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Abstract: During bovine herpesvirus 1 (BoHV-1) productive infection in cell cultures, partial of
intranuclear viral DNA is present in nucleosomes, and viral protein VP22 associates with histones
and decreases histone H4 acetylation, indicating the involvement of histone H4 acetylation in
virus replication. In this study, we demonstrated that BoHV-1 infection at the late stage (at 24 h
after infection) dramatically decreased histone H3 acetylation [at residues K9 (H3K9ac) and
K18 (H3K18ac)], which was supported by the pronounced depletion of histone acetyltransferases
(HATs) including CBP/P300 (CREB binding protein and p300), GCN5L2 (general control of amino
acid synthesis yeast homolog like 2) and PCAF (P300/CBP-associated factor). The depletion of
GCN5L2 promoted by virus infection was partially mediated by ubiquitin-proteasome pathway.
Interestingly, the viral replication was enhanced by HAT (histone acetyltransferase) activator CTPB
[N-(4-Chloro-3-trifluoromethylphenyl)-2-ethoxy-6-pentadecylbenzamide], and vice versa, inhibited
by HAT inhibitor Anacardic acid (AA), suggesting that BoHV-1 may take advantage of histone
acetylation for efficient replication. Taken together, we proposed that the HAT-dependent histone
H3 acetylation plays an important role in BoHV-1 replication in MDBK (Madin-Darby bovine
kidney) cells.
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1. Introduction

Bovine herpesvirus 1 (BoHV-1) is an important pathogen that causes pneumonia, conjunctivitis,
genital disorders, and abortions in cattle [1]. BoHV-1 infection induces severe inflammatory response
though diverse mechanisms, such as by overexpression of pro-inflammatory cytokines and reactive
oxidative species [2–4]. The suppression of host immune response by virus infection may render
secondary infection by diverse pathogens, such as bovine viral diarrhea viruses (BVDV), bovine
respiratory syncytial virus (BRSV), parainfluenza-3 virus (PI3V), bovine coronaviruses, Mannheimia
haemolytica, Pasteurella multocida, Histophilus somni and Mycoplasma spp. [5,6], and consequently lead to
a life-threatening pneumonia known as bovine respiratory disease complex (BRDC), one of the costliest
ailments in cattle feeding [7,8].

In eukaryotes, DNA is packaged into a protein-DNA complex called chromatin, with
nucleosome as monomeric subunit containing a core of histone proteins (H2A, H2B, H3, and
H4) surrounding by ~147 bp of genomic DNA [9]. The chromatin is dynamically organized into
regions of either loosely packaged actively transcribed chromatin (euchromatin) or highly condensed
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transcriptionally repressed chromatin (heterochromatin) through diverse epigenetic modifications,
such as by acetylation, methylation, ubiquitination, phosphorylation, and sumoylation [10–13].
The acetylation of certain lysine (K) residues in histones H3 and H4 is generally an indicator of
transcriptionally active chromatin [14,15].

Increasing evidence has elucidated the implication of epigenetic modification either in viral
gene transcription or in viral productive infection. For example, during HSV-1 productive infection
histone H3 associates with viral DNA at the IE(immediate early) promoters, thereby recruiting the
chromatin remodeling factors into viral replication compartments [16–19], which facilitates viral gene
expression and DNA replication. The acetylation of histones on parvoviral DNA is essential for
viral gene expression and completion of the viral life cycle [20]. Histone acetylation is essential for
influenza A virus infection, since the inhibition of histone acetylation by histone acetyltransferase
(HAT) inhibitors can attenuate its infection [21]. Histone is also involved in BoHV-1 infection because
BoHV-1 infection decreases histone H4 acetylation [22], and a portion of intranuclear viral DNA is
present in nucleosomes [23], and histone H4 is found to be packaged into virions [24]. However,
the role of histone H3 acetylation in BoHV-1 productive infection is still not fully defined.

In this study, the status of histone H3 acetylation, the potential mechanisms for the modification, as
well as its role in BoHV-1 infection in MDBK cells were investigated. For the first time we demonstrated
that virus infection significantly reduced histone H3 acetylation, which correlated well with the
pronounced depletion of HATs including CBP/P300 (CREB binding protein and p300), GCN5L2
(general control of amino acid synthesis yeast homolog like 2) and PCAF (P300/CBP-associated factor).
Moreover, histone acetylation contributed to viral gene expression. Therefore, we concluded that
HAT-dependent histone H3 acetylation plays an important role in BoHV-1 replication in MDBK cells.

2. Materials and Methods

2.1. Cells and Virus

MDBK (Madin-Darby bovine kidney) cells (kindly provided by Dr. Leonard J. Bello,
University of Pennsylvania) were maintained in DMEM (Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% horse serum (HyClone Laboratories, Logan, UT, USA). BoHV-1 of Colorado1
stain (kindly provided by Dr. Leonard J. Bello, University of Pennsylvania) was propagated in MDBK
cells. Aliquots of virus stocks were stored at −70 ◦C until use. The inactivation of the BoHV-1 virus
with UV (ultraviolet) irradiation was performed as previously described [25]. Complete inactivation of
the virus was characterized by plaque assay in MDBK cells.

2.2. Antibodies and Reagents

CBP/p300 rabbit mAb (monoclonal antibody) (Cat#7389, 1:1000), PCAF rabbit mAb
(Cat#3378,1:1000), GCN5L2 rabbit mAb (Cat#3305, 1:1000), Histone H3 rabbit mAb (Cat#4499, 1:1000),
Acetyl-Histone H3 (Lys9) rabbit mAb (Cat#9649, 1:1000), Acetyl-Histone H3 (Lys18) rabbit mAb
(Cat#13998, 1:1000), ubiquitin Mouse mAb(Cat#3936, 1:1000), HDAC1 (histone deacetylas) mouse mAb
(Cat#5356, 1:1000), HDAC2 mouse mAb (Cat#5113, 1:1000), HDAC3 mouse mAb (Cat #3949, 1:1000),
HDAC4 rabbit mAb (Cat #7628, 1:1000), β-actin rabbit mAb(Cat#4970, 1:1000), HRP (horseradish
peroxidase) labeled anti-mouse IgG (Cat#7076, 1:3000) and HRP labeled anti-rabbit IgG (Cat#7074,
1:3000), were purchased from Cell Signaling Technology (Beverly, MA, USA). BoHV-1 VP16 antibody
(1:2000) is kindly provided by Prof. Vikram Misra at the University of Saskatchewan [26].

Anacardic acid (AA) (Cat#A7236), trichostatin A (TSA) (#8552). MG132 (Cat#474791-1),
ammonium chloride (NH4Cl) (Cat#254134), were ordered from Sigma-Aldrich (St. Louis,
MO, USA). Bortezomib (#S1013) was obtained from selleckchem.com (Houston, TX, USA).
N-(4-Chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide (CTPB) (Cat#586976-24-1)
was provided by Santa Cruz Biotechnology (Dallas, TX, USA).
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2.3. Cytotoxicity Assays by Trypan-Blue Exclusion Test

Cytotoxicity of indicated chemicals in MDBK cells was assessed by Trypan-blue exclusion test,
as described by Fiorito et al. [27,28], with modification. In brief, MDBK cells in 24-well plates were
treated with or without chemicals at indicated concentrations for 24 h. Then the cells were collected
by trypsinization, and an aliquot of the cell suspension was mixed with an equal volume of 0.4%
Trypan-blue (0.4%) (Bio-Rad, Hercules, CA, USA, #1450021). After incubation for 10 min, cells were
counted using a Burker chamber under a light microscope. The percentage of cell viability in the
chemical treatment groups was calculated by normalization of the number of live cells to that in the
control samples. The value of cell viability in the control was arbitrarily set to 100%.

2.4. Western Blotting Analysis

Confluent MDBK cells in 60 mm dishes were infected with BoHV-1(MOI = 1) for 4, 12 and 24 h.
Cell lysates were prepared using lysis buffer (1% Triton X-100, 50 mM sodium chloride, 1 mM EDTA,
1 mM EGTA, 20 mM sodium fluoride, 20 mM sodium pyrophosphate, 1 mM phenylmethylsulfonyl
fluoride, 0.5 g/mL leupeptin, 1 mM benzamidine, and 1 mM sodium orthovanadate in 20 mM Tris–HCl,
pH 8.0). To test the effects of certain inhibitors on the designated signaling, MDBK cells were infected
for 24 h along with treatment with indicated chemicals at the designated concentrations. Cell lysates
were prepared using lysis buffer as described above.

Cell lysates were separated on 8 or 10% SDS–polyacrylamide gels, and proteins were transferred to
a polyvinylidene difluoride (PVDF) membrane (Bio-Rad, Hercules, CA, USA). Targeted proteins
were detected using respective antibodies. The intensity of immune reactive bands was analyzed
with free software image J (https://imagej.nih.gov/ij/download.html). To calculate the relative
protein expression levels, the band intensity of target proteins was firstly normalized to β-actin,
then normalized to the control lane.

2.5. Immunoprecipitation (IP) Assay

For IP studies, MDBK cells in 60-mm dishes were infected with BoHV-1 at an MOI of 1. At 16 h
after infection, cells were lysed with 600 mL of RIPA buffer (1× PBS, 1% NP-40, 0.5% sodium
deoxycholate, 0.1% SDS) supplemented with protease inhibitor as described above in Western blots
analysis. Cell lysates were clarified by centrifugation at 12,000 rpm for 20 min, and incubated
with Dynabeads® (Life Technologies, Carlsbad, CA, USA, Cat. No. 10001D), which have been
incubated with 4 µL of Acetyl-Histone H3 (Lys9) rabbit mAb (Cell Signaling Technology, Cat#9649) or
GCN5L2 rabbit mAb (Cell Signaling Technology, Cat#3305) for 1 h at room temperature with rotation.
After overnight incubation at 4 ◦C with rotation, the beads were collected with the help of a magnet
(DynaMag™) (Life Technologies, Cat. No. 12321D). After three washing with PBS, beads were boiled
in SDS loading buffer and Western blots were performed to detect the designated proteins.

2.6. Virus Replication Inhibition Assay

MDBK cell in 24-well plates were infected with BoHV-1 (MOI of 1) along with the treatment of
indicated chemicals(PAA, Anacardic acid, TSA, and CTPB) at the designated concentration for 1 h
at 37 ◦C, After three washing with PBS, fresh medium with designated chemicals was added to
each well. At 24 h after infection, viral yields were titrated in MDBK cells. The cell cultures treated
with DMSO was used as a control. The results are expressed as TCID50/mL calculated using the
Reed-Muench formula.

2.7. Quantification of mRNA by qRT-PCR

Confluent MDBK cells in 60 mm dishes were infected with BoHV-1 using an MOI of 1.
At 4, 8 and 16 h post infection(hpi) total RNA was purified with TRIzol LS Reagent (Ambion,
Thermo Fisher Scientific, Waltham, MA, USA, Cat#10296010) following the manufacturers’ instructions.

https://imagej.nih.gov/ij/download.html
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Freshly prepared RNA (1 µg) was used as a template for the synthesis of the first-strand cDNA with
commercial random hexamer primers for viral mRNA detection using Thermoscript™ RT-PCR system
Kit (Invitrogen, Carlsbad, CA, USA, Cat#11146-024). The cDNA products were used as templates
for relative qRT-PCR to measure levels of viral mRNA of bICP4, and bICP22 as well as cellular gene
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with specific primers as previously described
in the reference [29]. Analysis of GAPDH mRNA was used as an internal control. Relative qRT-PCR
was carried out using the ABI 7500 fast real-time system (Applied Biosystems, Foster City, CA, USA).
Separate GAPDH amplification was used to normalize gene expression. The data were analyzed using
the equation 2−∆∆CT method.

3. Results

3.1. BoHV-1 Infection of MDBK Cells Decreases Histone H3 Acetylation

Acetylation of histone H3 is involved in transcription activation, and H3K9ac is an epigenetic
marker for histone acetylation. To test whether BoHV-1 infection alters histone H3 acetylation,
we evaluated the expression levels of H3K9ac, H3K18ac as well as H3 in virus infected MDBK
cells at 4, 12, and 24 hpi. As a result, virus infection consistently decreased the expression levels of
H3K9ac, H3K18ac and H3, and peaked at 24 hpi (Figure 1A). Quantitative analysis indicated that the
levels of H3K9ac, H3K18ac and H3 were decreased to 15.8%, 6.0% and 40.7% relative to the control,
respectively(Figure 1B), suggesting that BoHV-1 infection reduced histone H3 acetylation (H3K9ac
and H3K18ac).
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Figure 1. The effects of BoHV-1 infection on histone H3 acetylation. (A) MDBK (Madin-Darby bovine
kidney) cells in 60 mm dishes were mock infected or infected with BoHV-1 at a MOI of 1 for 4, 12 and
24 h. The cell lysates were then prepared for Western blots to detect histone H3, H3K9ac and H3K18ac.
Data shown are representative of three independent experiments. (C) MDBK cells in 60 mm dishes were
mock infected or infected with UV (ultraviolet)-inactivated BoHV-1 at an MOI of 1 for 24 h. The cell
lysates were prepared and subjected to Western blots to detect histone H3 and H3K9ac. Data shown
are representative of three independent experiments. (B,D) The band intensity was analyzed with
software image J. Each analysis was compared with that of uninfected control which was arbitrarily set
as 100%. The error bars denote the variability between the three independent experiments.
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Ultraviolet (UV) light-inactivated viruses are replication deficient because it could bind to
the receptors and enter the cells, but are unable to express viral genes [25,30]. To further
understand whether complete viral replication cycle was required to affect the histone H3 acetylation,
UV-inactivated viral particles were employed for further investigation. As shown in Figure 1C,D,
UV-inactivated virus had no effects on histone H3 acetylation. Thus, these results suggested that
de novo viral protein production and/or DNA replication seems to be associated with the decreased
acetylation of histone H3.

3.2. BoHV-1 Infection Differentially Affects the Expression of HATs and HDACs

Histone acetylation and deacetylation are reversible processes regulated enzymatically by HATs
and histone deacetylases (HDACs). HATs such as CBP/p300, GCN5L2, and PCAF, are enzymes
that acetylate conserved lysine residues on histones. To understand the mechanisms underlying
the decreased histone H3 acetylation by virus infection, we initially detected the protein levels of
CBP/p300, PCAF, and GCN5L2 following BoHV-1 infection at 4, 12, and 24 hpi. Virus infection
altered the expression of CBP/p300, PCAF, and GCN5L2, only at 24 hpi, all of them were robustly
decreased in comparison to the mock infected control (Figure 2A). The protein levels of CBP/p300,
PCAF, and GCN5L2 were reduced to approximately 59.3%, 12.5%, and 16.4% relative to the control,
respectively (Figure 2B). The global decease of HATs expression at 24 h after infection may reflect
their reduced capability for histone acetylation, which is in agreement with the decreased histone
H3 acetylation.
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Figure 2. The effects of BoHV-1 infection on the expression of HATs (histone acetyltransferase) and
HDACs (histone deacetylases). (A) MDBK cells in 60 mm dishes were mock infected or infected with
BoHV-1 at an MOI of 1 for 4, 12 and 24 h. The cell lysates were then prepared for Western blots to detect
(CREB binding protein and p300), GCN5L2 (general control of amino acid synthesis yeast homolog
like 2) and PCAF (P300/CBP-associated factor). Data shown are representative of three independent
experiments. (B,D) The relative band intensity was analyzed with software image J, and each analysis
was compared with that of uninfected control which was arbitrarily set as 100%. The error bars denote
the variability between the three independent experiments. (C) MDBK cells in 60 mm dishes were
infected with BoHV-1 at an MOI of 1 for 4, 12 and 24 h. The cell lysates were then prepared for
Western blots to detect HDAC1, HDAC2, HDAC3 and HDAC4. Data shown are representative of three
independent experiments.
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HDACs are a family of enzymes controlling deacetylation of histones. The family of mammalian
HDACs is comprised of at least 18 members which are classified into four classes: class I (HDAC1,
2, 3 and 8), class II (HDAC 4, 5, 6, 7, 9 and 10), class III (SIRT 1 to 7) and class IV (HDAC11) [31].
In this study, the expression of HDAC1-4 in response to virus infection was detected using Western
blots. As can be seen in Figure 2C,D, virus infection altered the expression of both HDAC1 and HDAC3
with distinct manners, while neither HDAC2 nor HDAC4 were apparently affected. At 24 hpi, the
expression levels of HDAC1 and HDAC3 were decreased to approximately 49.6% and 6.8% relative to
the control, respectively. The unexpected decreased expression levels of both HDAC1 and HDAC3
may undermine the finding that virus infection decreased the acetylation of histone H3. Taken together,
virus infection altered the expression of HATs and HDACs with distinct manners. Relative to HDACs,
the prominently decreased expression of HATs strongly supported the reduced acetylation of histone
H3 at 24 hpi.

3.3. The HAT Inhibitor Limits BoHV-1 Replication

Our foregoing results demonstrated that virus infection differentially altered HATs and HDACs
expression, particularly the depletion of HATs correlated with the reduced histone H3 acetylation.
Therefore, the role of HATs and HDACs in BoHV-1 productive infection was independently
investigated using HAT inhibitor anacardic acid (AA) and HDAC inhibitor Trichostatin A (TSA),
respectively. AA specifically inhibits the enzymatic activity of HATs, such as CBP/p300 and PCAF,
and thereby affects HAT-dependent gene transcription [32]. Also, AA has been reported to have
multiple other biological effects such as antitumor activity and antioxidant activity [33]. In this study,
we found that the treatment of virus-infected cells with HAT inhibitor AA at a concentration of
1 µM and 5 µM resulted in a 1.4- and 2.6-log reduction of the virus titer comparing to that in the
mock-treated control, respectively (Figure 3A). Indeed, 5 µM of AA treatment could inhibit histone H3
acetylation as demonstrated by the reduced levels of H3K9ac relative to the control, but AA increased
the levels of H3K9ac in the context of virus infection in comparison to the mock treated but infected
cells (Figure 3E,F). Maybe the significantly decreased progeny virus by AA treatment led to rescuing
the depletion of H3K9ac attributed to virus infection.

TSA is an HDAC-specific inhibitor that can selectively inhibit the enzymatic activities of class I
and II HDACs, but not class III HDACs [34]. Interestingly, it was reported that influenza virus infection
decreased HDAC1 expression in A549 cells, and the treatment of infected cells with 1 and 5 µM of
TSA resulted in 3.1-fold and 5.3-fold increase of progeny virus relative to the control, respectively [35].
In this study, we used much fewer concentrations of TSA to investigate its role in BoHV-1 replication.
We found that the treatment with 100 nM of TSA could restore histone H3 acetylation (Figure 3G,H),
but had no impact on the viral replication because the virus titer was only increased ~0.2 log (equal to
2-fold), with a difference not statistically significant (p > 0.05) (Figure 3B). Of note, all the concentrations
used for indicated inhibitors had no cytotoxicity to MDBK cells (Figure 3E). But we noticed that in
the context of virus infection the cell viability was reduced to approximately 96.2% by TSA (100 nM)
treatment (Figure 3I), which is a possible reason for why TSA treatment could not evidently booster
viral replication. These results suggested that the maintenance of HAT activities was essential for virus
productive infection.

CTPB is a potent activator of CBP/p300, but not of PCAF activities. To further confirm the
role of HAT played in the virus infection, CTPB, was employed for further investigation. CTPB at
a concentration of 100 µM showing no cytotoxicity to MDBK cells can significantly promote virus
productive infection (Figure 3C,E). The virus titer was increased ~0.9 log by the treatment with
100 µM of CTPB in comparison with the mock-treated control (Figure 3C). This observation further
suggested that the histone acetylation by HAT played an essential role in BoHV-1 productive infection.
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Figure 3. The effects of HAT inhibitor on BoHV-1 productive infection. (A–C) MDBK
cells in 24-wells plates were infected with BoHV-1 (MOI = 1) and treated with anacardic
acid (AA) (0, 1 and 5 µM) (A), TSA (trichostatin A) (0, 50 and 100 µM) (B), CTPB
[N-(4-Chloro-3-trifluoromethylphenyl)-2-ethoxy-6-pentadecylbenzamide] (0, 10 and 100 µM) (C) or
DMSO control for 1 h, respectively. After three washing with PBS, fresh medium with either inhibitors
or DMSO control were replaced. At 24 hpi, viral yields were determined in MDBK cells. Data represent
three independent experiments. Significance was assessed with the student t test (* p < 0.05, ** p < 0.01,
ns: not significant). (D) The cytotoxicity of AA (5 µM), TSA (100 µM), and CTPB (100 µM) was analyzed
in MDBK cells with Trypan-blue exclusion test. Data represent means of three independent experiments.
(E,G) MDBK cells in 60 mm dishes were uninfected or infected by BoHV-1 at an MOI of 1, along with
the treatment of either AA (5 µM) (E) or TSA (100 nM) (G), or DMSO control. At 16 hpi, cell lysates
were prepared and subjected to Western blots to detect the expression of H3K9ac. Data represent
three independent experiments (+: indicated compound or virus was present, −: indicated compound
or virus was not present). (I) The virus infected MDBK cells were mock treated with DMSO or TSA
(100 nM) throughout infection. At 24 hpi, the cell viability was detected with Trypan-blue exclusion test.
Data represent means of three independent experiments. (F,H) The band intensity was analyzed with
software image J. Each analysis was compared with that of uninfected control which was arbitrarily set
as 100%. The error bars denote the variability between the three independent experiments.

3.4. The HAT Inhibitor Affects Viral Gene Expression

Considering that histone acetylation regulated by HAT is an important factor controlling gene
expression, we further investigated the effects of chemical inhibition of HATs on viral gene expression.
For this purpose, the virus-infected cells were treated with 5 µM of AA or DMSO as a control, and the
mRNA levels of immediate early (IE) genes including bICP4 and bICP22 were detected with relative
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qRT-PCR. In AA treated virus-infected cell cultures, the mRNA levels of bICP4 decreased to 56.0%
and 46.7% relative to the mock-treated control, at 8 and 16 hpi, respectively, but at 4 hpi the chemical
treatment showed minor effects (Figure 4A). BICP22 mRNA levels were reduced to 32.1%, 37.1% and
30.0% by AA treatment relative to the control samples, at 4, 8 and 16 hpi, respectively (Figure 4B).
Though these IE proteins were not detected due to the unavailability of given antibodies, these results of
qRT-PCR indicated that the HAT inhibitor AA affected the transcription of these IE genes.

An additional study was performed to examine the effects of AA on the expression of viral
tegument protein VP16 by Western blots using an antibody against VP16. As demonstrated in
Figure 4C, at 16 hpi VP16 protein expression levels decreased approximately 1.79-fold by the
treatment with AA relative to that in the mock-treated control, indicating that AA affected VP16
expression. In summary, these findings further suggested that this HAT inhibitor affected BoHV-1
productive infection in MDBK cells, and therefore the maintaining of HAT activity is essential for virus
efficient replication.
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Figure 4. The effects of HAT inhibitor on BoHV-1 gene expression. (A,B) The virus infected cells were
treated with DMSO or AA (5 µM). Total RNA was prepared at indicated time points, and qRT-PCR
was performed to determine the mRNA levels of bICP4 (A) and bICP22 (B). (C) MDBK cells in 60 mm
dishes were infected by BoHV-1 at an MOI of 1 with the treatment of DMSO or AA (5 µM), at 16 hpi,
cell lysate was prepared and subjected to Western blots to detect VP16 protein. The band intensity
was analyzed with software image J. And analysis was compared with that of untreated but infected
control. Data represent three independent experiments. Significance was assessed with the student
t test (* p < 0.05, ** p < 0.01). ns: not significant.

3.5. The Proteasome Pathway—Mediated GCN5L2 Degradation Is Potentially Involved in BoHV-1
Infection-Decreased Histone H3 Acetylation

Generally, there are two potential pathways to control protein degradation in eukaryotic cells,
one mediated by ubiquitin-proteasome and other mediated by lysosome [36], which can be efficiently
inhibited by chemical inhibitors, such as MG132 and NH4Cl, respectively. To identify whether
the ubiquitin-proteasome and/or lysosome pathways are involved in the reduced acetylation of
histone H3 at 24 h after infection, the virus-infected MDBK cells were treated with either proteasome
inhibitor MG132 or lysosome inhibitor NH4Cl throughout infection as determined elsewhere [35,37].
The treatment of MG132 (1 µM) reversed the depletion of both H3K9ac and H3K18ac attributed to
virus infection, and rescued their expression to a level higher than that in the uninfected control,



Viruses 2018, 10, 525 9 of 15

whereas NH4Cl treatment did not show any effect (Figure 5A,B). The increased levels of ubiquitinated
proteins in MG132-treated cells but not in NH4Cl-treated cells confirmed the efficiency of MG132 as an
inhibitor for the proteasome pathway in MDBK cells (Figure 5C). Though the concentration of MG132
used in this study did not show obvious cytotoxicity to MDBK cells (Figure 5F), the chemical may have
off-target effects. So, another proteasome inhibitor bortezomib was employed to validate the rescued
effects of MG132. As expected, bortezomib at a concentration of 2 nM showing no cytotoxicity to
MDBK cells could reverse BoHV-1-reduced expression of histone acetylation marker H3K9ac to a level
a little bit higher than that in the uninfected control (Figure 5D–F), though bortezomib showed relative
lower capability than MG132. These results suggested that the ubiquitin-proteasome pathway may
contribute to the decreased acetylation of histone H3 in the virus infected cells.
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Figure 5. The effects of ubiquitin-proteasome pathway on histone H3 acetylation. (A,C) MDBK cells in
60 mm dishes were mock infected or infected with BoHV-1 (MOI = 1) and treated with either MG132
(1 µM) or NH4Cl (10 mM), or mock treated with DMSO vehicle for 24 h. The cell lysates were prepared
for Western blots to detect the expression of H3K9ac and H3K18ac (A), and the ubiquitined protein
(C). Data shown are representative of three independent experiments. (D) MDBK cells in 60 mm
dishes were infected with BoHV-1 (MOI = 1) and treated with bortezomib (2 nM), or mock treated with
DMSO control for 24 h. The cell lysates were prepared for Western blots to detect the expression of
H3K9ac. Data shown are representative of three independent experiments. (B,E) The band intensity
was analyzed with software image J. Each analysis was compared with that of uninfected control
which was arbitrarily set as 100%. The error bars denote the variability between the three independent
experiments. (F) The cytotoxicity of MG132 (1 µM), ammonium chloride (NH4Cl) (10 mM) and
bortezomib (2 nM) in MDBK cells for 24 h was analyzed by Trypan-blue exclusion test. Data represent
the means of three independent experiments. +: indicated compound or virus was present, −: indicated
compound or virus was not present.

In view that the proteasome inhibitors of both MG132 and bortezomib could rescue the
depletion of H3K9ac (a marker for histone H3 acetylation) attributed to virus infection, we investigated
whether H3K9ac was ubiquitinated in the cells with or without infection by IP assay. Unexpectedly,
when we performed IP with the H3K9ac specific monoclonal antibody, the ubiquitinated protein bands
could not be detected in the cells with or without infection using ubiquitin specific antibody (Figure 6A),
indicating that H3K9ac is not ubiquitinated in MDBK cells. So it was highly possible that the
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depletion of acetylated histone H3 due to virus infection was not caused by the proteasome-mediated
H3K9ac degradation.

Our foregoing results indicated that both PCAF and GCN5L2 were significantly decreased by
the virus infection (Figure 2A). Interestingly, the treatment of virus-infected cells with 1 µM of MG132
could significantly reverse the depletion of GCN5L2 but not PCAF (Figure 6B,C). We speculated
that virus infection may promote GCN5L2 degradation via proteasome pathway. Therefore, IP was
performed with GCN5L2 specific monoclonal antibody, and ubiquitin specific antibody was used to
detect the ubiquitination of GCN5L2 in the cell cultures. As a result, the ubiquitinated GCN5L2
could be detected from the IP sample by the immunoblot using ubiquitin specific antibody (Figure 6D).
This result indicated that virus infection might target GCN5L2 for ubiquitin-mediated degradation,
which would partially account for the depletion of acetylated histone H3 and correlated with the
reversed depletion of H3K9ac by the treatment of MG132 in the virus-infected cells.
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Figure 6. The ubiquitin-proteasome pathway mediated GCN5L2 degradation. (A,D) MDBK cells in
60 mm dishes were mock infected or infected with BoHV-1 (MOI = 1) for 24 h. The cell lysates were
prepared for IP using the antibody of either against H3K9ac (A) or GCN5L2 (D). The IP samples were
subjected to immunoblots using antibodies against ubiquitin, H3K9ac and GCN5L2. The expression of
GCN5L2 and ubiquitinated proteins in the input cell lysates in panel D were detected as a control. Data
shown are representative of three independent experiments. (B) MDBK cells in 60 mm dishes were
infected with BoHV-1 (MOI = 1) and treated with MG132 (1 µM), or mock treated with DMSO control
for 24 h. The cell lysates were prepared for Western blotting to detect the expression of PCAF and
GCN5L2. Data shown are representative of three independent experiments. (C) The band intensity
was analyzed with software image J. Each analysis was compared with that of uninfected control
which was arbitrarily set as 100%. The error bars denote the variability between the three independent
experiments. +: indicated compound or virus was present, −: indicated compound or virus was
not present.
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4. Discussion

Acetylation is one of the best-characterized covalent modifications of histones.
Hyperacetylation of histones is associated with an “open chromatin” conformation and transcriptional
activation, whilst hypoacetylation of histones is associated with condensed chromatin and gene
silencing [38,39]. For some DNA viruses, such as HSV-1 and canine parvovirus, much is known about
the effects of histone modification on virus replication. During HSV-1 productive infection, the viral
genomes are associated with histones immediately after injection into the nucleus, and viral proteins
ICP0 and VP16 are required to enhance histone acetylation on the viral genome to enable efficient
viral gene expression [18,40]. During canine parvovirus infection, cellular histones are associated with
viral DNA, and histone acetylation on parvoviral DNA is essential for viral gene expression [20].
BoHV-1 tegument protein VP22 associates with histones and thereby decreased histone H4 acetylation
in infected cells or VP22 transfected cells [22]. In this study, for the first time we demonstrated that
histone H3 acetylation (H3K9ac and H3K18ac) was significantly decreased during BoHV-1 infection in
MDBK cells, and peaked at 24 h after infection (Figure 1), which suggested the involvement of histone
H3 acetylation in BoHV-1 infection.

To further elucidate the potential mechanisms for the decreased histone H3 acetylation in
response to the virus infection, the steady state expression of certain HATs and HDACs were
investigated because they regulate enzymatically histone acetylation with opposite effects. We found
that the virus infection led to a global decrease of all the detected HATs, including CBP/p300, GCN5L2
and PCAF (Figure 2A), which was clearly in favor of the finding that virus infection decreased histone
H3 acetylation (Figure 1). However, it seems that downregulation of both HDAC1 and HDAC3 by virus
infection was not correlated with the decreased levels of histone H3 acetylation, which emphasized
the complexity of the mechanisms for the regulation of histone acetylation following virus infection.
It has been reported that HDAC1 regulates influenza A virus (IAV) replication independent of its
deacetylation activity [41]. HDAC1 stimulates host type I interferon antiviral response, therefore
IAV infection decreases HDAC1 expression for efficient replication [35]. The treatment with TSA,
an HDAC inhibitor, increases IAV infection via the inhibition of signal transducer and activator of
transcription I (STAT1) pathway, and the depression of interferon-stimulated genes including IFITM3,
ISG15, and viperin in IAV-infected cells [35]. HDAC3 is required for inflammatory gene expression in
response to LPS stimulation [42]. So, HDAC1 and HDAC3 can stimulate host antiviral response or
inflammatory response, which tend to be depressed by virus infection. Moreover, HDAC inhibitors
promote HSV-1 productive infection in neural cells [43,44]. Likewise, we found that TSA enhanced
BoHV-1 virus yield approximately 2-fold, but the difference was not statistically significant (Figure 3).
Therefore, we assumed that the downregulation of HDAC1 and HADC3 would be beneficial for
BoHV-1 efficient replication independent of their deacetylation activity, which needs further extensive
studies, in the future.

It has been reported that the ubiquitin-proteasome pathway, generally known to mediate
protein degradation, is involved in BoHV-1 productive infection and immune invasion [28,45]. Here,
we found that the ubiquitin-proteasome inhibitors could reverse the depletion of acetylated H3
in BoHV-1 infected cells (Figure 3). Mechanistically, the virus infection targeted GCN5L2 but not
acetylated histone H3 for proteasome-mediated degradation (Figure 6), which may consequently
reduce the acetylation of histone H3. Previous studies have reported that some BoHV-1-encoded viral
proteins promote the proteasome-mediated degradation of certain cellular proteins. For example,
both interferon response factor 3 (IRF3) and promyelocytic leukemia (PML) are targeted by viral
proteins bICP0 for proteasome-dependent degradation [45,46]. Viral UL49.5 protein is involved in
the proteasome-mediated degradation of the transporter associated with antigen presentation [47].
The BoHV-1 host shutoff protein UL41 destabilizes the expression of immune responses related genes by
ubiquitin-proteasome pathway [48]. Taken together, the above evidence indicates that virus-encoded
proteins may target specific cellular proteins for proteasome-dependent degradation. Whether a
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specific viral protein(s) is involved in the depletion of GCN5L2 through proteasome pathway is an
interesting subject which is remained to be determined in the future.

In this study, we found that BoHV-1 replication was positively correlated with HAT activity
because the treatment with HAT activator (CTBP) increased the virus yield, and vice versa,
it was significantly decreased by HAT inhibitor (AA) partially through affecting virus gene
expression(Figures 3 and 4). This finding is supported by a previous report that CBP/p300, an HAT,
enhances BoHV-1 productive infection and transactivation of late viral protein gC promoter [49].
Taken together, these findings suggested that BoHV-1 infection may take advantage of histone
acetylation for efficient replication. We speculated that HAT-dependent histone H3 acetylation plays
an important role in BoHV-1 replication in MDBK cells.

In this study, the expression status of acetylated H3 including H3K9ac and H3K18ac was
investigated in the context of virus infection. We demonstrated that histone acetylation played
an important role in BoHV-1 replication, while the virus infection decreased histone H3 acetylation by
differentially altered expression of HATs and HDACs. In addition, virus infection targeted GCN5L2
for degradation via the proteasome pathway, which correlated well with the reversed depletion of
H3K9ac by the treatment of MG132 in the virus-infected cells. We suggested that the HAT-dependent
histone (H3) acetylation plays an important role in BoHV-1 replication in MDBK Cells

5. Conclusions

In summary, we provided evidence that BoHV-1 infection decreased histone H3 acetylation in
MDBK cells, while histone acetylation played an important role in BoHV-1 replication. We suggested
that HAT-dependent acetylation of histone H3 plays a vital role in BoHV-1 replication. This finding
might add our knowledge on understanding the mechanism for the viral pathogenesis.
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