor allele depth for reference base and alternative base had opposite
impacts, which indicated that RNA somatic mutations with high
reference allele depth or low alternative allele depth in the tumor
sample tended to be artifacts.

Applications
Evaluation With Known DNA Evidence
We compared RNA-level somatic mutations with DNA-level to
investigate the biological mechanisms for their intersection and
uniqueness. As a result, we made a tabular overview (Table 3) and
Venn diagrams (Supplementary Figure S4) to illustrate detailed

TABLE 2 | Confusion matrix for the holdout testing dataset.

Predicted condition

Label Positive Negative

True condition Positive 4,165 546
Negative 566 41,129
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distribution for the combination of RNA and DNA-level somatic
mutations. Here, our framework successfully identified authentic
mutations from the RNA-only part (which got ignored/not
covered in WES data) to increase information gain and
improve diagnostic yield. For all three parts, the RNA-only
part had the largest mutation counts. The vast majority were
labeled as negative (97.7–99.2%), indicating that our framework
had successfully identified most artifacts in RNA because all these
negative calls shall be filtered in the final output. Interestingly,
when comparing mutation counts of the DNA-only part with the
RNA–DNA overlap part, we found that less than 1/3 DNA
somatic mutations got expressed in RNA. Such phenomenon
was concordant with another study, mainly due to insufficient
sequence coverage in low-expression or un-expression genes
(Yizhak et al., 2019). Further analysis was listed in the
following section for elaborate explanations.

Variably RNA-Expressed Mutations Harbored a
Special Enrichment Pattern
In detail, we explored the RNA expression ratios (number of
expressed DNA somatic mutations/number of all DNA somatic
mutations) for each case of three cancer types (Figure 5A),
median expression ratios for LUSC, BLCA, and GBM were
0.312, 0.349, and 0.256, respectively. Highly variable
expression ratios (0.000–0.632) in three types of cancer
suggested that different DNA somatic mutations had various
expression statuses in RNA. Notably, although the brain has a
high number of expressed genes than other human tissues
(Naumova et al., 2013), expression ratios of GBM were still
significantly lower than those of LUSC or BLCA. These results
indicated that DNA somatic mutations might be variably
expressed or not expressed at all, and RNA somatic mutations
were important to evaluate possible expression status.

To investigate whether the RNA-expressed somatic mutations
tended to have larger functional impacts than those that only
existed in DNA, probably resulting from the positive selection of
cancer subclonal, we compared the impact scores of mutations
within cancer-specific driver genes (Martinez-Jimenez et al.,
2020) between RNA–DNA overlap and DNA-only parts.
Interestingly, the cancer driver genes’ mutations were enriched
in the RNA–DNA overlap part (LUSC: OR = 2.01, p = 1.14 e-68,
BLCA: OR = 2.57, p = 9.89 e-119, GBM: OR = 2.70, p = 1.73 e-16.
Supplementary Table S2), even though the DNA-only part had

excessive mutation counts than the RNA–DNA overlap part
(DNA-only/RNA–DNA overlap: ~2/1). Moreover, we
compared the predicted pathogenicity scores for missense
mutations located within cancer driver genes between
RNA–DNA overlap and DNA-only parts, and found that all
RNA–DNA overlap parts had significantly higher pathogenicity
scores across three cancer types and seven prediction tools
(p-value < 1 e-5, Figure 5B). The significantly higher
prediction scores implied that predicted damaging mutations
tended to be selectively expressed in driving tumorigenesis,
and our RNA-level somatic mutation identification framework
effectively enriched the functional mutations.

Furthermore, we want to explore whether actionable
mutations tend to get expressed in RNA and exhibit
clinical effects. Thus, we assessed the therapeutic power
for mutations in cancer driver genes between RNA–DNA
overlap and DNA-only variants using the OncoKB database
(Chakravarty et al., 2017) (https://www.oncokb.org/,
Supplementary Table S3). Therapeutic sites within the
RNA–DNA overlap part were far more than DNA-only
across three cancer types (LUSC: OR = 13.34, p = 8.35e-
19, BLCA: OR = 3.27, p = 4.26e-16, GBM: OR = 4.26, p = 3.
66e-4, Table 4), indicating that the RNA-level somatic
mutations calling can enrich clinical therapeutic variants.
Notably, we observed that some therapeutic mutations from
the OncoKB database also occurred in the DNA-only part.
For example, except for 52 RNA–DNA overlap somatic
mutations in BLCA, PIK3CA also had 12 DNA-only
somatic mutations with “Level_3B″ OncoKB annotation
(Chakravarty et al., 2017). We found that even if the 12
TCGA BLCA cases containing 12 DNA-only somatic
mutations had sufficient expression level for the PIK3CA
gene (TPM: 23.7–51.7, curated from UCSC Xena(Goldman
et al., 2020) dataset), the 12 mutations’ alternative allele still
got un-expressed (median alt allele-depth: 0) leading to
unlikely benefit from certain targeted therapies. Therefore,
although PIK3CA is a valuable therapeutic target for
inhibitors of PI3K/AKT/mTOR pathways in advanced
bladder cancer (Ross et al., 2016; Willis et al., 2020), the
detailed expression status of the mutations should be
carefully evaluated when the targeted therapy is
considered. Such phenomenon was opposed to the
assumption that mutations located within sufficiently

TABLE 3 | Overview of RNA somatic mutations combined with DNA.

Cancer type RNA initial RNA DNA overlap RNA only DNA only P–R

Positive Negative Positive Negative

LUSC 721,234 49,527 5,873 6,963 658,871 105,644 0.877–0.894
BLCA 323,323 43,945 6,557 6,206 266,615 71,614 0.876–0.870
GBM 126,449 9,153 1,947 970 114,379 16,104 0.904–0.825

Notes: Cancer type—LUSC: lung squamous cell carcinoma, BLCA: bladder urothelial carcinoma, GBM: glioblastoma multiforme.
DNA only—Counts of mutations only observed in the GDC DNA mutation set (not in RNA).
RNA–DNA overlap—Counts of mutations observed in both GDC DNA mutation set and RNA mutation set.
RNA only—Counts of mutations only observed in the RNA somatic mutation set (not in DNA).
RNA total—Counts of mutations observed in the total RNA somatic mutation set.
P–R—Precision–recall metric for RNA somatic mutations with GDC mutations as a golden standard dataset.
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expressed genes had undoubtful effects making them
potential therapeutic targets, and RNA-level mutations
were required to validate these targets’ transcription status.

Given that RNAs were enriched with mutations of higher
functional impact and therapeutic value, we assessed the
performance of RNA-level somatic mutations for discovering

FIGURE 5 | Evaluation of RNA somatic mutations and integrative analysis with DNA evidence. (A) Distribution of RNA expression ratios for known DNA somatic
mutations across three types of cancer. Box plots’ heights ranged from 0.000 to 0.632. The comparisons utilized two-sided independent t-test with p-value < 1e-5. (B)
Distributions of seven pathogenicity prediction scores for missense mutations within cancer driver genes across three cancer types (LUSC, BLCA, and GBM). DNA-only
and RNA–DNA overlap parts in each cancer type were used for comparison (all comparisons passed two-sided independent t-test with p-value < 1e-5). (C) Variant
allele fraction (VAF) distributions of DNA-only and RNA–DNA overlap parts within three cancer types. Left box: VAF distribution for DNA somatic mutations in DNA-only
part. Middle box: VAF distribution for DNA somatic mutations in the RNA–DNA-overlap part. Right box: VAF distribution for RNA somatic mutations in the RNA–DNA-
overlap part. The comparisons utilized two-sided independent t-test with p-value < 1e-5. (D) TPM fold change (FC) distributions for BLCA and LUSC. The comparisons
utilized the Wilcoxon rank-sum test with p-value < 1e-5.
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cancer driver genes by other statistical methods. Here, WITER
(Jiang et al., 2019) was adopted to test the enrichment of somatic
mutations due to positive selection in tumorigenesis (Jiang et al.,
2019; Martinez-Jimenez et al., 2020). We compared the
significant genes based on RNA-level somatic mutations to
those based on the DNA-level somatic mutations in three
cancer datasets. Among all significant genes (FDR < 0.1), the
RNA somatic mutations led to a higher proportion of known
cancer driver genes from the Intogen database (Martinez-Jimenez
et al., 2020) in two of the three datasets than DNA (LUSC: 6/7 vs.
6/9 and GBM: 5/5 vs. 5/18, see details in Supplementary Tables
S4, S5) with identical cancer-driver genes, another cancer type
(BLCA: 12/18 vs. 15/19) also had a similar proportion. This result
suggested that the RNA-level may lead to fewer false-positive
estimations for driver genes than DNA-level.

In addition to known cancer driver genes, other significant genes
based on the RNA-level somatic mutations, though un-registered in
the Intogen database, were also functionally important to cancer
development. CTNNB1, for example, had a significant q-value of
0.081 in BLCA. CTNNB1’s mutations have been found to cause
aberrant WNT/CTNNB1 signaling and are associated with the
susceptibility and prognosis of breast, endometrial, and gastric
cancers (Kurnit et al., 2017; van Schie and van Amerongen, 2020;
Wang et al., 2012). CHEK2 (q = 0.087 in LUSC, q = 0.052 in BLCA)
played an important role in the repair of DNA damage, and its
heterozygous mutations had been found to be causing genetic
susceptibility to lung cancer (Wang et al., 2014) and bladder
cancer (Złowocka et al., 2008). Although our detected CHEK2
somatic mutations were not inherited or passed on, their
heterozygosity was similar and induced cancer risk. In a word,
RNA can also prioritize potential cancer driver genes.

RNA Increased Mutation Detection Power.
VAF (variant allele fraction) was the fraction of sequencing
reads harboring the mutation when performing NGS
(Friedlaender et al., 2021), measuring the subclonal
prevalence of specific mutations (Benard et al., 2021). We
compared the DNA VAF distribution for DNA-only and
RNA–DNA overlap parts within three cancer types to

examine the subclonal selection advantage for expressed
mutations. Higher DNA VAF was observed in expressed
DNA somatic mutations (Figure 5C left comparison, p < 1 e-
5), indicating the trend of cancer evolution for subclonal
harboring RNA somatic mutations. Interestingly, RNA VAF
was significantly higher than DNA VAF within expressed
mutations of RNA–DNA overlap part (Figure 5C right
comparison, p < 1 e-5), suggesting an expression tendency
for the mutant allele. The common cancer WES study has a
mutation limit of detection (LoD) at 5% VAF, and reporting
these subclonal mutations incurs the risk of sequencing
error–induced false positives (Yan et al., 2021). For these
low-VAF (<0.05) DNA somatic mutations, their RNA VAFs
were much higher, with median values of 0.374 in LUSC, 0.342
in BLCA, and 0.241 in GBM. Therefore, RNA somatic
mutations exhibited subclonal selection superiority and
increased the power for low-VAF mutation detection.

Here, we, in detail, demonstrated the recovery of DNA-
omitted mutations for our framework. For the RNA-only part,
we found that our framework helped rescue ~10% of mutations
(Table 3) which were missed based on DNA sequencing data.
Most of the rescued mutations had low alternative allele depth
(median: 0–1) or alternative allele fraction (median: 0–0.03) in
WES data but opposite situations (median alt allele depth: 8–10,
median alt allele fraction: 0.31–0.67) in RNA-seq data. There
were also 102, 120, and 8 mutations located within cancer driver
genes out of 6,997, 6,233, and 969 positive mutations from LUSC,
BLCA, and GBM, respectively (Supplementary Table S6).
Furthermore, we discovered biologically important cancer
variants within these overlooked “driver” mutations using the
DoCM database (Ainscough et al., 2016) (http://docm.info). We
found that 17 out of 102, 14 out of 120, and 2 out of 8 DNA-
overlooked “driver” mutations in LUSC, BLCA, and GBM had
literature support from one or more publications
(Supplementary Table S7). For example, TCGA-FD-A5BS
had TP53 p.R282W mutation rescued by RNA with its
reference-alternative allele depth in DNA: 19-1, RNA: 17-14.
The R282W mutant had been found to cause the gain of novel
oncogenic functions (GOF) in p53 proteins and associate with

TABLE 4 | Overview of therapeutic mutation distribution in three types of cancer.

Therapeutic level LUSC BLCA GBM

RNA–DNA overlap DNA only RNA–DNA overlap DNA only RNA–DNA overlap DNA only

Level_1 FDA-approved drug 0 0 43 1 0 0
Level_2 standard care 0 0 0 0 1 0
Level_3 clinical evidence 58 3 140 40 13 1
Level_4 biological evidence 85 10 96 22 28 7
Counts sum 143 13 279 63 42 8
Total 1,240 1,333 1,565 1,014 175 116
OR (p_value) 13.34 (8.35 e-19) 3.27 (4.26 e-16) 4.26 (3.66 e-4)

Notes: Level_1: FDA-recognized biomarker predictive of response to an FDA-approved drug.
Level_2: Standard care biomarker recommended by the NCCN predictive of response to an FDA approved drug.
Level_3–3A: Compelling clinical evidence supports the biomarker as being predictive of response to a drug; 3B: standard care or investigational biomarker predictive of response to an
FDA-approved or investigational drug.
Level_4: Compelling biological evidence supports the biomarker as being predictive of response to a drug.
Counts sum: Sum of therapeutic mutation counts.
Total: Total counts for mutations located within cancer-specific driver genes.
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poorer cancer outcomes with a more prominent GOF effect
(Zhang et al., 2016).

Low tumor purity can bias somatic mutation detection with
the positive correlation between mutation numbers and tumor
purities (Cheng et al., 2020). For example, TCGA-90-6837 in
LUSCwith its CPE (Aran et al., 2015) (consensus measurement of
purity estimations) lower than average (0.56 vs. 0.68) had no
official DNA mutation (WES failed to detect), we investigated its
RNA somatic mutations identified by our framework to confirm
its mutational status. We found that out of its 192 RNA somatic
mutations, six mutations fell within cancer driver genes, and their
existence had been ignored by WES (Table 5). Among these
mutations, KMT2D is a lung tumor suppressor gene (Alam et al.,
2020), and its mutation was one of the most significant prognostic
factors in LUSC(Ardeshir-Larijani et al., 2018). We found that
KMT2D p.E869p mutation could cause its truncation leading to
tumor progression. In addition, TP53 p.A276G mutation had
been found to locate within the DNA binding domain of the TP53
protein and presumably have deleterious impacts on protein
functions (Chang et al., 2021) with pathogenic ClinVar
database (Landrum et al., 2020) interpretation (Accession:
VCV000185319.3). These findings confirmed that RNA-seq
data could provide valuable supplementary information useful
for clinical decisions and improve diagnostic yield in extreme
cases when DNA failed to detect actionable mutations.

Transcriptome-Wide Allele-Specific Expression
Analysis
We calculated the TPM fold change (FC) to measure gene
differential expression status. After excluding infinite FC
values, we found that the median gene FC for RNA-expressed
mutations was significantly higher than unexpressed mutations
(Figure 5D). Thus, genes harboring RNA-expressed somatic
mutations tended to have higher expression level in tumor
samples than in paired normal samples.

We detected somatic SNV-level ASEs, and found that 24.8% of
3876 and 23.2% of 1700 somatic mutations exhibited ASE events
in LUSC and BLCA RNA–DNA overlap parts. As expected, most
(~90%) ASE somatic mutations had over-expressed mutant
alleles. The results showed that certain expressed somatic
mutations had higher expression superiority in the mutant
allele than the wild allele, which further enhanced the
mutation detection power in RNA. Furthermore, we curated
gene lists for 10 signaling pathways in cancer (Sanchez-Vega
et al., 2018) and explored the functional alteration on signaling

pathways for ASE somatic mutations. Ideally, if the ASE somatic
mutation is functional, the direction of ASE event for the mutant
allele should be the same as the direction of gene expression
alteration for tumor vs. paired-normal samples (Liu et al., 2018).
Thus, we mapped ASE somatic mutations to genes involving
cancer signaling pathways with identical expression change
direction. Finally, we identified several pathways (cell cycle,
HIPPO, RTK RAS, TGF-Beta, and WNT) containing heavily
altered genes with ASE events (Supplementary Table S8).
Interestingly, seemly “benign” synonymous mutations also
contained ASE events and altered gene expression level. For
example, NF1 is a tumor suppressor that negatively regulates
RAS signaling (Redig et al., 2016). NF1 p.L43L mutation in
TCGA-39-5040 had an over-expressing mutant allele (DNA
VAF: 0.32, RNA VAF: 0.63) and showed an upregulated gene
expression (tumor/paired-normal fold change: 2.53), which
activated NF1 function to under-regulate the RAS signaling
pathway and suppressed carcinogenesis.

DISCUSSION

Although common somatic mutation detection practices come with
WES, important and actionable mutations are often conserved in
RNA-seq. Therefore, we developed RNA-SSNV, an integrative
framework to identify RNA somatic single nucleotide variants
called within tumor RNA-seq and paired-normal WES data. To
maximize performance, we combined multi-filtering strategies and
a machine-learning model. For the multi-filtering strategy, we found
that it removed massive artifacts (~70%) while omitting few true
positive calls (~0.1%). Before constructing the classification model, we
also evaluated the performance of the GATK-recommended filtering
tool (FilterMutectCalls) for the LUAD training dataset and LUSC,
BLCA, and GBM validating datasets using precision–recall metrics.
The result showed that FilterMutectCalls achieved a satisfying recall
but a low precision rate (LUAD P–R: 0.380–0.865, LUSC P–R:
0.399–0.871, BLCA P–R: 0.442–0.886, and GBM P–R:
0.540–0.881), which may lead to large false-positive calls. Because
FilterMutectCalls was originally designed based on DNA somatic
mutation filtering strategy, which may not be fully compatible with
RNA, we adopted a machine learning model with comprehensive
features to conduct classification. For model training, we adopted
various techniques to ensure its reliability. To construct a high-quality
training dataset, we usedGDCDNAmutations as the golden standard
and self-called DNA mutations as important supplementary

TABLE 5 | RNA somatic mutation within cancer-driver genes in TCGA-90-6837.

Mutation Gene RNA DNA Protein change

RefDepth AltDepth RefDepth AltDepth

chr4:186633790 T>C FAT1 4 27 95 0 K1406R
chr8:116866708 G>A RAD21 45 36 36 0 L8F
chr12:49051078 C>A KMT2D 12 7 73 1 E869*
chr17:7673793 G>C TP53 36 64 23 0 A276G
chr19:33026624 G>A RHPN2 18 6 87 0 T65I
chr22:41178035 G>A EP300 78 51 54 0 Q2108Q
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information to separate pure true positive and true negative sets from
multi-filtered RNA mutations. In a comparison of using two data
sources (RNA mutations and golden-standard DNA mutations) to
construct the training dataset, the introduction of self-called DNA
mutations significantly improved our machine model’s performance
(increased precision–recall from 0.843-0.875 to current 0.883–0.885 by
4%). We also conducted feature selection and fine-tuning to improve
the model’s performance. Eventually, our trained model achieved
superior performance of 88.0% precision and 88.4% recall rate in
the testing dataset compared with other state-of-art RNA somatic
mutation detection tools such as RNA-Mutect (Yizhak et al., 2019)
(precision: 0.87, recall: 0.72) and RF-RNAmut (Muyas et al., 2020)
(precision: 0.85, recall: 0.71).

When utilized in independent validation datasets (TCGA
LUSC, BLCA, and GBM), RNA-SSNV achieved similar
performance as in the testing dataset, which had
0.871–0.895, 0.876–0.871, and 0.902–0.830 precision–recall
rate, respectively. Not only can our framework reliably
detect RNA somatic mutations, but it also can conduct
pairwise analysis with provided DNA mutations. Although
our framework achieved satisfying performance within
somatic RNA single-nucleotide variants’ identification,
limited scenarios in which only RNA somatic mutations can
be retrieved such as the GTEx project (Lonsdale et al., 2013)
(contained RNA-seq data from ~6700 samples across 29
normal tissues). Common RNA-seq practices involving
research always included DNA-seq data which generated
somatic DNA mutations simultaneously; thus, the
investigation for the relationship between DNA-level and
RNA-level somatic mutations was essential. Multiple studies
have found that combining DNA-level and RNA-level somatic
mutation can achieve maximum performance for mutational
investigation (Krug et al., 2018; Newman et al., 2021;
Wilkerson et al., 2014; Zhang et al., 2020). Thus, we split
DNA and RNA somatic mutations into three parts:
DNA–RNA overlap part, DNA-only part, and RNA-only
part; and each part had positive and negative sub-parts
representing our model’s classifications. The DNA–RNA
overlap part represented orthogonal validated DNA and
RNA mutations; its positive sub-part contained reliable
cancer somatic mutations with clinical usage, but its
negative sub-part contained false-negative calls misclassified
by our model. When using SHAP to analyze these false-
negative calls (Supplementary Figure S5), we found that
G>A mutant status had significant impacts, which
implicated that APOBEC-mediated C-to-U RNA editing
events (Lerner et al., 2019) contributed to misclassification
and current RNA editing resources were insufficient to filter
C>U editing sites. DNA-only part represented DNAmutations
omitted in RNA somatic mutation calling, and we found that
some DNAmutations’ reference allele got selectively expressed
while their alternative allele got silenced. To explore how many
DNA-only somatic mutations got selectively expressed, we
calculated the selective expression ratios (number of
mutations with reference allelic depth>10/number of DNA
somatic mutations not identified in RNA) for DNA-only parts
across three cancer types (Supplementary Figure S6). The

median mutation selective expression ratios for LUSC, BLCA,
and GBM were 0.134, 0.120, and 0.154, respectively,
confirming that DNA somatic mutations within GBM had
higher selective expression tendency than LUSC (p = 0.003)
and BLCA (p = 5.63 e-6), possibly due to innate upregulation
of DNA repair mechanisms (Ferri et al., 2020). We retrieved
their information in RNA using Mutect2’s force-calling mode
and utilized our model to classify them. Most of them were
predicted negative as expected, but a small portion (1.9%) was
predicted as positive, suggesting that our selected caller
(Mutect2) might have a little neglection. We also observed
that mutations’ reference allele–specific expression within
driver genes leads to doubtful translation effects. In
addition, most mutations located within collagen-related
genes (COL11A1, COL6A3, COL5A2, etc.) were found
silenced while these genes got sufficiently expressed in RNA
(Supplementary Table S9). Interestingly, the proteome
database (Human Cancer Proteome Variation Database)
also contains nearly no evidence for mutant collagen
proteins across three cancer types which were abnormal
because massive DNA somatic mutations had been found in
these genes. The RNA-only part represented RNA mutations
without DNA evidence support. Its negative sub-part was
artifacts, but its positive sub-part included RNA-rescued
mutations missing in DNA that contained mutations within
cancer driver genes (1.4%) to provide more therapeutic targets
and help with clinical decisions. A major shortcoming of WES
is uneven coverage of sequence reads over the exome targets
contributing to many low-coverage regions (Wang et al., 2017;
Xiao et al., 2021), and substantial inter-individual variation in
coverage of medically implicated genes caused false-negative
mutation calls due to low coverage (Barbitoff et al., 2020; Kong
et al., 2018). Although using replicate exome-sequencing can
improve WES coverage by 4.3–12.7% (Cherukuri et al., 2015),
improve variant calling accuracy (Zhang et al., 2014), and
enhance clinical interpretation, information redundancy and
excess costs limited its usage. Compared with replicate exome-
sequencing, RNA-seq has improved somatic single nucleotide
variants, and clinically actionable mutations are often
conserved in RNA.

We also examined the potential of improving our model’s
performance by introducing additional training data from different
cancer types. After adding GBM cancer–type data into the training
dataset, we only observed a slight improvement within the testing
dataset (recall rate increased 1.3%) and the AUC for P–R curves for
TCGA LUSC, BLCA–independent validation datasets remained stable
at 0.94 (Supplementary Figure S7). The unchanged performance
suggested that our model trained with LUAD datasets probably has
already contained key features of RNA somatic mutation in cancer
cells and is applicable for other cancers. Although the general
performance for our model was identical across three validation
datasets, performances under default threshold (0.5) slightly differed
and a dynamic shift of threshold according to different aims (prefer
higher precision or recall) was required. In addition, due to insufficient
C-to-U RNA editing database resources, the current model sacrificed
high recall to ensure removing editing events for the G>A mutation
type. The high distribution ofG>Amutations (52.3%) in false-negative
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sets of TCGA LUSC–independent validation dataset reflected this
imperfection. Therefore, we recommended that users manually review
predicted-negative G>A mutations within known driver genes to
improve diagnosis. To facilitate user to inspect predictions, we
provided codes to visualize the contribution of important features
using SHAP library and a canonical table to exhibit all useful
information for user-specified records. A major limitation of our
framework was that it was designed to identify RNA somatic
mutations only from tumor RNA-seq and paired-normal WES
data. Future works will include extending RNA somatic mutation
identification scope into other sequencing data types (single-cell RNA-
seq or whole-genome DNA-seq).

For cancer research involving both WES and RNA-seq data, the
conventional analysis strategy uses WES data to call somatic
mutations and then validates whether somatic mutations exist in
RNA-seq data. However, the conventional strategy may still omit
some somatic mutations in RNA-seq data. Our study significantly
improved the capability to call RNA somatic mutations and further
revealed the association between somatic mutations derived from
RNA and DNA, providing valuable supplementary information for
conventional cancer somatic mutation analysis.
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