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Abstract
Rationale Early life stress is a risk factor for the development
of psychopathology in later life. Consequences of adverse life
events, however, may depend on the genetic makeup of an
individual. Reduced serotonin1A receptor function may
predispose to the development of anxiety disorders.
Objective Determine susceptibility of serotonin1A receptor
knockout (1AKO) mice on different background strains to
the effects of maternal separation (MS) by assessing startle
plasticity in adulthood.
Methods 1AKO mice on a 129S6 and a Swiss Webster
(SW) background were used. MS groups were separated
daily from their mother for 180 min/day from postnatal
days 2 to 14. Control groups underwent normal animal
facility rearing. In adulthood, effects on acoustic startle
response, habituation, prepulse inhibition (PPI), and foot
shock sensitization were determined.
Results MS increased startle reactivity and reduced PPI in
129S6 mice. These effects of MS were independent of
genotype. MS had no effect on the other readouts. In SW
mice, MS had no consistent effect on startle reactivity and did
not alter startle plasticity in wild type or in 1AKO mice.
1AKO mice did not differ from wild-type mice in startle
plasticity.
Conclusion Serotonin1A receptor deletion does not enhance
vulnerability to the effects of MS on startle plasticity. The

life-long increase in startle reactivity and PPI deficit
induced by MS are strain-dependent. Further, the use of
startle reactivity and plasticity may have added value in
translational studies relating to early life stress.
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Introduction

Adverse life events during early childhood, such as parental
loss, physical or sexual abuse, are an important risk factor
in the development of stress-related psychiatric disorders.
Early life stress is thought to alter brain systems involved in
stress-related processes permanently, resulting in increased
vulnerability to develop psychopathology later in life
(Green et al. 2010). Consequences of adverse life events,
however, also depend on the genetic makeup of an
individual. Several lines of evidence suggest that gene–
environment interactions may confer susceptibility to
disease. Although the finding of Caspi and co-workers
(2003) that serotonin transporter polymorphisms may
moderate the influence of life stress on depression is not
unequivocal (Caspi et al. 2003; for meta-analyses, see
Munafo et al. 2009; Risch et al. 2009), it prompted a search
for gene–environment interactions potentially relevant for
psychiatric disorders (Rutter 2010). As such, recent studies
suggest that polymorphisms in the 5-hydroxytryptamine
serotonin1A (5-HT1A) receptor may also interact with
negative life events to turn vulnerability into disorder
(Zhang et al. 2009).
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The 5-HT1A receptor has been implicated in the etiology
of anxiety disorders (De Vry 1995; Holmes 2008). The
distribution of 5-HT1A receptors in the brain correlates well
with a function in emotional processes and is comparable
between species including man. 5-HT1A receptors are
present in high densities in limbic areas such as hippocam-
pus, the septum, some of the amygdaloid nuclei, and
entorhinal cortex (Pazos and Palacios 1985). High densities
of 5-HT1A receptors are also found in the raphe nuclei,
where serotonergic cell bodies are located. Activation of
these somatodendritic autoreceptors reduces the firing rate
of 5-HT neurons, which results in the suppression of 5-HT
synthesis, turnover, and 5-HT release in the projection areas
(Boess and Martin 1994). Together with the serotonin
transporter and the 5-HT1B receptor, which are both located
presynaptically in the synaptic cleft, 5-HT1A receptors thus
regulate the fine-tuning of the activity of 5-HT neurons.
Disturbances in this regulation may underlie various
psychiatric disorders including anxiety disorders (Pineyro
and Blier 1999).

Imaging studies indicate that both presynaptic and
postsynaptic 5-HT1A receptor binding may be reduced in
patients with anxiety disorders (Lanzenberger et al. 2007;
Nash et al. 2008; Neumeister et al. 2004). The finding that
5-HT1A receptor deletion in mice results in an anxiety-
related phenotype supports this notion (Heisler et al. 1998;
Parks et al. 1998; Ramboz et al. 1998). The association of a
functional 5-HT1A receptor polymorphism with anxiety
disorder and related traits (Rothe et al. 2004; Strobel et al.
2003; Zhang et al. 2009) further suggests that allelic
variations in 5-HT1A receptor expression may predispose
to the development of anxiety disorders, although absence
of such associations has also been reported (Chipman et al.
2010; Hettema et al. 2008).

Preclinical research may help to better understand the
neurobiological mechanisms underlying the increased
vulnerability to psychiatric disease. In rodents, the
effects of early adverse experience have been modelled
in a neonatal maternal separation (MS) paradigm. A
large body of neurobiological evidence has been
presented in favor of the repeated neonatal MS as an
early life stress model, including neuroendocrine and
neurochemical changes associated with anxiety (Holmes
et al. 2005). Several studies, but certainly not all, further
indicate that neonatal MS also increases anxiety-like
behavior in later life (Millstein and Holmes 2007; Pryce
et al. 2005).

As genetic vulnerability may enhance the impact of early
life stress, we studied the behavior of adult serotonin1A
receptor knockout (1AKO) male mice on two different
background strains that had been exposed to MS from
postnatal days 2 through 14 for 180 min/day. 1AKO mice
show increased anxiety-like behavior as well as enhanced

autonomic responses (Groenink et al. 2003b; Gross et al.
2000; Pattij et al. 2002a). Interestingly, expression of 5-
HT1A receptors in the forebrain can restore the anxiety
behavior in 1AKO mice (Gross et al. 2002). Furthermore,
absence or blockade of 5-HT1A receptors during the
postnatal period results in increased anxiety in adult mice
(Gross et al. 2002; Vinkers et al. 2010). Together, these
findings imply that abnormal functioning of 5-HT1A

forebrain receptors during postnatal development may
result in life-long exaggerated anxiety.

1AKO mice have been created on three different
genetic background strains: 129S6, C57BL/6J, and Swiss
Webster (SW). The fact that increased anxiety-like
behavior is observed in all 1AKO mice independent of
background strain supports the involvement of 5-HT1A

receptors in anxiety. However, differences between 1AKO
mice on different backgrounds were also observed.
Changes in baseline serotonin levels were observed in
1AKO mice on a C57BL/6J background (Parsons et al.
2001), but not in the other strains (He et al. 2001;
Knobelman et al. 2001a, b). Also, only 1AKO-SW mice
show alterations in GABAA subunit composition and
benzodiazepine sensitivity (Pattij et al. 2002b; Sibille et
al. 2000). These findings indicate that the effects of gene
deletion can greatly depend on the genetic background
strain. As not only the effect of receptor deletion may
depend on genetic background but also the effect of early
life stress and the interaction of early life stress with
genetic alterations (Gillespie et al. 2009; Joober et al.
2002), we determined the effect of MS on 1AKO mice on
two different genetic background strains.

To determine whether MS of 1AKO mice had long-
lasting effects on the neural control of behavior, startle
reactivity and plasticity were measured. The acoustic startle
response is a defensive reaction to a sudden unexpected
loud noise and involves fast involuntary contraction of
facial and body muscles. The startle response is a cross-
species phenomenon that is mediated by a simple neuronal
circuit in the lower brainstem but can be modulated by
forebrain structures (Koch 1999). The test battery used
consisted of acoustic startle reactivity, habituation, prepulse
inhibition (PPI), and foot shock sensitization. Habituation is
regarded as a form of nonassociative learning, in which an
animal learns to differentiate meaningful from irrelevant
stimuli (Geyer and Braff 1987). PPI of the acoustic startle is
the normal suppression of the startle response that occurs if
the loud startling stimulus is preceded by a weak prepulse
stimulus. PPI is a measure of the early preattentive stages of
information processing and is used as an operational
measure of sensorimotor gating. In the foot shock sensiti-
zation paradigm, context conditioning can be studied by
measuring the increase in the startle response after foot
shock (Richardson 2000).
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Methods

Subjects

Mice (male 1AKO and WT mice on 129S6 (formerly
known as 129SvEvTac) and SW background strain) used
within this study were bred from parents that were bred
as homozygotes at the local breeding facility of the
Central Laboratory Animals Institute, Utrecht, The Neth-
erlands. The breeding founders of the 129S6 strain were
originally obtained from Dr. Hen (Columbia University,
New York, USA) and of the SW strain from Dr. M. Toth
(Cornell University, New York, USA). The breeding
founders were initially crossbred with commercially
available mice (Taconic, M&B, Denmark) from the same
background (ten generations). These crossbreds resulted
in heterozygous F1 generations, which were used to breed
homozygous 1AKO and WT generations (F2). These
homozygous F2 generations were used to breed the
experimental animals used in this study. After birth, pups
were housed with both parents in Macrolon-III cages. On
PND 21, male pups were weaned and socially housed in
same genotype, same strain groups with 3–5 animals/
cage. Animals were housed at constant room temperature
(22±2°C) and relative humidity (40–60%) in standard
Macrolon-II cages (22×16×14 cm) with a piece of PVC-
tubing as cage enrichment. Food and water were available
ad libitum in the home cage. Animals were maintained on
a 12 h light–dark cycle (lights on from 7 a.m. to 7 p.m.),
and all experimental procedures were conducted during
the light phase of the cycle. Startle reactivity was studied
between PND80 and PND120. All experiments were
performed in accordance with the governmental guide-
lines for care and use of laboratory animals and approved
by the ethical committee for animal research of the
Faculties of Pharmacy, Biology, and Chemistry at Utrecht
University, The Netherlands.

MS procedure

Litters were randomly assigned to either the MS or the
control condition. MS groups were separated daily from
their mother for 180 min/day (9 a.m. to 12 a.m.), for 13
consecutive days (postnatal days 2 to 14). During
separation, the pups were put in clean Macrolon cages
filled with bedding, which were placed on a 37°C heating
blanket. Pups from each litter were kept together during
separation. Control groups underwent normal animal
facility rearing (AFR). Each experimental group (wt-
control, 1AKO-control, wt-MS, and 1AKO-MS) consisted
of pups of at least four separate litters (SW strain four
litters per condition; 129S6 strain four to six litters per
condition).

Startle apparatus

Four startle devices were used simultaneously (SR-lab,
San Diego Instruments, San Diego CA, USA). The startle
devices consisted of a plexiglas cylinder (inner diameter
4 cm, length 13 cm) mounted on a plexiglas platform.
Each startle device was placed in a ventilated sound
attenuated cubicle. Cage movements were measured with
a piezoelectric film attached to the plexiglas base of the
startle device. A calibration system (San Diego Instru-
ments) was used to ensure comparable startle magnitudes
across the four devices. Startle stimuli (50 ms in
duration) were presented through a high-frequency
speaker located 33 cm above the startle devices.
Background noise was 70 dB. Startle magnitudes were
sampled each millisecond during a period of 65 ms
beginning at the onset of the startle stimulus. A startle
response is defined as the peak response during this
65-ms period. Sound intensities were measured using a
microphone, which was placed on top of the plexiglas
cylinder and fitted to a Bruel and Kjaer sound level meter
(Type 2226).

Startle procedures

Acoustic startle response

Mice were placed in the startle chamber. After a 5-min
acclimation period, animals were presented with 80 startle
stimuli of varying intensities with a variable interstimulus
interval of 20–30 s. The stimulus intensities used were 75,
80, 85, 90, 95, 100, 110, and 120 dB noise. All trials were
presented in ten blocks of eight stimuli and in a pseudo-
random order within each block.

Habituation

Mice were placed in the startle chamber, and after an
acclimatization period of 5 min, 100 startle stimuli of 110
dB noise were presented (duration 50 ms) with an
interstimulus interval of 3 s.

Prepulse inhibition

Animals were placed in the startle chamber and, after a
5-min acclimation period, were presented with startle
stimuli (110 dB) that were presented alone or preceded by
noise prepulses (20 ms) of 2, 4, 8, and 16 dB above
background (i.e., 72, 74, 78, and 86 dB) with 100 ms
between onset of the prepulse and startle stimulus. The
different trials were presented in 12 blocks of six trials and
in a pseudo-random order within each block. The inter-
stimulus intervals ranged from 25 to 35 s.
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Foot shock-induced sensitization

Animals were placed in the startle chamber and allowed to
acclimatize for 5 min. Then 40 startle stimuli (100 dB) were
presented with an interstimulus interval of 30 s followed by
ten foot shocks (0.8 mA, 500 ms, ISI 1 s). Then a second
set of 40 startle stimuli (100 dB) were presented. Twenty-
four hours later, animals were again presented with a set of
40 startle stimuli (100 dB) to evaluate the level of
contextual fear.

Data analyses

Data of the two strains were analyzed separately as the
experiments were not completely run in parallel. All mice
were tested in all tests (N=112, n=14 per condition. For each
strain, n=56, with n=28 wt, and n = 28 1AKO mice, half of
which were assigned to AFR and half of which to MS). Due
to technical problems, data of some mice were not collected,
resulting in smaller group sizes, as indicated below.

Differences in startle reactivity (n=10–14 per condition)
were analyzed using a repeated measures analysis of
variance (ANOVA) with stimulus intensity (eight levels)
as within-subject factor and condition (two levels) and
genotype (two levels) as between-subjects factors.

For startle habituation (n=6–13 per condition), startle
magnitudes were assessed as ten successive blocks of ten
trials each. To test differences in habituation, a repeated
measures ANOVAwas performed with block (ten levels) as
within-subject factor and genotype (two levels) and rearing
condition (two levels) as between-subject factors. Addi-
tionally, paired t-tests were performed to determine when
the startle response no further declined relative to the
preceding block.

Percent PPI (n=6–10 per condition) was calculated for
each prepulse intensity as percent change compared to the
mean startle reflex in response to the 110 dB startle
stimulus. Differences in percent PPI were analyzed using
a repeated measures ANOVA with prepulse intensity (four
levels) as within-subject factor and rearing condition and
genotype as between-subjects factors. Pearson’s correla-
tions were used to determine if there was a relationship
between acoustic startle and mean PPI levels.

To determine the degree of foot shock-induced sensiti-
zation (n=8–14 per condition), responses to 40 stimuli were
collapsed resulting in a pre-shock, post-shock, and 24-
h post-shock mean startle amplitude. Subsequently, a
repeated measures ANOVA was performed with time as
within-subject factor (three levels: pre-, post- and 24-
h post-shock), and rearing condition (two levels) and
genotype (two levels) as between-subjects factors.

Post-hoc tests consisted of independent t-tests (acoustic
startle, habituation, and PPI) or paired t-tests (foot shock

sensitization) with Bonferroni correction for alpha. The
level of significance was set at p<0.05.

Results

Acoustic startle response

129S6 strain (n=10–14 per condition)

As shown in Fig. 1a, the acoustic startle response to the
different stimulus intensities was dependent on rearing
condition (F7,336=3.5, p=0.001). This effect of rearing
condition was similar for wild-type and 1AKO mice
(Fig. 1b, c). Post-hoc analysis showed that MS mice had
a higher startle response than AFR mice (Fig. 1a). This
effect was significant at 90, 95, 100, and 120 dB. 1AKO
mice responded similarly to the startle stimuli as wild-type
mice (Fig. 1b, c).

SW strain (n=14 per condition)

Repeated measures ANOVA revealed a significant three-way
interaction of intensity with rearing condition and genotype
(F7,364=2.5, p=0.016). Furthermore, ANOVAs showed that at
the lower intensities the effect of rearing condition was
dependent on genotype. The startle response of MS wild-type
mice, but not MS-1AKO mice, was significantly higher at 75,
80, and 85 dB (see Fig. 1d, e). In 1AKO mice, the response
to the different intensities was dependent on rearing
condition (F7,182=2.7, p=0.01), but post-hoc analysis did
not detect significant differences between MS and AFR
mice at separate intensities (Fig. 1e).

Habituation

129S6 strain (n=6–13 per condition)

129S6 mice showed clear habituation of the acoustic startle
response as evidenced by a significant effect of block
(F9,288=48.2, p<0.001). As shown in Fig. 2a, the acoustic
startle response was significantly higher in the MS group
during all blocks (F1,32=5.7, p=0.023), but habituation of
the startle response was similar for AFR and MS mice.
After presentation of 30 stimuli (three blocks), stable levels
of startle responses were achieved. Furthermore, 1AKO
mice did not differ from wild-type mice and no significant
interaction effects were found (see Table 1).

SW strain (n=6–13 per condition)

As shown in Fig. 2b, SW mice showed clear habituation
of the acoustic startle response as evidenced by a
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significant effect of block (F9,306=87.2, p<0.001). Ha-
bituation of the startle response was similar for AFR and
MS mice. Stable levels of startle responses were achieved
after presentation of 50 stimuli (five blocks). Further-
more, 1AKO mice did not differ from wild-type mice and
no significant two- or three-way interactions were found
(see Table 1).

Prepulse inhibition

129S6 strain (n=8–10 per condition)

MS reduced percent PPI similarly in wild-type and 1AKO
mice, but the effect of MS was dependent on prepulse
intensity (F3,96=5.6, p=0.001). As shown in Fig. 3a, the
differences between AFR and MS mice were significant at
2 and 4 dB prepulse intensity. PPI in 1AKO mice did not
differ from that of wild-type mice (see Fig. 3b, c). Startle
magnitude was significantly higher in MS mice, irrespec-
tive of genotype (F1,32=12.6, p=0.001; control mice 758±
88.7, MS mice 1150.2±119).

SW strain (n=6–8 per condition)

Rearing condition had no significant effect on percent PPI.
Percent PPI increased with increasing prepulse intensities

as expected, but this effect was dependent on genotype
(F3,69=3, p=0.035). Post-hoc analyses did not detect
significant differences between genotypes at specific
prepulse intensities (see Fig. 3d, e). Startle magnitude was
similar in control and MS mice and was independent of
genotype (control mice 383.1±50.6, MS mice 312.7±56.1).

Foot shock sensitization

129S6 strain (n=10–12 per condition)

As shown in Fig. 4a, presentation of foot shocks increased
the startle response (F2,80=23, p<0.001), measured post-
shock (F1,40=49.1, p<0.001), and 24 h later (F1,40=13.2,
p=0.001). These effects of foot shock were independent of
rearing condition and genotype. No significant differences
were observed between wild-type and 1AKO mice in this
procedure (see Table 2). Foot shock reactivity to the
shocks per se was similar for all experimental groups (wt-
control 1,536±87.6, 1AKO-control 1,289±72.8, wt-MS
1,346±86.7, 1AKO-MS 1,324±56.7).

SW strain (n=8–14 per condition)

As shown in Fig. 4b, presentation of foot shocks significantly
enhanced the startle response (F2,72=3.6, p=0.03), which

Fig. 1 Acoustic startle response. Mean startle magnitude (in arbitrary
units±SEM) as a function of startle stimulus intensity in 129S6 (a, b,
c) and SW mice (d, e), exposed to AFR (control, white bars) or MS
(gray bars). Panel a shows the effects on wild-type and 1AKO 129S6
together, as the effects of MS were independent of genotype. Panels

b–e show the effect of MS for the separate genotypes. Differences
between wild-type and 1AKO mice can be inferred by comparing the
white bars in panels b and c for 129S6, and white bars in panels d and
e for SW. * p<0.05 relative to corresponding control
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could be ascribed to an effect on post-shock startle
magnitude (F1,42=5.3, p=0.03). 24 h later, the startle
response did not differ significantly from the startle response
measured before the foot shocks on day 1. The effect of foot
shocks on the startle response was independent of rearing
condition and genotype. No significant differences were
observed between wild-type and 1AKO mice in this
procedure. Foot shock reactivity to the shocks per se was
similar for all experimental groups (wt-control 1,398±139.3,
1AKO-control 1,415±178, wt-MS 1,351±117, 1AKO-MS:
1,370±150).

Discussion

In the present study, we determined the susceptibility of
1AKO mice on different background strains to the effects

of repeated MS. MS markedly and consistently increased
startle reactivity and reduced PPI in later life, but only in
129S6 mice. These effects were independent of 5-HT1A

receptor deletion. In SW mice, MS had no effect on startle
plasticity. 1AKO mice did not differ from wild-type mice in
any of the tests.

Effect of MS on startle reactivity and foot shock
sensitization

In all tests, 129S mice exposed to MS showed a consistent
and robust increase in baseline startle response. The
affective modulation of the startle response, as measured
with shock-induced sensitization, however, was not altered
by MS.

To the best of our knowledge, there is only one report on
the effects of MS on startle reactivity and plasticity in mice.

Table 1 Habituation

129S6 SW

Control MS Control MS

WT 1AKO WT 1AKO WT 1AKO WT 1AKO

B1 471±108 381±56.2 685±104 584±84.0 273±47.2 288±47.5 288±34.4 291±57.3

B2 238±73.0 194±43.9 405±69.5 329±58.9 150±33.5 157±24.5 161±23.5 194±37.3

B3 138±14.0 146±38.0 313±58.2 291±63.8 107±25.4 103±13.7 108±17.1 118±18.2

B4 176±23.6 145±37.1 285±48.7 275±56.8 86.8±20.1 91.2±13.3 96.7±14.7 106±16.9

B5 142±20.7 120±23.0 265±48.5 261±57.2 57.5±9.6 88.5±15.2 81.6±13 81.4±17.1

B6 121±23.8 103±22.1 229±32.8 252±44.2 60.5±9.0 88.5±13.8 78.8±11.9 91.6±17.2

B7 93.5±10.6 104±17.8 261±51.8 266±57.4 62.9±14.6 75.1±12.9 72.9±14.1 98.2±25.7

B8 131±28.1 118±26.1 213±33.9 213±47.6 58.2±16.4 71.0±12.6 70.5±13.3 91.6±16.1

B9 120±24.6 100±23.9 243±30.8 226±47.0 58.3±13.2 75.6±14.3 71.8±14.3 70.0±11.3

B10 127±61.5 112±23.2 252±41.4 237±48.5 55.8±9.2 66.7±9.3 69.7±13.7 61.3±6.8

Mean startle magnitude (±SEM) per block (B) for 129S6 and SW mice. Data are given for rearing condition [control and maternal separation
(MS)] and genotype [wild-type (WT) and 1AKO mice] separately

Fig. 2 Habituation of the acoustic startle response. Mean startle
magnitude (in arbitrary units±SEM) upon repeated presentation of a
110 dB startle stimulus in 129S6 (a) and SW mice (b) exposed to AFR
(control, black squares) or MS (black triangles). In each block 10

startle stimuli were presented. Effects on wild-type and 1AKO mice
are taken together, as the effects of MS were independent of genotype.
The overall significant effect of rearing on startle reactivity in 129S6 is
not indicated in Fig. 2a, as it was independent of block
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Millstein et al. (2006) studied the effect of MS on PPI in
five different inbred mouse strains and measured basal
startle response at one stimulus intensity. These authors
used two different control groups: a facility-reared mice as
we did and a so-called daily handled group. In their study,
MS did not increase startle reactivity in any of the strains

relative to facility-reared mice. However, MS increased
startle reactivity relative to the “handling” group in the 129S1
and FVB/NJ strains (Millstein et al. 2006). Several studies
indicate that handling, which is basically separation of pups
for 15 min/day for 14 days, may result in resilience to
environmental stressors in later life (Holmes et al. 2005;

Fig. 3 PPI of the acoustic startle response. Effect of MS (gray bars)
on percent PPI measured at different prepulse intensities, in 129S6 (a,
b, c) and SW mice (d, e). White bars show the response of AFR mice
(control, white bars). In panel a, the effects on wild-type and 1AKO
129S6 mice are taken together, as the effects of MS were independent
of genotype. Panels b–e show the effect of MS for the separate

genotypes. Differences between wild-type and 1AKO mice can be
inferred by comparing the white bars in panels b and c for 129S6,
and white bars in panels d and e for SW. Pearson’s correlation
showed that startle magnitude and mean PPI levels were not
correlated (r=-0.17, NS, n=63). Data represent means±SEM. *p<
0.05 relative to corresponding control

Fig. 4 Foot shock sensitization of the acoustic startle response. Mean
startle magnitude (in arbitrary units±SEM) before, after, and upon re-
exposure to the context 24 h later. Left panel shows the effect in the
129S6 strain (wild-type and 1AKO together), while right panel shows
the effect in the SW strain (wild-type and 1AKO mice together).
Effects on wild-type and 1AKO mice are not shown separately, as the

effects of foot shock and MS were independent of genotype. The
significant overall effect of MS (black triangles) on startle reactivity in
129S6 mice is not indicated in the left panel, as the effect of foot shock
was independent of rearing condition. * p<0.05 relative to pre-shock
for control and MS groups together
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Pryce et al. 2005). As such, handled control groups often
show an attenuated behavioral response to stressors relative
to facility-reared controls (for review see Holmes et al.
2005). Genetically, 129S1 and 129S6 strains are closely
related. The fact that MS increased startle reactivity in 129S6
(this study) and 129S1 mice, albeit relative to a different
control group (Millstein et al. 2006), may suggest that 129S
strains are more vulnerable to early life stressors. In other
species, including rhesus monkeys (Sanchez et al. 2005) and
rats (Caldji et al. 2000; Kalinichev et al. 2002), repeated MS
also increased startle reactivity, although in rats, this effect is
not found consistently (de Jongh et al. 2005).

MS did not alter affective startle modulation as measured
with foot shock sensitization. The foot shock-induced
increase in startle reactivity, termed “shock sensitization”
is a cross-species phenomenon (Davis 1989; Dirks et al.
2001b; Greenwald et al. 1998). Shock sensitization
involves rapid contextual fear learning, reflecting anxiety
that develops to the environment where aversive stimuli
were presented (Richardson 2000; Risbrough et al. 2009).
Context conditioning is interesting as it models particular
aspects of anxiety such as anxious apprehension. The
potential threat associated with context conditioning
involves other brain systems than cued fear, which models
actual threat (Davis et al. 2010; Veening et al. 2009). As
such, mutant mice studies implicated a role for both CRF1
and CRF2 receptors in context conditioning, but not in cued
fear (Risbrough et al. 2009). Considering the reported
changes in CRF systems following early life adversity
(Holmes et al. 2005; Nemeroff 2004), the finding that MS
did not alter foot shock sensitization was therefore
somewhat surprising. Mice had been exposed to the context
during the other tests, a factor that may reduce the level of
contextual conditioning (Richardson 2000). But it seems
unlikely that this pre-exposure obscured a potential effect of
MS on affective startle modulation, as normal shock
sensitization was induced in control mice. Therefore, the
present data suggest that MS does not alter context
conditioning in later life. This observation is in line with
a study comparing maternal and genetic effects using
different mouse strains. It was shown that foot shock
sensitization is mainly influenced by genetic factors,
whereas startle reactivity is affected both by genetic and
prenatal and postnatal factors (Rose et al. 2008). Accord-
ingly, mouse strains may differ in the magnitude of the
response and also in the time frame in which the shock
sensitization occurs (Dirks et al. 2001a), as was also found
in the present study. To the best of our knowledge, effects
of MS on context conditioning in mice have not been
reported before. In rats, MS had no effect on context-
induced freezing (Kosten et al. 2006; Stevenson et al.
2009a, b) and on reaction to the foot shocks per se (Kosten
et al. 2006). The results of the present study confirm and

extend those findings: repeated MS in mice has no effect on
context conditioning, using startle response as readout.

Studies on the long-term behavioral effects of repeated
MS on anxiety-like behavior are scarce. Some studies
reported an increase in anxiety- and depression-like
behavior following MS (Romeo et al. 2003; MacQueen et
al. 2003), but absence of effects has also been reported
(Parfitt et al. 2004; Venerosi et al. 2003). In a recent study,
the effect of repeated MS on anxiety- and depression-like
behavior was assessed comparing five inbred mouse strains
(Millstein and Holmes 2007). Overall, MS had no clear
effect on anxiety- or depression-like behaviors in any of the
strains, as measured in approach avoidance paradigms and
the forced swim test. Thus, repeated neonatal MS of mice
does not seem to have marked effects on anxiety-like
behavior in approach avoidance tests.

The lack of effect of MS on shock sensitization may
seem in line with these findings. However, in humans, an
increase in baseline startle reactivity has been proposed as a
potential vulnerability factor for the development of anxiety
disorders (Grillon and Baas 2003; Guthrie and Bryant
2005; Pole et al. 2009). Furthermore, patients with anxiety
disorders and individuals at risk for anxiety disorders often
show an elevation in baseline startle both in a neutral
(Butler et al. 1990; Morgan et al. 1995; Ludewig et al.
2005) and stressful environment. These changes typically
occur in the absence of enhanced fear-potentiated startle
(for review, see Grillon and Baas 2003). Thus, increased
startle reactivity in the absence of altered affective startle
modulation, as observed in maternally separated 129S
mice, may reflect increased anxiety levels per se or
enhanced vulnerability to exaggerated anxiety. In this
respect, it is interesting to note that the effects of MS on
startle plasticity in 129S6 mice resemble the effects of
childhood abuse on startle plasticity in humans (Jovanovic
et al. 2009). In PTSD and MDD patients with a history of
childhood abuse, startle reactivity was increased, whereas
habituation was normal. Childhood abuse also did not alter
fear potentiated startle or fear inhibition in this patient
group (Jovanovic et al. 2009). In healthy police cadets with
a history of childhood trauma, a similar increase in startle
reactivity was reported (Pole et al. 2007).

Effect of MS on habituation and PPI

In 129S6 mice, MS impaired PPI but had no effect on
habituation of the acoustic startle response. In SW mice,
MS did not alter PPI or habituation.

As MS not only reduced PPI but also increased startle
reactivity in 129S6 mice, it could be argued that the
changes in baseline startle response confounded percent
PPI. However, startle magnitude and percent PPI were not
significantly correlated in this study. Other studies also
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demonstrated that the level of PPI is independent of the
magnitude of the startle response in mice (Paylor and
Crawley 1997; Crawley et al 1997; Pietropaolo and Crusio
2009). Regarding the effects of long-term stressors on
baseline startle and PPI in mice, it was shown that isolation
rearing reduced PPI, without an effect on baseline startle
(Varty et al 2006). And results of a stress manipulation
study in rats further demonstrate that an increase in startle
reactivity not necessarily results in impaired PPI. It was
shown that isolation rearing and isolation housing both
increased basal startle magnitude, whereas PPI was only
reduced in the isolation reared rats (Wilkinson et al, 1994).

Impaired PPI and habituation have been associated with
schizophrenia and other neuropsychiatric disorders, consis-
tent with a deficit in information processing (Braff et al.
1995, 2001; Geyer and Braff 1987; Geyer et al. 1990). But
impaired PPI has also been associated with high trait
anxiety, PTSD, obsessive–compulsive disorder and panic
disorder (Duley et al. 2007; Franklin et al. 2009; Hoenig et
al. 2005; Ludewig et al. 2002, 2005). When PPI is reduced
and gating functions are impaired, this could result in
increased anxious apprehension, which may relate to high
trait anxiety. In this light, the observed reduction in PPI in
maternally separated 129S6 mice could predispose or add
to increased anxiety-like behavior in later life.

In rats, MS (once for 24 h) disrupted PPI and habituation
(Ellenbroek et al. 1998, 2004), although this could not be
replicated by others (Lehmann and Feldon 2000). As in the
present study, the disruption of PPI appeared to be strain-
dependent (Ellenbroek and Cools 2000). The one study that
determined the effect of MS on PPI in mice did not find
alterations in PPI in any of the five inbred strains studied
including the 129S1 strain (Millstein et al. 2006). The
procedures used by Millstein and co-workers were not very
different from those in the present study. Most marked
differences included the time frame of MS (from P0 to P13
versus P2–P14 in the present study), and the intensity of the
startle probe relative to background noise (55 versus 40 dB
in the present study). However, as SW mice appeared to be

resistant to the MS procedure in the present study, it is more
likely that subtle differences in genetic background between
129S1 and 129S6 contributed to the effects of MS between
the two 129S6 strains than procedural variations.

Effects of deletion of 5-HT1A receptor on MS and startle
plasticity

1AKO 129S6 and 1AKO SW mice did not differ from
wild-type mice in startle reactivity (Fig. 1), habituation
(Table 1), PPI (Fig. 3), or shock sensitization (Table 2).
Previous studies already showed that deletion of 5-HT1A

receptors does not affect startle plasticity in 1AKO mice on
a 129S6 background (Dirks et al. 2001c; Dulawa et al.
2000), despite the anxiety-like behavior of these 1AKO
mice in approach avoidance tests (Groenink et al. 2003a),
and the effects of 5-HT1A receptor agonists on PPI and
affective startle modulation (de Jongh et al. 2002; Dulawa
et al. 2000; Gogos et al. 2008). The absence of effect of 5-
HT1A receptor deletion on context conditioning, as measured
with shock sensitization, is in line with studies reporting a
normal freezing response under conditions of cue- and
context-dependent fear in 1AKO mice on different back-
grounds (Groenink et al. 2003a; Klemenhagen et al. 2006).
Interestingly, 1AKO mice show an enhanced freezing
response to contexts containing both conditioned and novel
cues, suggesting that these animals may have a deficit in the
processing of aversive stimuli (Tsetsenis et al. 2007).

The fact that 5-HT1A receptor deletion did not interact
with exposure to MS was somewhat surprising. First, a
functional promoter polymorphism in the 5-HT1A receptor
has been associated with increased anxiety in healthy and
patient populations (Lemonde et al. 2003; Rothe et al.
2004; Strobel et al. 2003), confirming the function of this
receptor in modulating critical anxiety circuits. Second, the
same promoter polymorphism has recently been associated
with attenuated PPI in humans (Bräuer et al. 2009).
Furthermore, we and others showed that absence or
blockade of 5-HT1A in early life has considerable effects

Table 2 Foot shock sensitization

129S6 SW

Control MS Control MS

WT 1AKO WT 1AKO WT 1AKO WT 1AKO

Pre-shock 352±45.3 346±39.9 608±73.2 486±92.9 278±45.2 260±49.0 267±48.8 182±28.6

Post-shock 469±59.0 534±55.2 795±87.5 625±78.0 319±52.4 285±64.5 298±59.0 253±55.0

24-h post 473±60.2 430±50.7 646±79.9 550±69.4 281±63.3 258±53.9 255±42.8 200±30.9

Mean startle magnitude (±SEM) pre-shock, post-shock, and 24-h post (24-h post-shock) for 129S6 and SW mice. Data are given for rearing
condition [control and maternal separation (MS)] and genotype [wild-type (WT) and 1AKO mice] separately
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on anxiety in later life and that the first 2 to 3 weeks of life
are especially important in this process (Gross et al. 2002;
Vinkers et al. 2010).

It may be argued that the effects of MS in 129S6 mice
are such that a further enhancement of the effects by 5-
HT1A receptor deletion could not be detected. However, the
absence of an interaction effect in SW mice that were
resilient to the effects of MS per se argues against this. Our
findings suggest that MS and 5-HT1A receptor deletion
exert their effect on different neural pathways, resulting in
different behavioral changes that do not seem to interact.
However, it cannot be excluded that an interaction between
rearing condition and 5-HT1A receptor expression does
occur when studying other behavioral measures. Also, a
potential limitation of the present study is that the
experimental animals were derived from homozygous
breeding. A recent study showed that 5-HT1A receptor
deficiency in dams can produce maladaptive stress
responses via two different mechanisms: inheritance of the
receptor deficiency and nongenetic transmission during
prenatal and postnatal development (Gleason et al 2010).
However, in the present study, 5-HT1AKO did not differ
from wild-type mice and 1AKO mice were not more
sensitive to the effects of early life stress. Although this
does not exclude the possibility that maternal factors
influenced the behavior, this seems unlikely as maternal
environment seems to enhance the risk for anxiety disorders
(either genetically or nongenetically) rather than to protect
against maladaptation (Gleason et al 2010).

Strain differences in MS and startle plasticity

It is well known that mouse strains vary widely in their
emotional reactivity (Bothe et al. 2005; Crawley et al. 1997;
van Bogaert et al. 2006), as well as in startle reactivity
(Pietropaolo and Crusio 2009; Rose et al. 2008) and PPI
(Millstein et al. 2006; Paylor and Crawley 1997). In the
present study, comparable strain differences were observed.
Basal startle response of 129S6 was markedly higher than
that of SW mice, and shock sensitization procedure had
longer-lasting effects in 129S6 than in SW mice. These
findings are in line with the fact that 129S6 are considered
more anxious than SW mice (Groenink et al. 2003a; van
Bogaert et al. 2006). Besides strain differences in the
expression of anxiety, the genetic differences between strains
may also interfere with receptor deletion. Although 5-HT1A
receptor deletion had no effect on startle plasticity in either
strain, 1AKO SW and 1AKO 129S6 markedly differ in their
benzodiazepine sensitivity (Sibille et al. 2000; Pattij et al.
2002b). The present study further stresses the importance of
genetic background as a determining factor in the impact of
early life adversity on later life. Besides a small interaction
between rearing condition, genotype, and startle intensity on

startle reactivity, MS had no effect in SW mice, whereas it
markedly and consistently increased startle reactivity in
129S6 mice. It may well be that the genetic makeup of the
129S6 strain determines not only its anxious phenotype but
also its vulnerability to early life stressors.

In conclusion, we measured startle reactivity, habituation,
PPI, and shock-induced sensitization to determine whether
MS results in abnormalities in the processing of sensory
information that could contribute to enhanced anxiety-like
behavior. Results showed that MS increased startle reactivity
and impaired PPI, an effect that was dependent on genetic
background. Although the present findings await replication,
the fact that comparable alterations in startle modulation
have been observed in humans exposed to childhood trauma
illustrates the added value of using startle reactivity and
plasticity in translational research.
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