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Increased methane emissions from deep osmotic
and buoyant convection beneath submarine seeps
as climate warms
Silvana S.S. Cardoso1 & Julyan H.E. Cartwright2,3

High speeds have been measured at seep and mud-volcano sites expelling methane-rich

fluids from the seabed. Thermal or solute-driven convection alone cannot explain such high

velocities in low-permeability sediments. Here we demonstrate that in addition to buoyancy,

osmotic effects generated by the adsorption of methane onto the sediments can create large

overpressures, capable of recirculating seawater from the seafloor to depth in the sediment

layer, then expelling it upwards at rates of up to a few hundreds of metres per year. In the

presence of global warming, such deep recirculation of seawater can accelerate the melting of

methane hydrates at depth from timescales of millennia to just decades, and can drastically

increase the rate of release of methane into the hydrosphere and perhaps the atmosphere.
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M
ethane is of great environmental importance as a
greenhouse gas, and marine seeps are estimated to
contribute some 37% of the geological sources; likewise

mud volcanism provides another 11–17% (ref. 1). Methane
hydrates are often found in the vicinity of submarine seeps and
mud volcanoes2, and the project of commercializing this energy
source is under way. Concomitantly, there is concern that
anthropogenic climate change could destabilize hydrates, thereby
potentially releasing large quantities of methane into the ocean
and atmosphere3–5. Thus there are both environmental and
economic reasons to be interested in methane associated with
seeps and mud volcanism.

A mud volcano is a geological structure on land or in the
oceans in which water plus fine particulates—‘mud’—issues from
a conduit typically topped by a conical hill with a crater. The
emerging mud is generally accompanied by methane, both
dissolved and, if the concentration exceeds the saturation
concentration, as bubbles6. A submarine seep, on the other
hand, has similar fluid flow through the porous sediment
constituting the seabed without the conical structure or open
conduit. What physical forces drive such fluid flows?

We find that both buoyancy and osmotic effects are present in
cold seeps and mud volcanism in which, rather than being a
passive element, methane is its driving force. Some researchers
have suggested the importance of considering osmosis in seeps
and mud volcanism7,8. Clays and shales are known to possess the
semipermeability necessary for osmosis, associated with charge
and pore-size effects9,10. Moreover, methane hydrates frequently
exist in the sediments around a cold seep or mud volcano2,6. As
hydrate forms, the sediment plus hydrate becomes progressively
less permeable11,12. However, other mechanisms involving
adsorption and chemical reaction can also produce significant
osmotic pressures13–20. Methane is shown to adsorb onto
sediments21–24. Hydrates form in pores under a wider range of
conditions than in the bulk25 and methane molecules adsorb onto
the cages of methane hydrate during the hydrate growth
process26,27. Thus, we propose below that given a supply of
methane, a submarine cold seep or mud volcano can function as a
geological instance of an osmotic pump9,28,29. We find cause for
concern that this convective pump mechanism facilitates methane
hydrate destabilization under anthropogenic climate change.

Results
Liquid flow mechanisms in seeps and mud volcanoes. Consider
the possible physical driving forces for a submarine seep in which
salty water and methane are driven out of the seabed (Fig. 1). The
origin for this water can be either a reservoir beneath the seabed
or seawater itself, recirculated within the porous seabed.

One commonly discussed flow mechanism is the expulsion of
pore water from sediments under compression, which can yield a
speed of some vsc¼ 1.8� 10� 3 m yr� 1 (ref. 30). This estimate
provides a baseline with which to compare mechanisms.
Buoyancy and osmotic forces are other possible driving
mechanisms. Let us consider quantitatively the processes for
fluid transport in a cold seep in which the sea bed consists of a
homogeneous porous medium, within which, at a given depth
beneath the seafloor, we position (Fig. 1a) an extended source of
buoyancy, caused by either a thermal or a compositional
difference, or (Fig. 1b) a two-dimensional source of buoyancy,
such as that at a continental margin. Much previous work has
explored the occurrence of flow focussing in overpressured
heterogeneous sediments31,32. We further consider the case
(Fig. 1c) in which the sediment is heterogeneous, so that
focussed flow may occur above a source of buoyancy or
osmotic effects; for example, methane dissolved in warm water,
the porous medium being semipermeable to this methane. We
estimate the rate of flow of water induced in each case. We should
mention that there exists a further buoyancy-driven flow
mechanism, that of liquid flow driven by buoyant bubbles33,
but this becomes dominant only with very large gas fluxes; that is,
during the eruptive phase of mud volcanism, while here we
concentrate on flows during the quiescent phase that subsists
B95% of the time6.

The effectiveness of each mechanism of pumping fluid depends
of course on the permeability of the sediment. Measurements at
seeps indicate values for inter-granular permeability in the range
10� 18–10� 14 m2 (ref. 34). However, it has been suggested34–36

that bulk permeabilities are much higher, of the order of
10� 12 m2, owing to channelling of fluid through the sediment.
Below we assume a bulk permeability k¼ 10� 12 m2 and later
extend our results to the range of permeabilities 10� 13–10� 11 m2.

Positive buoyancy forces can arise from a temperature gradient
that heats the water, or from solutal sources. For example, heat is
released when methane hydrates form and lower-density fresh
water is generated when hydrates dissociate (Fig. 1a). When
buoyancy from a geological process is released over a large area at
depth in an otherwise quiescent, saturated porous medium,
the less-dense fluid rises above the source (Fig. 1a). In a
homogeneous sediment, the upward flow is essentially one-
dimensional and we estimate (Methods) flow speeds vestB0.15 m
yr� 1 and vessB0.75 m yr� 1 for thermal and solutal convection,
respectively.

Consider now the release of heat over a long, thin area such as
a continental margin. The rise of the warm fluid is now more
localized, forming a line or two-dimensional plume (transverse
view in Fig. 1b). The plume increases in width as it rises, owing to
viscous drag and to transverse heat conduction. The rise velocity
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Figure 1 | Flow driven by buoyancy and osmotic sources in saturated porous sediment under the seafloor. (a) An extended buoyancy source in a

homogeneous sediment, (b) a two-dimensional buoyancy source at a continental margin, (c) a buoyant or osmotic pumping mechanism associated with a

developed seep, (d) buoyant or osmotic pumping in a fully developed mud volcano.
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of the warm fluid decreases with height as a consequence of
cooling and the consequent reduction of buoyancy, while the
volumetric flow rate increases on account of the increase in plume
width. We consider a heat source of strength Ft¼ 25 J m� 1 s� 1

at a depth H¼ 100 m to be consistent with observations of surface
heat fluxes of the order of 0.12 J m� 2 s� 1 measured at the
northern Cascadia accretionary sedimentary prism37. The upward
liquid speed at the seafloor is then estimated (Methods) as
vlst¼ 0.25 m yr� 1, the half-width of the plume is blst¼ 87 m and
the total flow rate per unit length is Qlst¼ 43 m2 yr� 1.

A similar plume flow develops when less dense fluid is released
in a localized region at depth, for example water liberated through
methane hydrate dissociation38 or during the smectite-illite
transformation39. In a given case, the chlorinity of interstitial
pore water sampled at a seep site is about 0.95 times that of
seawater34, suggesting dilution of low salinity water from depth
with seawater by a factor of the order of 20. Also, heat balances
over active seep areas taking into account measured background
thermal gradients have suggested dilution of the original water
from depth with seawater by a factor of 6 to 30 (ref. 39).
Constraining the plume flow here to a dilution factor of 20 allows
us to estimate (Methods) the original source fluid flow rate
Q0¼ 0.16 m2 yr� 1, so that the the total flow rate per unit length
at the seafloor is Qlss¼ 3.1 m2 yr� 1. We estimate the plume speed
vlss¼ 0.13 m yr� 1 and half-width blss¼ 12 m. This source flow
rate is consistent with values quoted for the release of water by the
smectite-illite transformation and the hydrate layer39.

For comparison, consider now a buoyant flow in a hetero-
geneous porous medium under a seep (Fig. 1c). We assume
focussed flow directly under the seep area has increased the local
permeability so that the main resistance to flow arises in the
drawing of seawater from the surroundings into the rising seep
plume. For an array of seeps spaced at B50 m and radius bs¼ 2
m (refs 2,40), we predict (Methods) a vertical velocity of
vssB59 m yr� 1, for a solutal source of buoyancy at depth
H¼ 100 m and a dilution ratio of 20. The total flow rate
in the convective cell is Qss¼ 7.4� 102 m3 yr� 1. The effluent
flux of methane averaged over the inflow area is
B0.0031 mol m� 2 yr� 1.

Osmotic forces arise from a compositional gradient of fluid
within a medium possessing a degree of semipermeability. Let us
consider the flow induced by the osmotic pressure gradient
associated with a release of fresh water saturated with methane at
depth in the same heterogeneous porous medium under a seep
(Fig. 1c). The water at the seafloor, above and beyond the seep
region, is free from methane owing to continuous motion of
ocean currents. We expect seawater to flow downward from the
seafloor into the porous sediment and towards the region with
high concentration of methane. The methane in solution may
diffuse into and through the surrounding seawater-saturated
porous sediment. A mixture of the source freshwater with
methane and seawater will eventually rise in the form of an
osmotic plume, exiting at the seafloor as a seep flow. We predict
(Methods) a vertical velocity of vsoB5.7� 102 m yr� 1 for an
osmotic source at depth H¼ 100 m and a dilution ratio of 20. The
total flow rate in the convective cell is Qso¼ 5.9� 103 m3 yr� 1.
The effluent flux of methane averaged over the inflow area is
B0.025 mol m� 2 yr� 1.

These scaling and numerical results suggest that liquid efflux
from the seabed in seep regions driven by osmotic pumping can
be at least 10 times larger than in seeps with convection induced
by salinity and thermal differences. It is also far larger than
reported velocities for water expulsion resulting from sediment
compression.

Lastly, let us consider both buoyant and osmotic circulation in
the vicinity of a fully developed mud volcano with a fractal

network of smaller channels at depth leading to the main central
conduit, like a tree roots and trunk, above a source of solute
or/and heat. Consider an idealized version of the geometry of the
conduits: a vertical main channel, through which water with
dissolved methane flows upwards from side feeder channels at
depth and exits at the seafloor (Fig. 1d). Here we consider the
drawdown of water from the seabed caused by buoyant or
osmotic pressure associated with a solute in solution in these
conduits. Each conduit thus behaves like a buoyant or osmotic
source considered above. Such network flows have been
considered for many systems, from rivers in geology to the
vascular system and the lungs in biology; our case corresponds to
a directed spanning tree, the most efficient class of networks41.
We find that the speed of the flow in the main conduit is
proportional to the total lateral area of all the feeder conduits
(Methods). The combination of a buoyant or osmotic pump and a
very small volume fraction of conduits within the sediment
produces flow rates orders of magnitude larger than that in a
homogeneous porous medium alone.

Comparison with field measurements. The convective pump
mechanism that we have demonstrated here functions as an
amplifier of a small external source of buoyancy or dissolved
methane into a large quantity of water that cycles through the
seep or volcano. The question of the provenance of the water is a
telling datum. The dominant contribution to the water issuing
from submarine seeps and mud volcanoes is not water from
reservoirs under the seafloor, but seawater42–45.

In Fig. 2, we present a comparison of in-situ measurements of
liquid and methane fluxes from cold seeps30,46 and mud
volcanoes47,48 with our theoretical predictions. It is clear that
thermal and solutal convection alone cannot explain the very high
velocities measured at methane-rich sites with low permeability
sediments. Contrariwise, osmosis induced by methane is likely to
be the physical mechanism responsible for some of these high
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Figure 2 | Dissolved methane flux plotted against liquid flux. An osmotic

mechanism can flow more methane and more liquid than competing

mechanisms. Comparison of field measurements at seeps30,46 and mud

volcanoes I (ref. 48), II (ref. 47) with our theoretical predictions for a

uniform source of solute and a margin heat plume, and a buoyant or

osmotic plume in a developed seep. The predictions are for a sediment

permeability of 10� 12 m2 and an exit methane concentration of 8mM; the

green and orange shaded ellipses represent the range of permeabilities

10� 13–10� 11 m2 (along the major axis) and methane concentrations

0.6–126mM (along the minor axis) for a buoyant and osmotic seep flow,

respectively. An estimate of efflux from sediment compression30 is shown

as a baseline.
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velocities, as revealed by the orange shaded ellipse. Indeed, even
with a conservative estimate of the osmotic effect, osmotic
pressure gradients are capable of producing very fast flows. The
fluids vented at these seep sites had concentrations of dissolved
methane in the range 0.6–126mM. Osmosis is an efficient
mechanism for producing fast localized flows, owing to the
relatively large pressure differences it generates. While for
the buoyant seep considered above the pressure driving the
convective cell is of the order of 4.4� 103 Pa, in the osmotic seep
a pressure of 19� 103 Pa is achieved.

Fluid flow into the seabed in the vicinity of a seep has been
observed; this flow pattern is difficult to understand from
non-convective mechanisms. Measurements of downward speeds
have been reported of 0.02–1.6 m yr� 1 in the vicinity of methane
vents in the Gulf of Mexico49 and of 0.1–0.5 m yr� 1 in Hydrate
Ridge, Cascadia40,50. These measurements may be compared with
a predicted downward velocity at the seafloor surrounding the
seep of B3.1 m yr� 1 for the osmotic flow, but only 0.38 m yr� 1

for the buoyant case, so the faster downward flows, at least,
should be owing to osmosis.

Our prediction of localized venting driven by osmosis is
consistent with observations of seep regions in the Gulf of Mexico
involving cold and dense saline effluent, where buoyancy cannot
drive the flow51–53.

There is at present just one measurement of flow rates in a mud
volcano conduit, of 400 km yr� 1 at a conduit of the Håkon
Mosby mud volcano with radius 0.2 m (Mud volcano II (ref. 47);
the other mud volcano measurement we plot, Mud volcano I
(ref. 48), corresponds not to a conduit, but to flow through a
porous medium, as at a seep). This conduit flow measurement is
compatible with our theoretical estimate for a mud volcano that
predicts that the exit speed in a main conduit will be increased in
proportion to the total lateral area of the network of conduits.
Given a tiny volume fraction of 0.00001% of the porous medium
forming feeder conduits for a main conduit, we predict such
high-speed flows can be driven by either buoyancy or osmosis.
This is a measure of how much more efficient than a seep a mud
volcano is at pumping seawater.

Discussion
Our model shows that recirculation of seawater within the seabed
is rather greater and deeper than previously understood. While
earlier models have considered convection of seawater in shallow
layers of sediment of only a few metres depth34,38,39, here we have
deduced that convection can extend to the depth of the source of
buoyancy or dissolved methane. Such flow can cool the sediment
column by up to 1.3� 107 J m� 2 yr� 1 per unit temperature
difference between the seawater and the seep effluent.
Measurements of outflow temperatures at seeps indicate a
temperature elevated by 0–5 K relative to seawater2. So we
predict a maximum heat flux of B6� 107 J m� 2 yr� 1 associated
with convection in the sediment. We, therefore, envisage that
recirculation of seawater to hundreds of metres depth will be
problematic under conditions of climatic warming, as buried
methane hydrates below seep and mud-volcano sites will be much
more susceptible to destabilization than has been recognized up
to now.

Previous studies have estimated a timescale of millennia for
conduction of heat from warmer seawater at the seafloor to affect
the base of a hydrate layer at a few hundred metres depth and
promote melting3–5. However, under enhanced heat transport by
both buoyant and osmotic convection, we predict that the melting
of hydrates could begin within timescales as short as 30 years.
Such accelerated heat transport by convection will also increase
the rate of melting of some hydrates by a factor of up to 100

compared with the heat conduction scenario previously studied
(see Methods). The release of methane to the hydrosphere may
thus occur much sooner and faster than previously thought. Such
a continuous intense release of methane at the seabed will form a
plume of rising methane bubbles that may reach the upper water
column47,54,55.

It is challenging to assess what portion of the global inventory
of methane hydrate, estimated as 1.8� 103 Gt C (ref. 56), might
be susceptible to warming by the mechanism described here. For
this, we need to combine oceanographic predictions for the
warming of the upper few hundred metres of the ocean with
hydrate stability studies. It is thought57 that marine deepwaters
on upper continental slopes (up to a few hundred metres depth),
at the edge of the gas hydrate stability zone, encompass some
3.5% of the global hydrate inventory. It is also known4 that
shallow waters down to a few hundreds of metres respond to
climate change in roughly 10 years, while deep waters at 1–3 km
take longer, 100–1000 years. Based on these estimates, a
maximum of about 3.5% of the global hydrate inventory
(B60 Gt C) might be susceptible to warming by the mechanism
proposed here within a timescale of a few decades.

Methods
Notational note. The subscripts es, lst, lss, so and ss denote an extended source of
buoyancy, a thermal margin plume, a solutal margin plume, a seep driven by
osmosis and a seep driven by buoyancy, respectively. The subscripts ‘single’ and
‘network’ refer to a single conduit and a network of conduits in a mud volcano.

Uniform flow above an extended buoyancy source. A buoyancy-viscosity bal-
ance suggests a velocity ves � kDrg=m driven by the density difference between the
surroundings and the less dense liquid Dr. For a thermally driven flow Dr¼
rbtDT¼ 2 kg m� 3 for a temperature difference DT¼ 10 K (ref. 37) and
r¼ 103 kg m� 3. For a solutal source of buoyancy, the maximum density difference
driving the flow can be estimated to be smaller than Dr¼ 10 kg m� 3 taking into
account salinity differences34 and heat absorbed during methane hydrate
dissociation. For the properties of water, we take the thermal expansion coefficient
bt¼ 2� 10� 4 K� 1 and the viscosity m¼ 1.8� 10� 3 kg m� 1 s� 1.

Thermal margin plume. The vertical velocity at the centreline of a plume at a
distance H above the source is vlstE(kbtgFt/(mCp))2/3(3/(32kmH))1/3 and the plume
half-width is blstE(48mCpk2

mH2/(kbtgFt))1/3 (ref. 58). The thermal diffusion
coefficient of the saturated sediment is km¼ 10� 7 m2 s� 1; g is the acceleration of
gravity. The specific heat capacity of water is Cp¼ 4.2� 103 J kg� 1 K� 1.

Solutal margin plume. The plume velocity is vlssE(kDrgQ0/m)2/3(3/(32DsH))1/3

and the plume half-width is blssE(48mD2
s H2/(kDrgQ0))1/3. We take the effective

diffusivity of the solute causing the density difference, for example, salt, in the
porous medium as Ds¼ 10� 9 m2 s� 1, and Dr¼ 10 kg m� 3 as before.

Pumping in a seep. For pumping driven by osmosis, the porous medium behaves
as only partially permeable to methane because a fraction of methane molecules of
up to 0.6 are adsorbed22,30 and later released by the sediment. This adsorption
creates a change of momentum in the methane molecules that leads to a reflection
coefficient of s0o0.6 (refs 17,19,22,59). For the pressure and temperature
conditions in the seep data in Fig. 2, the solubility of methane in water is in the
range c0B0.10–0.23 M (ref. 60); we consider an intermediate value c0¼ 0.156 M.
A conservative estimate for the contribution of methane to osmosis is, therefore,
s0c0¼ 0.008 M, assuming that B5% of methane-molecule collisions with the
sediment result in adsorption and later desorption21,23,24. Seawater of course
contains another solute, sodium chloride (other solutes found in seep water have
much lower concentrations44,45); we may neglect the osmotic effect of sodium and
chloride ions because size-restriction effects in the sediment are very small for the
permeabilities considered here9,28. The semipermeability of the sediment to
methane creates an osmotic pressure difference between the seawater and the
methane-rich fluid released at depth of p0¼s0c0RT; here, R is the universal gas
constant and TB283 K is the temperature. A balance of osmotic and viscous forces
gives the scale for the flow rate of seawater drawn into the osmotic plume
Qso� 2pakp0=m. This flow will be channelled upwards towards the seafloor in a
plume within the high permeability sediment column below the seep. Consistent
with seafloor observations, we assume a radius of a¼ 2 m for this column2,40. The
vertical velocity in the plume is vso �Qso= pa2ð Þ. Numerical simulations neglecting
the resistance in the upward flow compared with the downward and radial flow
confirm this scaling, with a coefficient of 1.4 for seeps spaced at 50 m and a dilution
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ratio of the original source fluid of 20. We estimate a vertical effluent speed
vsoB4.7� 102 m yr� 1. The vertical downward speed at the seafloor surrounding
the seep is of the order of uso¼ 3.1 m yr� 1.

For pumping driven by buoyancy, the pressure difference between the seawater
and the hot or fresh fluid released at depth is p0¼DrgH. A balance of buoyancy
and viscous forces gives the scale for the flow rate of seawater drawn into the
buoyant plume Qss � 2pakp0=m. Numerical simulations neglecting the resistance in
the upward flow compared with the downward and radial flow confirm this scaling,
with a coefficient of 0.35 for seeps spaced at 50 m and a dilution ratio of the original
source fluid of 20. We estimate a vertical effluent speed vssB59 m yr� 1. The
vertical downward speed at the seafloor surrounding the seep is of the order of
uss¼ 0.38 m yr� 1.

Pumping in a mud volcano. A similar balance of buoyant/osmotic and viscous
forces applies as for a seep, with the plume radius a replaced by the conduit radius,
Rc. Thus, for a single vertical conduit, the effluent speed vsingle �Qso= pR2

c

� �
is to

leading order independent of the conduit length. For a network of conduits, with
the simplifying assumptions that one conduit domain has no impact on the others
and the viscous resistance to flow in the network is small compared with that in the
porous medium, the flow rate is proportional to the sum of the lateral surface areas
Ai of all the individual conduits; the exit velocity in the main conduit is then
vnetwork¼ vsingle

P
Ai/Asingle. The exit speed thus depends on lengths and radii of

the feeder conduits extending about the main conduit. For a single vertical conduit
of radius Rc¼ 0.2 m, we predict a maximum speed of vsingleB3� 103 m yr� 1.
vnetwork can be several orders of magnitude larger than this: to achieve a
hundredfold increase to vnetworkB3� 105 m yr� 1, for example, the lateral surface
area of conduits needed is

P
Ai � 100� 103 � 0:2� 104 m2, for H¼ 103 m and

Rc¼ 0.2 m. Assuming feeder-conduit radii rcB0.01 m, the corresponding volume
of these conduits is B100 m3. The recirculation volume of the porous medium is
B103� (103)2¼ 109 m3. So, a hundredfold increase in the exit speed requires just a
fraction of 10� 7 of the recirculation volume of the porous medium to be conduits.

Propagation of a thermal signal from the seafloor. The time of travel of a
thermal signal from the seafloor to the base of the hydrate layer (where melting
occurs) is approximately given by H/u, where H is the distance from the seafloor to
the base of the hydrate layer and u is the superficial or Darcy vertical speed of the
seawater moving downward in the sediment surrounding the seep or mud volcano.
u was estimated from the scaling expressions above and confirmed by numerical
simulation.

The ratio of the heat flux associated with convection of seawater downward into
the sediment and that associated with conduction is the Péclet number Pe¼ uH/k.
We find PeB100 for the osmotic seep.

Data availability statement. The authors declare that the data supporting the
findings of this study are available within the article.
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