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Abstract: A calix[4]arene ligand, in which two of the
phenol functions are replaced by pyrazole units has been

employed to mimic the His2–Tyr2 (His: histidine, Tyr: tyro-
sine) ligand sphere within the active site of the galactose

oxidase (GO). The calixarene backbone forces the corre-
sponding copper(II) complex into a see-saw-type struc-

ture, which is hitherto unprecedented in GO modelling
chemistry. It undergoes a one-electron oxidation that is
centered at the phenolate donor leading to a copper-co-

ordinated phenoxyl radical like in the GO. Accordingly, the
complex was tested as a functional model and indeed

proved capable of oxidizing benzyl alcohol to the respec-
tive aldehyde using two phenoxyl-radical equivalents as
oxidants. Finally, the results show that the calixarene plat-

form can be utilized to arrange donor functions to bio-
mimetic binding pockets that allow for the creation of

novel types of model compounds.

Macrocyclic polyphenols—coined calixarenes by C. D. Gut-
sche—have been known for almost 80 years now.[1] Their high-
yield preparation from cheap commercially available starting
materials and easy post modifications have made them well-
established and often utilized macromolecules in diverse fields

of chemical research and applications.[2] Calixarenes were also
employed as ligands in transition-metal chemistry, for instance,

as a mimic of oxidic surfaces and hence for the modelling of
the active sites of heterogeneous catalysts.[3] However, given
that they provide a coordination platform that contains exclu-

sively hard oxygen donors, they have hardly been used in bio-
mimetic studies. There are no enzymes with such binding

pockets composed for obvious reasons: hard metal centers in

high oxidation states (e.g. FeIII or FeIV) mainly occur in reactive
intermediates as part of catalytic cycles and in the course of

turnover these are reduced to softer, low-oxidation-state metal
centers (e.g. FeII), which prefer soft ligands. Metal-binding sites

of metalloenzymes have to balance these two different de-

mands and therefore often feature mixed ligand spheres,
which have to be mimicked also in models. Hence, it is not sur-

prising that calixarenes, so far, have rarely been employed in
bioinorganic chemistry. Only modified forms in which the

phenol units are functionalized by pendant N-donors were in-
vestigated, for instance, in biomimetic copper or zinc chemis-

try.[4] From the structural point of view, the introduction of the

pendant groups makes the metal complex more flexible. Even
though not necessarily detrimental to the desired activity, this

flexibility eliminates one attractive feature of the calixarene
platform, namely its potential to direct donors to a well-de-

fined binding pocket, which renders calixarenes appealing as
three-dimensional analogues of rigid multidentate systems,
such as salens or porphyrins.

We were interested in exploiting calixarene-shaped binding
sites also in bioinorganic investigations, which required the in-

troduction of soft donor atoms directly in place of one or
more oxygen atoms of the calixarene lower rim. Recently,
some of us have developed the oxygen-depleted calixarene
bispyrazolyl-tert-butyl-calix[4]arene ([H2(bpzCal)] , Figure 1) fea-

turing two pyrazole moieties beside two phenolic donors,[5]

which is reminiscent of a His2–Tyr2 coordination sphere found
in certain enzymes. One of those is the galactose oxidase (GO)
and hence we decided to test the potential of the [bpzCal]2@

ligand to construct molecular models of the GO.

Figure 1. Left : Molecular structure of [H2(bpzCal)] .[5] Right: Similarities of the
ligand’s donors with natural amino acid side chains.
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The GO catalyzes the oxidation of primary alcohols to the
corresponding aldehydes. In the resting state it contains a cop-

per(II) ion coordinated by two tyrosine and two histidine
amino acid residues (Figure 2).[6] Previous attempts to mimic

this coordination environment often used salen ligands, which,

however, forces the central ion into an almost square-planar
coordination environment. This rigidity has proven to impede

changes in oxidation state, because the Franc–Condon barrier
is high in energy as evidenced by model complexes that were

oxidized most easily when a high degree of distortion at the
metal center was given.[7] In contrast to salens, calixarenes pro-

vide a more variable coordination site, which, however, is still

well-defined and pre-organized for metal-ion complexation.
Consequently, the synthesis of a copper(II) complex of

[H2(bpzCal)] was pursued, as well as corresponding nickel and
zinc complexes for comparison. Deprotonation of the ligand

precursor, followed by salt metathesis, only led to incomplete
reactions and salt contamination resulting in purification
issues. Hence, another strategy had to be chosen. The use of

basic metal precursors has already proven a suitable approach
to obtain pure calixarene complexes in previous metalation re-
actions.[8] Therefore, [Ni(NPh2)2]2

[9] and Cu(dmap)2
[10] (dmap: 1-

imethylamino-2-propanolate) were chosen as metalation re-

agents resulting in high yields of complexes [Ni(bpzCal)] and
[Cu(bpzCal)] (Scheme 1), which were isolated as intensely col-

ored analytically pure solids.
X-ray structure analyses of single crystals that were grown

by slow evaporation of the volatiles from THF solutions re-

vealed almost identical coordination spheres for the metal cen-
ters in the two complexes, composed of two phenolate and

two pyrazole donors (Figure 3 and Figure S14 in the Support-
ing Information).

In both cases, there are two crystallographically independent
molecules in the unit cell, the metrical parameters of which are
almost identical. Regarding the td value, the coordination ge-
ometry of the metal ions can be described best as intermedi-
ate between tetrahedral and square-planar, commonly called

the seesaw coordination.[11] To the best of our knowledge,
these two complexes are the first examples of structurally char-
acterized mononuclear nickel and copper calixarene complexes

in which phenolic oxygen donors directly coordinate the metal
and therefore interact without any spacers.

Both compounds are in high-spin configurations with mag-
netic moments of meff = 3.16 and meff = 1.91 mB for [Ni(bpzCal)]

(two unpaired electrons) and [Cu(bpzCal)] (one unpaired elec-

tron) respectively, as determined by the Evans method on
CD2Cl2 solutions of the complexes. Therefore only [Cu(bpzCal)]

is X-band EPR active (Figure S10 in the Supporting Information)
in contrast to [Ni(bpzCal)] for which the large zero-field split-

ting (ZFS) of the S = 1 spin state results in the absence of any
observable signal.

Figure 2. Catalytic cycle of GO and its different redox states.

Scheme 1. Syntheses of a) [Ni(bpzCal)] (M = Ni) and b) [Cu(bpzCal)] (M = Cu).

Figure 3. Molecular structure of [Cu(bpzCal)] . Selected bond lengths [a] and
angles [8]: Cu1@O1 1.896(3), Cu1@O2 1.856(3), Cu1@N1 2.035(4), Cu1@N3
2.018(4) ; N1-Cu1-N3 130.74(15), O1-Cu1-O2 165.68(14). Hydrogen atoms and
cocrystallized solvent molecules are omitted for clarity.
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Cyclovoltammetric (CV) measurements on both complexes
surprisingly revealed variations in the electrochemical behav-

ior: in contrast to [Ni(bpzCal)] , which exhibits only one quasi-
reversible oxidation wave at E1=2

= 130 mV, [Cu(bpzCal)] can be

oxidized a second time at a potential of 2E = 670 mV (1E1=2
=

110 mV) although this event is highly irreversible (Figure 4). To

understand the origin of the oxidation (metal- or ligand-based)

and the differing behavior, the corresponding complex of the

redox-inert metal zinc [Zn(bpzCal)] was analyzed. This com-
pound also exhibits oxidation events in the CV in a similar

region. However, in contrast to the cyclic voltammograms of
the lighter analogues, the zinc complex exhibits two quasi-re-

versible oxidation waves (1E1=2
= 135, 2E1=2

= 340 mV) separated
by only 205 mV (Figure 4). This indicates that the redox events
found for the previously mentioned complexes likely are not

metal-based but involve the phenolate functions.
The different appearances of the three CVs can then be ex-

plained by the different degrees of electronic delocalization
and communication after the first oxidation event: the elec-

tronic communication between the oxidized and the remain-
ing second phenolate cannot be mediated effectively by the

central ion in the case of zinc because of its completely filled

d10 configuration, leading to two oxidations at potentials that
do not differ significantly;[12] indeed there are also examples re-

ported in which both electrons are removed simultaneously.[13]

The communication can be facilitated by the open-shell 3d

metal ions nickel(II) and copper(II), so that the removal of a
second electron is affected more significantly.[14] Hence, in the

case of [Cu(bpzCal)] this second oxidation is shifted to much

higher potentials and is irreversible in nature. This shift will be
even more pronounced in the case of [Ni(bpzCal)] so that it is

not observable anymore in the potential window of the used
solvent.

To confirm the inferences made above spectroscopically, we
performed spectroelectrochemical measurements. When col-

lecting UV/Vis spectra while going through the first oxidation
waves of the neutral complexes with a low scan rate, the for-

mation of new bands was observed (Figure 5).

The electronic absorption spectra of the oxidized species

have a new strong absorption band around 400 nm in
common (402 for [Ni(bpzCal)]++ and 392 nm for [Cu(bpzCal)]++).

Given that [Zn(bpzCal)]++ also shows such a band at 401 nm,
these absorptions (Figures S8 and S9 in the Supporting Infor-

mation) can be assigned to the p–p* transition of a phenoxyl

radical.[15]

For further investigations, we headed towards chemical oxi-

dation of the complexes. AgSbF6 (E1=2
= 650 mV vs. Fc/Fc++)[16]

proved to be a suitable one-electron oxidant to realize the first

oxidation. Addition of one equivalent of the silver salt to solu-
tions of dark-blue [Cu(bpzCal)] or deep-red [Ni(bpzCal)] in
CH2Cl2 caused an immediate color change to dark-green or

dark-orange, respectively, accompanied by precipitation of ele-
mental silver. These oxidation products gave UV/Vis spectra
identical to those of the electrochemically generated species.

In previous extensive studies resonance Raman (rR) spectros-

copy has proven a powerful tool for the detection of phenoxyl
radicals. When CH2Cl2 solutions of the oxidized compounds are

excited with a 413 nm laser, which matches the electronic tran-
sitions of the radical at around 400 nm well, especially the
modes n7a and n8a of the phenoxyl radicals are enhanced

(Figure 6).
In contrast to the nickel derivative, [Cu(bpzCal)]++ shows a

strong band at 1484 cm@1, which can be assigned to a pheno-
late vibration by comparison with the reduced complex (Fig-

ure S6 in the Supporting Information). This points towards a lo-

calization of the radical in this case. Clearly, the nickel com-
pound features a more delocalized electronic structure and

therefore lacks a phenolate band in its rR spectrum. Both com-
plexes exhibit a band at around 1520 cm@1 assignable to the

n7a mode of the C@O vibration. The frequencies of these bands
are somewhat higher than those found for other known metal-

Figure 4. Cyclic voltammograms recorded vs. Fc/Fc++ (100 mm [nBu4N]PF6,
Au/Pt/Pt electrodes, 100 mVs@1) of [Ni(bpzCal)] (red) and [Cu(bpzCal)] (blue)
in CH2Cl2 (1 mm) at 293 K. Inset: cyclic voltammogram of [Zn(bpzCal)] (same
conditions).

Figure 5. UV/Vis spectral changes observed for 1 mm CH2Cl2 solutions of
[Cu(bpzCal)] during cyclic voltammetry, while moving through the first oxi-
dation wave with 5 mVs@1 at 293 K. Inset: cyclic voltammograms of [Cu-
(bpzCal)] at different scan rates (conditions see Figure 4).
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coordinated phenoxyl radical species, suggesting a larger con-

tribution of the quinonoid canonical form in our case. The n8a

mode of the Cortho@Cmeta vibration appears at around 1600 cm@1

in both cases fitting well with reported values.[17]

Galactose oxidase in its active form has a diamagnetic

ground state through antiferromagnetic coupling of the

ligand-radical spin with the unpaired d-electron of the cop-
per(II) metal ion.[18] Therefore, it was of interest to determine

which spin state the phenoxyl radical complexes described
above adopt. Given the limited stability of the oxidized species

in the solid state, no reliable SQUID data could be obtained.
However, magnetic susceptibilities in solution could be deter-

mined by using Evans method: [Ni(bpzCal)]++ has a magnetic

moment of meff = 3.67 mB fitting well with the expected value
for three unpaired electrons, thereby suggesting a S = 3=2 spin

state. In contrast [Cu(bpzCal)]++ has a moment of meff = 2.66 mB

which is close to two unpaired electrons of a S = 1 spin state,

definitely excluding a diamagnetic ground state in our case.
To further corroborate the actual spin states, X-band EPR

measurements of frozen solutions were performed: in contrast

to its neutral precursor, [Ni(bpzCal)]++ is EPR active and exhibits
a rhombic signal that was simulated best with gx = 2.36, gy =

2.34, and gz = 2.24 (Figure S12 in the Supporting Information).
The g-factors of typical NiIII species are usually somewhat lower
at around 2.1, thus a metal centered oxidation in our case can
again be excluded. The signals are not well resolved, which

may be attributed to the general difficulty of collecting EPR
spectra of S = 3=2 systems at liquid-nitrogen temperatures. The
original EPR signal of [Cu(bpzCal)] is attenuated in the course

of the oxidation leaving only a residual signal for an organic
radical (g&2) together with one for copper(II) (Figure S11).

They account for less than 10 % of the total spin concentration,
likely originating from a disproportionation reaction yielding

CuII and a twofold oxidized species. [Zn(bpzCal)]++ is the most

unstable complex of the series, thus only traces (&10 %) of an
organic radical with giso = 2.00 were detected by EPR (Fig-

ure S13).
Given that no crystals could be grown to investigate the

molecular structures of these compounds due to the high in-
stability of the oxidized complexes, DFT calculations were per-

formed to gain insights into possible structures and spin
states: for [Cu(bpzCal)]++ two isomers were found, one with the

same symmetry as its neutral precursor and one asymmetric
version, both in a singlet and a triplet state (Figure 7). With ex-

ception of the symmetric closed-shell singlet state, all struc-
tures and states are very close in energy (Table S1 in the Sup-

porting Information), with the asymmetric triplet as ground
state, matching the results described above.

Both in the symmetric and the asymmetric isomer of

[Cu(bpzCal)]++ the Cu atom was then replaced by Ni followed

by re-optimization. Given that Ni has one electron less than
Cu, doublet and quartet states result. For the doublet state, a

symmetric and an asymmetric isomer were found, however, for
the quartet state all optimizations resulted in a symmetric

structure, which is the ground state of the molecule (Table S2
and Figures S19–S21 in the Supporting Information), which is

in agreement with the experimental findings.

Hence, from the above data it becomes very clear that a
complex with copper(II) ion in a coordination sphere resem-

bling the one in the active site of the GO can be generated
and that it can be oxidized at the phenolate donor to yield a

radical complex with a triplet ground state. This complex com-
pares well with the active state of the GO, with the difference

that the latter has a singlet ground state. To that extent it was

now of much interest to test the reactivity of our complexes
towards a primary alcohol.

Accordingly, chemically generated solutions of [Cu(bpzCal)]++

and, for comparison, also [Ni(bpzCal)]++ in CH2Cl2 were treated
with benzyl alcohol as the model substrate. The formation of
the two-electron oxidation product benzaldehyde was indeed

detected through 1H NMR spectroscopy; however, unlike in
case of the enzymatic paragon, formation of only half an
equivalent of the aldehyde per equivalent complex was ob-

served (Scheme 2).
Although in the enzymatic catalytic cycle the CuII center per-

forms the second oxidation step (!CuI) its oxidation potential
in the complex is obviously not sufficiently positive, so that a

second equivalent of the complex is needed.[19] Indeed, the CV

of [Cu(bpzCal)] exhibits a redox event assigned to the Cu2++/

Figure 6. Resonance Raman spectra (Kr++ laser, lexc = 413 nm, 5 mW) of
[Ni(bpzCal)]++ (top) and [Cu(bpzCal)]++ (bottom) in CH2Cl2 (4 mm) at 203 K.

Figure 7. Optimized molecular structures and Mulliken spin-density distribu-
tions of the asymmetric triplet state of [Cu(bpzCal)]++. Hydrogen atoms are
omitted for clarity.

Scheme 2. Benzyl alcohol oxidation with [M(bpzCal)]++ (M = Ni, Cu).
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Cu++ couple (Figure S7 in the Supporting Information) at a po-
tential (redE =@1.53 V) that is not suitable to perform the alco-

hol oxidation.
In conclusion, we reported here a model of the GO with a

unique biomimetic donor sphere around the copper center
that is provided by a calixarene framework. In contrast to most

model complexes known so far [Cu(bpzCal)] features a nonpla-
nar structure that resembles the one of the His2–Tyr2 core
found for the enzyme, which, however, coordinates in the

active state an additional water molecule and is able to release
one of the Tyr donors upon protonation. Like the enzyme, the
model can be singly oxidized to yield a phenoxyl radical coor-
dinating the copper center, mimicking the active state of the
GO albeit with a different spin state. The latter, however, is not
decisive for the reactivity: the oxidized complex was capable

of converting benzyl alcohol to the corresponding aldehyde,

like the GO does, but through a different mechanism involving
two equivalents of the complex. To mimic the two-electron ox-

idation more faithfully, future attempts will focus on the stabili-
zation of the copper(I) state through the ligand system so that

the copper(II) state becomes more oxidizing.
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