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ABSTRACT Until recently, the de facto method for short-read-based amplicon recon-
struction was a sequence similarity threshold approach (operational taxonomic units [OTUs]).
This has changed with the amplicon sequence variant (ASV) method where distributions are
fitted to abundance profiles of individual genes using a noise-error model. While OTU-based
approaches are still useful for 16S rRNA/18S rRNA genes, where thresholds of 97% to 99%
are used, their use for functional genes is still debatable as there is no consensus on cluster-
ing thresholds. Here, we compare OTU- and ASV-based reconstruction approaches and tax-
onomy assignment methods, the naive Bayesian classifier (NBC) and Bayesian lowest com-
mon ancestor (BLCA) algorithm, using a functional gene data set from the microbial
nitrogen-cycling community in the Brouage mudflat (France). A range of OTU similarity
thresholds and ASVs were used to compare amoA (ammonia-oxidizing archaea [AOA] and
ammonia-oxidizing bacteria [AOB]), nxrB, nirS, nirK, and nrfA communities between differing
sedimentary structures. Significant effects of the sedimentary structure on weighted UniFrac
(WUniFrac) distances were observed for AOA amoA when using ASVs, an OTU at a thresh-
old of 97% sequence identity (OTU-97%), and OTU-85%; AOB amoA when using OTU-85%;
and nirS when using ASV, OTU-90%, and OTU-85%. For AOB amoA, significant effects of
the sedimentary structures on UniFrac distances were observed when using OTU-97% but
not ASVs, and the inverse was found for nrfA. Interestingly, conclusions drawn for nirK and
nxrB were consistent between amplicon reconstruction methods. We also show that when
the sequences in the reference database are related to the environment in question, the
BLCA algorithm leads to more phylogenetically relevant classifications. However, when the
reference database contains sequences more dissimilar to the ones retrieved, the NBC
obtains more information.

IMPORTANCE Several analysis pipelines are available to microbial ecologists to process
amplicon sequencing data, yet to date, there is no consensus as to the most appropri-
ate method, and it becomes more difficult for genes that encode a specific function
(functional genes). Standardized approaches need to be adopted to increase the reliability
and reproducibility of environmental amplicon-sequencing-based data sets. In this paper,
we argue that the recently developed ASV approach offers a better opportunity to achieve
such standardization than OTUs for functional genes. We also propose a comprehen-
sive framework for quality filtering of the sequencing reads based on protein sequence
verification.

KEYWORDS amplicon sequencing, functional genes, nitrogen cycle, amplicon
sequence variant, coastal sediments

PCR combined with high-throughput sequencing (HTS) has revolutionized our understand-
ing of microbial ecology (1). Amplicon sequencing of the 16S rRNA gene as a molecular

marker for diversity is now routine (2). This approach can also be applied to genes and/or tran-
scripts encoding enzymes for specific functions (functional genes). Functional genes involved
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in cell division and maintenance (housekeeping genes) can be used as an alternative to the
16S rRNA gene for diversity estimation (3, 4) to circumvent the issue of intragenomic variation
in the 16S rRNA gene (5). Biogeochemical cycles can also be targeted via key functional genes
involved in the processes of interest, e.g., the nitrogen cycle (6–11), the sulfur cycle (12, 13),
and the methane cycle (14). The same is true for bioremediation (15, 16) and antibiotic resist-
ance (17), to mention but a few possibilities. By targeting functional genes, we can start to
unravel the functional potential of microbial communities, and if transcripts are targeted,
actively transcribing organisms are revealed, a step closer to identifying the organisms driving
the target processes.

Irrespective of the gene target, before hypothesis testing and ecological meaning can be
inferred from amplicon data sets, the sequences first have to be grouped into taxonomically
meaningful “units” to allow downstream analysis. There are two approaches for grouping
amplicon data for downstream analysis: operational taxonomic units (OTUs) and amplicon
sequence variants (ASVs). OTUs group sequences into a consensus sequence (the OTU) at a
defined sequence similarity threshold. For the 16S rRNA gene, a threshold of 97% sequence
identity is generally used to define OTUs to the species level, although this value has been
challenged (18). As functional genes may have been subject to significant horizontal gene
transfer and may be present in poly- or monophyletic groups, the relationship between per-
cent identity and taxonomic delimitation is not clear and is often unknown. As a result, in
the literature, different similarity thresholds have been used to construct OTUs for the same
functional gene target (Table 1), with an OTU at a threshold of 97% sequence identity (OTU-
97%) being widely used, often without a clear rationale. This variation in OTU selection crite-
ria makes it difficult to select a meaningful value and creates limitations when comparing
data among studies. This is important as uncertainties in selecting the appropriate taxo-
nomic cutoff could lead to different interpretations of findings underpinning our under-
standing of larger-scale ecological processes and mechanisms structuring microbial com-
munities and their activities (19). For the 16S rRNA gene, the choice of OTU similarity
threshold used can significantly influence microbial diversity patterns (20, 21), and we
hypothesize that this is also true for functional genes. In fact, some authors suggested that
OTU similarity thresholds should be adjusted depending on the clustering algorithm and
data complexity when phylogenetically divergent groups are present within the same com-
munity. This is because a single threshold for species delimitation is often not relevant due
to the variable evolutionary rates of the 16S rRNA gene across lineages (22, 23). Indeed, the
use of strict thresholds has been shown to result in phylogenetically inconsistent (para- or
polyphyletic) OTUs (24, 25).

After selection of the sequence similarity threshold, further choices need to be made.
OTU clustering can be done using a closed-reference approach (22, 26) or by de novo as-
sembly (22, 26). With the latter method, reads are clustered into OTUs without compari-
son to a preexisting database. This helps with the discovery of novel OTUs that are dis-
similar to known sequences. However, the absence of comparison to known references
makes de novo OTUs dataset-dependent, meaning that de novo OTUs from two different
studies cannot be directly compared. On the other hand, the former approach makes it
easier to compare OTUs between studies but limits the possibilities of discovering new
sequences (26). The open-reference OTU-picking method combines the closed-reference

TABLE 1 Range of OTU similarity thresholds currently used in the literature for nitrogen-cycling genes to construct OTUs

Gene Primer pair

Reference(s) reporting similarity threshold of:

97% 95% 90% 85% 83% 82%
AOB amoA (bacterial ammonia monooxygenase) BacamoA-1F/BacamoA-2R 7, 8, 72–76 77–79 80 81, 82
AOA amoA (archaeal ammonia monooxygenase) Arch-amoWAF/Arch-amoWAR 7, 8, 73, 74, 76, 83, 84 77, 79, 81 85 80–82
nirK (nitrate reductase) nirKFlaCu/nirKR3Cu 86–88 79 89 90
nirS (nitrate reductase) nirS1F/nirS3R 87, 88 91 89 90
nrfA (nitrate reductase to ammonia) nrfAF2aw/nrfAR1 92
nxrB (nitrite oxidase) nxrB169f/nxrB638r 93
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and de novo methods: reads are clustered against a reference database, and those that
do not match reference sequences are clustered de novo. Even though this seems a good
compromise between closed-reference and de novo methods, problems such as inflated
richness and exaggerated between-sample diversity can still occur (27).

With the ASV approach (26), an error model is generated for the sequencing run, and reads
are clustered in order to map this error model. The two most commonly used pipelines for
ASV reconstruction are DADA2 (28), in which both forward and reverse reads are denoised
and merged, and Deblur (29), in which forward reads can be used on their own to reconstruct
ASVs. This is advantageous when amplicons are too long to be merged properly or when the
quality of the reverse reads is poor (30). The ASV approach is appealing as it no longer groups
amplicons based on a consensus sequence but instead resolves sequences with as little as a
single nucleotide variation. Consequently, the ASV method does not require reference data-
bases and is able to detect new sequences, and ASVs from different data sets can be directly
compared (26). The ASV method has been compared to the OTU approach using phyloge-
netic markers (the 16S rRNA gene, the 18S rRNA gene, and the fungal internal transcribed
spacer [ITS] region), and overall, the results indicate better accuracy (31–33) and sensitivity (34)
of the former when tested against mock communities. The impact that this has on large-scale
ecological patterns still needs to be fully understood as some research suggests that the bio-
logical conclusions drawn using either method, based on phylogenetic markers, are largely
consistent (32, 35), while others suggest that HTS processing method (OTU versus ASV) can
affect the interpretation of differentially abundant taxa between treatments (36). Nonetheless,
as the use of ASVs does not rely on a user-defined threshold that may not hold biological
meaning, this approach should increase the phylogenetic resolution of functional genes and,
importantly, facilitate comparison of data among studies, as they should be able to segregate
sequences on as little as one nucleotide variant. Consequently, ASVs are a promising approach
for functional gene amplicon studies (13). However, how the use of ASVs versus OTUs impacts
ecological interpretations based on functional genes is unclear.

After selecting the appropriate amplicon reconstruction method (ASVs or OTUs), the next
immediate challenge is assigning taxonomy by matching against a reference database. For
the 16Sr RNA gene, several curated databases are available (e.g., Silva, GreenGenes, and Midas)
and are routinely used. For most functional genes, no such databases are available, and the
reference sequences used to assign taxonomy often vary among studies. The most popular
approaches for assigning taxonomy rely on the pattern recognition of overlapping “words” of
length k (generally k = 8), called k-mers. The frequency of matching k-mers between the query
and reference sequences is used as a measure of sequence similarity: a higher frequency of
shared k-mers indicates higher similarity between the query and reference sequences. This
approach is fast, objective, and not limited by the uncertainties associated with methods based
on evolutionary models and alignments (37, 38). This approach is usually implemented as a
classifier, such as the commonly used naive Bayesian classifier (NBC). One main limitation of
this approach is that it uses the assumption that the actual position of the k-mers in the
sequence is not important, whereas in reality, two sequences with the same k-mers but in dif-
ferent orders are different. Furthermore, the optimal choice of length for the k-mer might vary
depending on the target gene or the region within the same gene (39). Another approach is
the Bayesian lowest common ancestor (BLCA) algorithm (39), where the query sequence is
subjected to a BLAST search against a reference database(s) and significant “hits” are recorded.
The taxonomy of the query sequence is assigned as the lowest common ancestor between
these hits. For example, if a query sequence has significant matches to two Nitrosomonas euro-
paea reference sequences, the query sequence will be assigned to the species Nitrosomonas
europaea as it is the lowest common ancestor between the two hits. However, if a query
sequence has two different hits, Nitrosomonas europaea and Nitrosomonas oligotropha, the
query sequence will be assigned to the genus Nitrosomonas. By considering hit results from
multiple databases, the BLCA approach is able to provide probabilistic-based confidence val-
ues at each taxonomic level of this assignment. Previously, the BLCA method was shown to
provide better species-level resolution than the NBC for 16S rRNA gene sequences (39, 40).
How they compare for functional genes has yet to be determined.
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The aim of this study is to compare the effects of amplicon reconstruction approaches,
OTUs (at a range of sequence similarity values) versus ASVs, and taxonomic assignment
methods, NBC versus BLCA, on a suite of functional genes. We do this to determine if diver-
sity measures and subsequent ecological interpretations are affected by these choices. We
hypothesize that both alpha and beta diversity measures will differ depending on the ampli-
con-processing methods used. To do this, we examine the nitrogen cycle in marine sedi-
ments of Marennes-Oléron Bay on the French Atlantic coast. The middle part of the bay, the
Brouage mudflat, is characterized by the presence of flow-parallel sediment structures con-
sisting of crests (ridges) and troughs (runnels). These side-by-side physical structures have
been shown to significantly affect the nitrification rates (higher in runnels) (41, 42). We ask if
the physical structure of the ridges and runnels results in differences in the diversity of the
nitrogen-cycling community present. Different pathways of the nitrogen cycle are targeted
via genes encoding key enzymes. Specifically, nitrification, the oxidation of ammonia to
nitrate via nitrite, is targeted via subunit A of ammonia monooxygenase (amoA) and the
beta subunit of nitrite oxidoreductase (nxrB); denitrification, the sequential reduction of
nitrate to dinitrogen gas, is targeted via the nitrite reductase genes nirS and nirK; and dissim-
ilatory nitrate reduction to ammonia (DNRA) is targeted via the cytochrome c nitrite reduc-
tase gene nrfA.

RESULTS
Conversion of raw reads to OTUs/ASVs. For all genes except nrfA and amoA from

ammonia-oxidizing archaea (AOA amoA), there was a high percentage (;70% to ;95%) of
reads converted from raw reads to OTUs/ASVs. The use of OTUs generally resulted in a
higher percentage of reads being retained for amoA from ammonia-oxidizing bacteria (AOB
amoA) (80.57% to 84.74%) than the use of ASVs (79.61%). An opposite trend was observed
for nxrB (87.03% for ASVs versus 77.55% for OTUs), nirK (95.33% for ASVs versus 86.41% to
93.45% for OTUs), and nirS (90.92% for ASVs versus 77.76% to 78.98% for OTUs). For AOA
amoA and nrfA, low percentages of reads were retained when using OTUs (32.86% for nrfA
and 14.50% to 30.26% for AOA amoA), whereas the ASV method allowed a good conversion
of raw reads (62.75% for nrfA and 94.43% for AOA amoA) (Table 2).

OTU/ASV quality check. A quality check based on translated OTU/ASV sequences
was performed to ensure that only high-quality reads were retained for downstream analyses.
First, amino acid (AA) sequences containing stop codons were deleted. Next, AA sequences
were sorted depending on their sizes. Those shorter or longer than the expected size were
subjected to a BLAST analysis using BLASTp and were retained only if they matched the
expected enzyme (Fig. 1). A high number of sequences were found to either contain stop
codons or not translate to the correct protein (e.g., for AOB amoA, 57.8% to 94.70% of the
sequences did not pass the quality-filtering step). For all genes tested, even though the
absolute number of error-prone sequences increased, their proportion decreased when
using ASVs compared to OTUs and increased as the percent similarity decreased for OTU
construction (Table 2). These error-prone sequences, despite being numerous, represented
only a small fraction of the total abundance. Indeed, between;90% and;99% of the reads
that passed the processing steps were retained after the quality-filtering step.

As shown in Fig. S1 in the supplemental material, there was an overlap between the sizes
of the correct and error-prone AA sequences. A simple gating system based on protein size
could therefore not be used to automatically remove the error-prone sequences. A manual
check based on a BLAST analysis of AA sequences that are shorter or longer than the expected
length therefore remains the best option for verification. The only exception was for AOB
amoA when using ASVs, where only the AA sequences with exactly the expected length
were found to be correct proteins.

Effects of OTU thresholds and ASV selection on alpha diversity and sequence cover-
age. (i) Alpha diversity indices. Richness, Simpson, and Shannon indices were calculated
based on the rarefied abundance tables. To allow comparison between amplicon-processing
methods, abundance tables were rarefied to 10,000 reads. Samples that contained fewer
than 10,000 reads were not included in the analysis. In general, an increase in the percent
identity used to generate OTUs resulted in an increase in the values of alpha diversity indices
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(Fig. 2). A similar increase was generally observed when using ASVs instead of OTUs. The
increases in alpha diversity indices between OTUs and ASVs were particularly strong for nirS
and nrfA (all indices) and AOB amoA (richness). For AOA amoA, there were slight decreases
in Shannon and Simpson indices from OTU-97% to ASVs for runnel samples. Interestingly,
the use of OTUs (97%) and ASVs could lead to different interpretations as to which of the
two sedimentary structures was the most diverse. When using OTU-97%, ridges had higher
Shannon (P , 0.05) and Simpson (0.01 , P , 0.05) index values than runnels, and the
inverse was found when using ASVs (0.01 , P , 0.05 for Shannon and P , 0.001 for
Simpson). A similar trend was observed for nrfA, with higher richness (0.01 , P , 0.05),
Shannon (P , 0.001), and Simpson (0.01 , P , 0.05) values in ridges than in runnels
when using OTU-97% and higher richness (P , 0.05), Shannon (P , 0.05), and Simpson
(P, 0.05) values in runnels when using ASVs (Fig. 2) (Table S4).

(ii) Rarefaction curves. To determine if the sequencing effort had been sufficient
to capture the full OTU/ASV diversity, rarefaction curves were drawn for all genes using
the OTU and ASV abundance tables. When sequencing reads were clustered using the
OTU approach, the rarefaction curves generally reached a quasiplateau phase,

FIG 1 OTU/ASV quality check workflow (example of the bacterial amoA gene). Red asterisks indicate stop codons. Fw, forward; Rev, reverse; ORF, open reading frame.
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indicating that the observed richness was close to its maximum theoretical value. For
nirK and nxrB, this plateau phase was not reached, indicating that more OTUs would
have been recovered with greater sequencing depth. Rarefaction curves obtained from ASV
abundance tables were generally farther from reaching the plateau than curves obtained
using the OTU approach (Fig. 3).

Effect of OTU thresholds and ASVs on beta diversity. (i) Dissimilatory distances
between samples. To determine the effect of the amplicon data analysis method on

FIG 2 Effects of different OTU sequence similarity thresholds versus ASVs on alpha diversity results. Results of analysis of variance (ANOVA) for the effect of the
clustering method on richness, Simpson, and Shannon indices are reported at the top of each plot for each gene. *, P , 0.05; **, 0.01 . P . 0.001; ***, P , 0.001.
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FIG 3 Rarefaction curves in ridges and runnels using different OTU sequence similarity thresholds and ASVs.
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the dissimilarity distance between samples, Mantel correlations were calculated among dis-
tance matrices obtained using Bray-Curtis (BC), UniFrac (U), and weighted UniFrac (WUniFrac)
metrics. A strong effect of the approach used is seen, as reflected by Mantel correlations differ-
ent from a value of 1. For all genes tested, low correlations between distance matrices
obtained with ASVs versus OTUs were observed (;0.2 or lower [P. 0.5]). In contrast, the cor-
relations between distance matrices obtained with OTUs at different similarity thresholds were
generally high (.0.8 [P , 0.01]), except for the UniFrac distance matrices for AOB amoA and
nirS, where lower correlation values were generally observed (Fig. 4).

(ii) Differences in communities between ridges and runnels. To determine whether
the method used to process sequencing reads could significantly affect the beta diversity
results, Bray-Curtis, UniFrac, and WUniFrac distances between communities in the two sedi-
mentary structures (ridges and runnels) were calculated, and their significance was tested
using permutational multivariate analysis of variance (PERMANOVA). The effect of the clus-
tering method was different depending on the gene of interest (Fig. 5). For AOA amoA, sig-
nificant differences in WUniFrac distances between ridges and runnels were seen when
reads were clustered using the ASVs or OTUs at 97% and 85% similarity thresholds but not
when using OTUs at 95% and 90% similarity thresholds. For nirS, significant differences were
observed for WUniFrac when using ASVs, OTU-82%, and OTU-90% but not when using
OTU-95% and OTU-97%. When considering UniFrac distances, significant differences were
observed for nrfA and nirS communities when using ASVs but not when using OTU-97%,
and the inverse was found for AOB amoA. For nirK and nxrB, the different clustering meth-
ods were more consistent, with no significant effect of the data analysis pipeline on beta di-
versity (Fig. 5). To summarize, the clustering method used for amplicons had a significant
effect on beta diversity for some genes, while other were less affected.

To better understand the effect of the HTS data processing method on the phylogeny of
representative sequences, phylogenetic trees were drawn using representative OTUs/ASVs
along with full-length or quasi-full-length sequences downloaded from the NCBI or Fungene

FIG 4 Effects of different OTU sequence similarity thresholds or ASV amplicon reconstruction approaches on phylogenetic
distances. Distance matrices were calculated using Bray-Curtis (BC), UniFrac (U), and weighted UniFrac (WU) metrics at different
OTU similarity thresholds and ASVs for each gene. Pairwise correlations between matrices, as indicated on the x axis, were
calculated using a Mantel test. The P values of the tests are reported at the top of the bar plots. �, 0.05 , P , 0.1; *, P , 0.05;
**, 0.01 . P . 0.001; ***, P , 0.001.
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database. Tree dissimilarities increased as the number of representative sequences in the trees
increased following natural logarithm regression [Robinson-Foulds distances, RF.distance =
a � ln(number of sequences) 1 b], indicating a strong effect of the HTS data processing
method on the phylogeny of representative sequences (Fig. S2).

Effects of OTU thresholds and ASVs on canonical analyses. Canonical analyses,
e.g., canonical correspondence analysis (CCA), are useful approaches to analyze, detect,
and visualize interactions between microbial communities and environmental parameters.
CCA measures the association between an explanatory table (the physicochemical param-
eters) and a response table (the abundance table). Previously, it was shown that, in some
cases, the amplicon reconstruction method affects the composition of the abundance
tables, as revealed by Mantel correlations between Bray-Curtis distance matrices obtained
from ASVs or OTUs at different similarity thresholds of ,1 (Fig. 4). These changes in the
abundance tables can be expected to also change the results of CCA. To test this, CCA was
done using the abundance tables obtained from the different amplicon reconstruction
methods (range of OTU sequence similarity thresholds and ASVs) using the same physico-
chemical data table. As shown in Table 3, the choice of amplicon processing method strongly
impacted the results, except for nxrB, where no significant drivers were found regardless of
the method used.

For ammonia oxidizers, when using ASVs, chlorophyll a was a weak driver (0.1 ,

P , 0.05) of AOB communities, and sediment grain size (SGS) was a significant driver
of AOA. When using OTUs, ammonia and chlorophyll a became significant drivers of
AOB at a 97% similarity threshold, while SGS became a significant driver for lower simi-
larity thresholds. For AOA, pH and SGS were significant drivers at a 95% similarity
threshold. SGS remained significant at 90%, while pH did not.

For the nitrite-oxidizing community, again, differences were seen depending on the
amplicon reconstruction approach. Total organic carbon (TOC) was found to be a driver for
nirK, except for OTU-90%, while SGS was a significant driver only when using OTU-97% and
OTU-83%. For nirS, ammonia was a strong driver (P , 0.01) only when using ASVs. Total dis-
solved nitrogen (TDN) and chlorophyll a were significant drivers only when using ASVs and
OTU-82%, respectively. For nrfA, ammonia was also a strong driver (P, 0.01) only when using
ASVs, while nitrate and chlorophyll awere significant when using OTU-97%.

NBC versus BLCA for taxonomic classification. For the majority of genes studied
here, neither the NBC nor the BLCA method performed well, with the majority of ASVs

FIG 5 Effect of the amplicon reconstruction method on beta diversity results. The reported P values
show the effect of the ridge/runnel structure on the community composition determined by the sequencing
of six different nitrogen cycle genes using three different dissimilarity distances, indicated by the color of the
symbols, as explained in the key. The horizontal dashed red line represents the P value threshold for
significance (0.05). The size of the points represents the R2 value, i.e., the percentage of variance in the Bray-
Curtis (BC), UniFrac (U), and weighted UniFrac (WU) metrics explained by the ridge/runnel structures.
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being unassigned at the species level when using the Fungene database. This is likely an in-
dication of the lack of environmental sequences with species-level-defined taxonomy in this
database. The only exception was for nrfA, with the NBC approach resulting in only 17.27%
of ASVs being unassigned, versus the BLCA method, in which 100% were unassigned. Both
NBC and BLCA performed better when a custom database was used to assign taxonomy
(AOA and AOB amoA). In this case, BLCA performed slightly better than NBC for AOA amoA,
with 72.89% and 90.85% of ASVs being unassigned with BLCA and NBC, respectively.
Inversely, for AOB amoA, NBC performed slightly better than BLCA, with 0.01% and 6.68% of
ASVs being unassigned with NBC and BLCA, respectively (Table 4). To determine what
caused these differences for AOB amoA, a phylogenetic tree was constructed with AOB
amoA ASVs and sequences from known AOB isolates downloaded from the NBCI database.
The main differences in the taxonomic assignments for AOB amoA ASVs were for some
sequences assigned as Nitrosomonas aestuarii with NBC that were unassigned using BLCA
(Fig. 6).

DISCUSSION

The aim of this study was to evaluate the effect of the selection of different OTU similarity
thresholds versus the ASV approach for amplicon sequence data processing. This was tested
using a suite of functional genes targeting different pathways of the nitrogen cycle. We
determined the effect that these choices had on alpha and beta diversity values and sub-
sequent CCA. We also examined the effect of the approach taken for the taxonomic
assignment of functional genes using the nitrogen cycle communities from ridges
and runnels of the Montportail-Brouage mudflat as a case study.

TABLE 3 Canonical correspondence analysisa

Pipeline

Significance

NH3 NO2
2 NO3

2 ChlA pH SGS TOC DOC TDN
AOB ASV �
AOB 97 � �
AOB 95 � � * *
AOB 90 *
AOB 85 �

AOA ASV *
AOA 97 * *
AOA 95 *
AOA 90 **
AOA 85 *

nirK ASV *
nirK 97 * *
nirK 95 � *
nirK 90 �
nirK 83 � ** ** �

nirS ASV *** *
nirS 97
nirS 95
nirS 90 �
nirS 82 *

nxrB ASV
nxrB 97

nrfA ASV ***
nrfA 97 � * * �
aEmpty cells indicate that the physicochemical parameter is not a driver of the community. �, 0.1. P. 0.05; *,
P, 0.05; **, 0.01. P. 0.001; ***, P, 0.001. ChlA, chlorophyll a; SGS, sediment grain size (percent,63mm);
TOC, total organic carbon; DOC, dissolved organic carbon; TDN, total dissolved nitrogen; Pipeline' indicates the
target gene and the HTS method. e.g. AOB 97, AOB OTU at a threshold of 97% sequence identity.
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The choice of amplicon reconstruction method had a significant effect on biological
observations (Fig. 2, 4, and 5). As a result, the conclusions of this study based on OTUs
(with different similarity thresholds) or ASVs lead to different ecological conclusions.
Indeed, when comparing WUniFrac distances using the ASV denoising approach, we
conclude that there was a significant effect of the ridge/runnel sedimentary structures
on AOA amoA, nirS, and nrfA. On the other hand, we conclude that there was a non-
significant effect on AOA amoA with OTU-95% and OTU-90% and nirS with OTU-97%
and OTU-95%. For AOB amoA, using the ASV method, we conclude that there was a
nonsignificant effect of the ridge/runnel structures and a significant effect with OTU-
85% (WUniFrac distances) and OTU-97% (UniFrac distances). To further understand the
effect of the choice of ASVs versus OTUs on phylogenetic resolution, phylogenetic
trees were constructed from ASVs and OTUs. For all target genes, an increase in dissim-
ilarity was observed as the number of ASVs/OTUs compared increased, indicating that
the choice of amplicon reconstruction method modifies the phylogeny of representa-
tive sequences (see Fig. S2 in the supplemental material).

The results from this study show the strong effect that the processing method has
on the interpretation and biological understanding of sequencing data. This further
illustrates the need for a standardized protocol for amplicon data processing to facili-
tate comparisons of data between studies. To date, there is no consensus as to which
threshold to use to construct OTUs for the same gene amplified with the same primers
(Table 1), and we therefore argue that ASVs, which do not require user-defined similar-
ity thresholds, offer a better chance to achieve such standardization. The ASV method
also generally resulted in a higher percentage of raw reads retained than with the OTU
method, especially for AOA amoA and nrfA. Previous studies have shown that retaining
more reads after amplicon processing improves the accuracy of microbiome analyses,
especially for low-abundance species (43). This further strengthens our recommenda-
tion to use ASVs for functional gene HTS data processing. We further showed that the
choice of amplicon reconstruction method affects the outcomes of multivariate analyses,
which are routinely used to inform associations between biological assemblages and envi-
ronmental parameters. For example, research on nitrification in the environment often seeks
to determine the extent to which ammonia, pH, salinity, and temperature, etc., are significant
drivers of the niche differentiation between AOA and AOB (7–9, 44–51). This study clearly

TABLE 4 Performances of the NBC and BLCA methods for taxonomic assignment (ASVs)

Target
Taxonomic
method Database

% unassigned
species

AOB amoA NBC Fungene 100
Custom 0.01

BLCA Fungene 100
Custom 6.68

AOA amoA NBC Fungene 84.72
Custom 90.85

BLCA Fungene 100
Custom 72.89

nxrB NBC Fungene 78.92
BLCA 60.02

nirK NBC Fungene 99.91
BLCA 99.95

nirS NBC Fungene 100
BLCA 100

nrfA NBC Fungene 17.27
BLCA 100
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shows that the influence of environmental parameters on ammonia-oxidizing communities is
dependent on the amplicon reconstruction method used. A consensus standardized method
needs to be adopted in molecular microbial ecology to allowmetareviews of current literature
and the identification of ecological patterns that are not study-dependent (51, 52).

Other studies have reported that for 16S rRNA gene amplicon sequencing, ecological pat-
terns are robust to the choice of OTUs versus ASVs (32, 35, 52, 53). It could therefore be
hypothesized that the difference between the 16S rRNA gene as reported elsewhere and
functional genes is due to a resolution effect: when targeting a high-diversity gene such as
the 16S rRNA gene by amplicon sequencing, we obtain an overall picture of the microbial
community. Therefore, the use of OTUs (low resolution) or ASVs (high resolution) matters
less because we still see the overall trends in the bacterial community. However, when
investigating a phylogenetically tight group, we are already zoomed in on a small part of
that microbial community, which explains why we need a higher resolution, i.e., ASVs, to differ-
entiate each member of the community.

This study also provides a comparison between NBC and BLCA for the taxonomic assign-
ment of functional gene sequences. We found that the BLCA method performed better

FIG 6 NBC versus BLCA for the taxonomic assignment of AOB amoA ASVs. The taxonomy of representative sequences is indicated by the
color of the tips on the tree. Taxonomy assigned by NBC (Tax.NBC) and BLCA (Tax.BLCA) for each ASV is represented at the right of the
tree. The main point of disagreement between NBC and BLCA is shown by the red rectangle (see the zoomed-in view at the top left).
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than the NBC for AOA amoA when using a custom database, and the inverse was found for
AOB amoA due to some sequences being assigned to Nitrosomonas aestuarii when using
NBC and being unassigned when using BLCA. When comparing these sequences to known
representatives, it was observed that known AOB amoA sequences from Nitrosomonas aes-
tuarii were clustered, and the common ancestor for all N. aestuarii strains did not include
any of these ASVs. In fact, based on this tree, N. aestuarii and Nitrosomonas marina share an
ancestor that does not include any ASV sequences. Based on this phylogeny, these ASVs
could therefore not be members of the N. aestuarii group (Fig. 6). We conclude that for AOB
amoA, the BLCA method, despite resulting in a lower number of sequences identified to the
species level, resulted in a classification that made more sense from a phylogenetic point of
view. This result is coherent with previous research showing the superiority of BLCA versus
NBC for the taxonomic assignment of 16S rRNA gene reads (40). However, the BLCA method
performed much worse than NBC for the taxonomic assignment of nrfA sequences, with the
vast majority (98.8%) being unassigned sequences, versus 18.8% with NBC. This likely reflects
limitations in the database used rather than a problem with the BLCA method itself. Indeed,
the majority of nrfA sequences in the Fungene database are full-length sequences originat-
ing from cultured microorganisms, which likely differ from sequences retrieved from the
environment. To test this hypothesis, a phylogenetic tree was drawn using the top 200 nrfA
ASVs found in this study and sequences from the reference database (covering 220 different
genera). ASV sequences and representatives from the reference database generally formed
separate clusters in the tree (Fig. S3). As a result, it can be expected that when ASVs are sub-
jected to a BLAST search against the reference database, the significant matches do not
share an ancestor at the genus level, and as a result, the BLCA algorithm cannot assign tax-
onomy at the genus or species level. In summary, the results from this study indicate that
when the reference database is relevant to the sequences amplified (e.g., reference AOB
amoA sequences frommarine sediments to assign AOB amoA ASVs from marine sediments),
the BLCA method is the best approach. On the other hand, if the reference database con-
sists of sequences more dissimilar to the one retrieved from the environment, the NBC
method might be more advisable to obtain taxonomic information, but the accuracy of this
taxonomy might be low. ASVs have substantial merits for the analysis of functional genes
for which OTU similarity values are unknown, and in general, the field is shifting to ASV-
based resolution of amplicons (e.g., see reference 13). Yet the reference databases used to
taxonomically place the amplicons are still based on traditional threshold-based clustering
and should improve as more and more ASV-based studies become available in the future.

Currently, there is a shift in microbial ecology from OTUs to ASVs, and this approach has
now been widely adopted for 16S rRNA gene studies (33, 36, 54). The use of ASVs frees us
from using similarity thresholds and produces relevant sequences that can be directly com-
pared between studies; we suggest that it offers a pragmatic approach for the standardization
of functional gene amplicon sequencing data sets. However, Schloss (53) recently showed
that the use of ASVs for the 16S rRNA gene can artificially split bacterial genomes as copies of
the gene in a single genome typically do not share 100% similarity. Several functional genes
are also present in more than one copy in a genome, and their sequences can be slightly dif-
ferent (55, 56). In this case, a similar split will take place, and genes from the same organism
will be separated. Merging functional genes based on their amino acid (AA) sequence similar-
ity could be an option to reduce the risk of such artificial splits while conserving the functional
diversity within the data set. On the other hand, merging at the protein level might over-
shadow differences between species/strains where synonymous mutations have accumu-
lated. Furthermore, the chance of generating identical protein sequences will increase as the
length of the amplified region decreases. For short amplicons with low diversity, merging at
the protein level might therefore result in several species being merged. Further work is
needed to understand how functional diversity informs ecological processes.

Conclusion. Besides the obvious advantage of not relying on an arbitrary threshold,
the ASVmethod reflects the sequence diversity of a given functional gene in the environment.
This, alongside the ability to compare ASVs among different studies, makes ASVs more
practical than OTUs for functional gene analysis in environmental microbiology. Finally, we
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recommend the use of a relevant database that closely resembles the expected sequences
from the environment studied along with the BLCA method for taxonomic classification. If
such a database cannot be obtained, the NBC approach might yield better results.

MATERIALS ANDMETHODS
Similarity thresholds from the literature used to cluster OTUs for nitrogen cycle genes. Similarity

thresholds were selected based on a literature review for all amplicon-based nitrogen cycle studies. The
list provided in Table 1 is, to the best of our knowledge, an exhaustive representation of OTU similarity thresholds
used for the genes tested.

Sample collection, physicochemical measurements, PCR, and Illumina sequencing. Triplicate surface
mud cores (0 to 2 cm) were sampled in July 2016 from the Montportail-Brouage mudflat, France, from three
different ridges and runnels within 27.41 m2 (location 1 [L1], 45 54 31.50 N, 001 05 14.60 W; location 2 [L2],
45 54 31.70 N, 001 0 514.20 W; location 3 [L3], 45 54 31.50 N, 001 05 14.20 W) (57, 58) at the VASIREMI station
(Fig. 7). Sediment was homogenized, collected in sterile 5-mL syringes, flash-frozen, and stored at 280°C
until subsequent use. Biophysicochemical parameters were measured as described previously (58); detailed
procedures are provided in Text S1 in the supplemental material. DNA extraction was carried out using a
modification of a protocol developed previously (59), and PCR of the amoA (bacteria and archaea), nxrB,
nirSK, and nrfA genes was carried out as detailed in Table 5. Illumina amplicon sequencing library preparation
was carried out as described previously by Cholet et al. (10), using the Nextera XT index kit (Illumina, UK).
Products were pooled at equimolar concentrations and submitted to the Earlham Institute (Norwich, UK) for
Illumina MiSeq sequencing (300PE (Paired-End); 22 million reads/lane). Detailed protocols are provided in
Text S1.

FIG 7 Sediment sampling of ridges and runnels on the Brouage mudflat. (A) Map showing the location of the Brouage mudflat
on the Marennes-Oléron Bay on the French Atlantic coast. (B) Parallel ridge-runnel sedimentary structures that characterize the intertidal
mudflat. (C) Schematic of the sampling plan. Three ridges-runnels within ;25 m2 were sampled. For each ridge-runnel structure, replicate
(n = 3) sediment cores (2-cm depth) were taken from the ridges and runnels along an ;2-m transect.
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OTU and ASV construction. To construct OTUs, paired-end reads were trimmed and filtered with
Sickle v1.2 (60) using a sliding window and trimming regions where the average base quality was below
20. A 10-bp threshold was used to discard reads below this length. BayesHammer (60) and Spades v2.5.0
assembler were used to error correct paired-end reads, followed by pandaseq v2.4 with a minimum overlap
of 20 bp to assemble the forward and reverse reads into a single sequence. The choice of software was a
result of our recent work (61, 62) where it was shown that the above-described strategy of read trimming fol-
lowed by error correction and overlapping reads reduces the substitution rates significantly. After having
obtained the consensus sequences from each sample, the VSEARCH (v2.3.4) pipeline (all of these steps are
documented at https://github.com/torognes/vsearch/wiki/VSEARCH-pipeline) was used for OTU construction.
Reads were pooled from different samples, and barcodes were added to keep an account of the samples
that the reads originated from. Reads were then dereplicated and sorted by decreasing abundance, and sin-
gletons were discarded. In the next step, the reads were clustered based on different similarity thresholds
(97%, 95%, 90%, and 85% for AOA and AOB amoA; 97%, 95%, 90%, and 83% or 82% for nirK [83%] and nirS
[82%]; and 97% for nxrB and nrfA), followed by the removal of clusters that have chimeric models built from
more abundant reads (–uchime_denovo option in VSEARCH). A few chimeras may be missed, especially if
they have parents that are absent from the reads or are present at a very low abundance. Therefore, in the
next step, we used a reference-based chimera-filtering step (–uchime_ref option in VSEARCH) using the refer-
ence databases created as described above. The quality-filtered barcoded reads were matched against clean
OTUs with different similarity thresholds to generate OTU tables.

Amplicon sequence variants (ASVs) were constructed in R using the DADA2 package, according to the tutorial
at https://benjjneb.github.io/dada2/tutorial.html. First, quality trimming was done using filterAndTrim(). The
trimRight and trimLeft parameters, used to trim the 39 ends of reads and primer sequences, respectively, were
adjusted for each target gene, as listed in Table S1. The 39-end trimming length was adjusted to remove low-qual-
ity portions of the reads while still allowing a minimum of a 20-bp overlap between the forward and reverse reads,
except for AOB amoA and nxrB, where the minimum overlap was reduced to 4 bp. Error models were generated
against the filtered forward and reverse reads using the learnErrors() function. Reads were then dereplicated using
the derepFastq() function, and ASVs were inferred using the dada() function. Forward and reverse reads were
merged usingmergePairs(). A sequence table was generated using themakeSequenceTable() function, and chime-
ras were removed using the removeBimeraDenovo() function. A count table was then generated, and distances
between the representative ASVs were inferred by aligning the sequences using Mafft (63) and constructing a phy-
logenetic tree using FastTree (64). The R script used for ASV construction is available in Text S1.

Taxonomic assignment by NBC and BLCA. For each nitrogen cycle gene, reference sequences (nu-
cleotides) were downloaded from Fungene (http://fungene.cme.msu.edu/); for AOA and AOB amoA, a
second database was constructed by downloading the sequences corresponding to the different clus-
ters defined previously by Zhang et al. (8). Subsequently, the R rentrez package (65) was used to obtain
taxonomic information at different levels, generating a taxonomy file. The FASTA file and the corre-
sponding taxonomy file were formatted to work with Qiime (66).

To assign taxonomy to the representative ASVs, two different approaches were used: representative
ASVs were classified using a naive Bayesian classifier (NBC) k-mer classifier (Qiime feature classifier classify-sklearn)
or the Bayesian lowest common ancestor (BLCA) (39) against the reference databases, using default parameters. A
detailed protocol for BLCA can be found at https://github.com/qunfengdong/BLCA. Count tables, generated in the
previous step, and taxonomy tables were combined to generate biom files using Qiime (66) (https://qiime2.org)
(biom add-metadata), and the phyloseq package was used to load these biom files in R.

TABLE 5 List of primers and corresponding PCR conditions used in this study

Primer Sequence (59–39) Orientation Target
Length
(bp) PCR conditions Reference

BacamoA-1F GGGGHTTYTACTGGTGGT Forward amoA; ammonia
oxidation (bacteria)

491 95°C for 15 min; 32 cycles of 94°C
for 30 s, 47°C for 40 s, and 72°C
for 1 min; and 72°C for 10 min

94
BacamoA-2R CCCCTCBGSAAAVCCTTCTTC Reverse

Arch-amoWAF CTGAYTGGGCYTGGACATC Forward amoA; ammonia
oxidation (archaea)

256 95°C for 15 min; 35 cycles of 95°C
for 30 s, 58°C for 40 s, and 72°C
for 1 min; and 72°C for 10 min

95
Arch-amoWAR TTCTTCTTTGTTGCCCAGTA Reverse

nirK FlaCu ATCATGGTSCTGCCGCG Forward nirK; nitrite reductase 472 95°C for 15 min; 30 cycles of 95°C
for 30 s, 57°C for 30 s, and 72°C
for 40 s; and 72°C for 10 min

96
nirK R3Cu GCCTCGATCAGRTTGTGGTT Reverse
nirS1F CCTAYTGGCCGGCRCART Forward nirS; nitrite reductase 256 97
nirS 3R GCCGCCGTCRTGVAGGAA Reverse

nrfAF2aw CARTGYCAYGTBGARTA Forward nrfA; nitrite reduction
(DNRA)

250 95°C for 15 min; 35 cycles of 94°C
for 30 s, 50°C for 20 s, and 72°C
for 40 s; and 72°C for 10 min

98
nrfAR1 TWNGGCATRTGRCARTC Reverse

nxrB169f TACATGTGGTGGAACA Forward nxrB; nitrite oxidation
(Nitrospira)

485 95°C for 15 min; 30 cycles of 94°C
for 30 s, 56°C for 30 s, and 72°C
for 1 min; and 72°C for 10 min

99
nxrB638r CGGTTCTGGTCRATCA Reverse
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Amplicon read quality check. After OTU and ASV construction, a quality check step was undertaken
to ensure the reliability of the data. First, the correct reading frame was determined for OTU/ASV nucleotide
sequences (from which primer sequences were removed) using the EXPASY translate online tool (https://web
.expasy.org/translate/) and performing a BLAST search for the six different proteins against the standard non-
redundant (nr) database using the BLASTp algorithm with default settings. All nucleotide sequences were
then translated to protein sequences using the translate() function from the seqinr R package (67). The result-
ing amino acid (AA) sequences were separated into two categories: one containing AA sequences of the
expected length (Table S2) and one containing AA sequences longer or shorter than the expected length.
The latter sequences were submitted to a BLAST search against the standard nr database using the BLASTp
algorithm. Sequences that matched the expected enzyme were then reintegrated into the first category of
verified sequences. For downstream statistical analyses in R, abundance tables and phylogenetic trees were
curated by retaining only these verified sequences.

Downstream statistical analyses. (i) Alpha diversity indices. The vegan package (68) was used to
calculate richness (vegan::rarefy), Shannon entropy, and Simpson diversity (vegan::diversity) separately
in ridges and runnels after rarefaction to 10,000 reads. Visualization was achieved using the ggplot2
package (https://cran.r-project.org/web/packages/ggplot2/index.html).

(ii) Rarefaction curves. Average abundance tables were generated by calculating the average abun-
dance of each OTU/ASV in ridges and runnels. Rarefaction curves were then computed using the iNEXT
package (69). Visualization was achieved using ggiNEXT().

(iii) Beta diversity indices. Abundance tables and phylogenetic trees were combined using phylo-
seq’s merge_phyloseq() function. Distances (Bray-Curtis/UniFrac/WUniFrac) between samples were cal-
culated using phyloseq’s phyloseq::distance() function and used for PERMANOVAs using vegan’s adonis() function
to determine if the sediment type (ridges and runnels) had a significant effect on the community composition.
Visualization was achieved using the ggplot2 package (https://cran.r-project.org/web/packages/ggplot2/index
.html).

(iv) Mantel correlation tests. Distances (Bray-Curtis/UniFrac/WUniFrac) between samples were cal-
culated using phyloseq’s phyloseq::distance() function, and the correlations between distance matrices
were calculated using mantel.rtest() (nrepet = 9,999, “two-sided”) from the ade4 package in R (https://
www.jstatsoft.org/article/view/v086i01).

(v) Canonical correspondence analysis. To find significant drivers of the nitrogen-cycling commun-
ities, a canonical correspondence analysis (CCA) was carried out in R. First, the abundance tables (i.e., the OTU/
ASV counts for each target in each sample) were normalized using the Hellinger transformation (70). Next, the
parameter table (i.e., the table containing the biophysicochemical parameters for each sample) was normalized
by centering and reduction. The CCA was then computed using the cca function from the R vegan package
(68), with the standardized parameter table as the explanatory table and the Hellinger-transformed OTU/ASV
abundance table as the response table. Variable selection was then carried out using the ordistep function
(vegan package) with the option direction=“both,” allowing simultaneous backward and forward selection to
find significant drivers for each target gene.

(vi) Comparison of phylogenetic trees. To evaluate the effects of HTS data processing methods on
the phylogeny of representative sequences, representative sequences were aligned with closely related refer-
ence sequences obtained from the NBCI and/or Fungene database (for a list of reference sequences, see
Table S3) using Mafft (63), and phylogenetic trees were generated using FastTree (64). In the first iteration, only
the reference sequences and the most abundant ASVs/OTUs were included in the tree, and distances between
trees were calculated using the Robinson-Foulds metric in R using the RF.dist() function from the Phangorn
package (71). Additional ASVs/OTUs were added one by one in descending order of abundance. After each
addition, the distances between trees were computed. Because the RF.dist() function requires equal numbers
of tips in the trees compared, the total number of iterations corresponds to the number of sequences in the
abundance table with the lowest number of sequences (e.g., for AOB amoA, there were 384 ASVs and 8 OTUs-
85%; therefore, a maximum of 8 iterations were done when comparing AOB amoA ASV and OTU-85% trees).

Data availability. Raw reads were submitted to the NCBI database under accession number PRJNA841793.
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