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Abstract We analyze a simple model of a self-repressing system with multiple gene
copies. Protein molecules may bound to DNA promoters and block their own tran-
scription. We derive analytical expressions for the variance of the number of protein
molecules in the stationary state in the self-consistent mean-field approximation. We
show that the Fano factor (the variance divided by the mean value) is bigger for the
one-gene case than for two gene copies and the difference decreases to zero as fre-
quencies of binding and unbinding increase to infinity.

Keywords Self-repressing gene - Multiple gene copies

1 Introduction

One of the fundamental processes taking part in living cells is regulation of gene
expression. It enables cells to differentiate and adapt to a changing environment.
Gene expression is a complex process involving many biochemical reactions with
proteins being final products. Produced proteins may in turn enhance or repress ex-
pression of other proteins. They may also regulate their own expression. Such reg-
ulatory networks in cells, from the smallest ones to those very complicated, have
been arousing growing interest recently (Becskei and Serrano 2000; Thattai and van
Oudenaarden 2001; Kepler and Elston 2001; Simpson et al. 2003; Lipshtat et al. 2005;
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Lipniacki et al. 2006; Hat et al. 2007; Komorowski et al. 2009; Loinger and Biham
2009). In many cases, biochemical processes take place in small volumes and may
involve only few molecules. Deterministic approach dealing with macroscopic con-
centrations of molecules (such as ordinary differential equations of classical chemical
kinetics) is then inappropriate. A small number of molecules taking part in gene ex-
pression results in significant random fluctuations and to take into account such fluc-
tuations, many stochastic models were proposed (Thattai and van Oudenaarden 2001;
Swain et al. 2002; Paulsson 2004, 2005).

In many cases, genes exist in several copies (Hat et al. 2007) (and references
therein). Understanding the influence of the number of gene copies on the behav-
ior of the system is crucial for designing experiments, which very often involve
transfection—introducing an extra copy of the gene with a fluorescent marker in
order to observe the evolution of the system. We must take into account that an ad-
ditional copy of the gene might change the global behavior of the cell. It has been
argued in Hat et al. (2007) that the knowledge of how the number of gene copies
influences gene expression might lead to a better understanding of experimental data
in cancer research. In fact, cancerous cells have, due to mutations, a larger number of
gene copies, and thus predictions for tumor’s invaded systems are not the same as for
healthy ones.

The minimal model of gene expression, that is, of the production of protein
molecules in living cells, consists of four fundamental biochemical processes:
transcription (production of mRNA molecules), translation (production of protein
molecules), and degradation of molecules of both types. One can compute in this
model all moments of the number of protein molecules in the stationary states. In par-
ticular, a simple formula for the variance was derived in Thattai and van Oudenaarden
(2001); see also Swain et al. (2002), Paulsson (2004, 2005) and Paszek (2007). Here,
we lump transcription and translation into one process, that is, we use a standard ap-
proximation proposed in Kepler and Elston (2001), which is valid if transcription is
much faster than translation.

We analyze a simple model of a self-repressing system with one or two gene
copies. Protein molecules may bind to DNA promoters and repress their own tran-
scription. We assume here that each gene copy can be in the unbound state or in the
bound state with a lower transcription rate. Such an interaction of protein molecules
with transcription factors makes the rigorous analysis of the cell dynamics very diffi-
cult. In the case of only one gene copy, exact results were obtained recently in Hornos
et al. (2005) and Ramos et al. (2011). In particular, a stationary probability distribu-
tion of the number of protein molecules was presented as a series involving Kummer
functions (Hornos et al. 2005). Time evolution of the probability distribution was
considered in Ramos et al. (2011).

Here, we obtain explicit formulas for the variance of the number of protein
molecules in the stationary state in the self-consistent mean-field approximation.
Such approach, used commonly in statistical physics (Huang 1963; Ma 1985), was
introduced recently in gene expression models in Ohkubo (2010); see Migkisz and
Szymanska (2012) to compare a mean-field approximation in the Ising model of in-
teracting spins and in a simple model of self-repressing gene. We also discuss two
extreme cases: slow switching (binding/unbinding), where to get analytic results we
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can use the conditional variance or simply perform an appropriate limit and fast gene
switching, where we use an adiabatic approximation. We show analytically that in
both extreme cases, the stationary variance of the number of protein molecules co-
incides with the mean-field approximation. We solved a truncated system of Master
equations and showed that the solution agrees with the mean-field approximation for
the whole range of the adiabaticity parameter.

The main goal of this paper is to establish how the number of gene copies influ-
ences the variance of produced proteins in a simple case of a self-repressing gene. We
show that the two-gene system has a lower Fano factor (the variance divided by the
mean value than the one-gene regulatory system). The difference disappears when
the rate of switching becomes large as compared to production and degradation rates,
that is in the adiabatic limit.

In Sect. 2, we analyze one-gene model. Two gene copies are discussed in Sect. 3.
Section 4 is devoted to the fast switching gene case, and Sect. 5 to the slow switching
one. Conclusions follow in Sect. 6.

2 Self-repressing Gene

Here, we analyze the simplest model of a self-regulating gene. We lump transcription
and translation into one process, so we assume that proteins are produced directly out
of DNA in one biochemical process (Kepler and Elston 2001). We will discuss here
the repression—protein molecules may bind to a certain promoter region of their own
DNA, and thus decrease or completely stop the transcription. In continuous models
of chemical kinetic equations, the repression is modeled by the modification of a
transcription rate, it might be given by a Hill function h(n) =k /(1 + cn™), where k is
the maximal transcription rate, n the number of repressing protein molecules, ¢ and
h are constants (Komorowski et al. 2009).

Here, we will consider a stochastic model, where the gene (DNA) can be in two
discrete states: unbound (on), denoted by O or bound (off), denoted by 1. In the
generic case, the transcription rates for the on- and off-states are given by ko and
k1 respectively, but we set k1 = 0, as it is often done. The protein degradation rate is
denoted by y. We consider a monomer binding and thus we assume that the binding
rate is given by Bn, where n is the number of proteins in the system, and the rate of
switching the gene on (unbinding) is denoted by «; see Fig. 1.

Let us introduce formally our model. We denote by fi(n,t), i =0, 1 the joint
probability that there are n protein molecules in the system at time ¢ and the gene
(DNA) is in the state i. The standard Master equation (Van Kampen 1997) can be
written as:

d
Efo(n, D=ko[fon—1) = fom]+y[(n+ D foln+1) —nfon)]
— Bnfo(n) +afi(n)
4 (D
Efl(n,t) =ki[fih—1D = fim]+y[nfin+1) = -1 fin)]
+ Bnfo(n) —afi(n)
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Fig. 1 (a) One-gene system. The protein is produced directly from the DNA in state 0 with the rate
ko, a single molecule degrades with rate y. The production is switched off when a protein binds to the
promoter region. Binding and unbinding takes place with Bn and o rates, respectively. (b) Two-gene
system. Molecules bind to promoters of both gene copies independently

forn > 1.

For n = 0 we have £ £,(0,1) = —ko fo(0) + y fo(1) and £1(0,#) =0.

Let us emphasize that n is the total number of molecules; one of them is bound
to the promoter when the gene state is 1. It follows that f1(0, ¢) = 0 all the time. We
have also assumed that the bound protein cannot degrade. In this respect, our Master
equation is different from the one discussed in Hornos et al. (2005); see also Qian
et al. (2009).

We denote by (fo, f1) a stationary state of our system, that is a solution of (1) with
time derivatives set to zero. Let Ag and A be probabilities (frequencies) that the gene
is unbound or bound, respectively, in the stationary state, A; = :[28 fi(n), i=0,1.
The stationary expected number of protein molecules with respect to f; is given by
(n); = ;ﬁg nf;(n), obviously (n) = (n)o + (n); is the expected value with respect
to f = fo+ f1. We introduce two generating functions:

+00 ~+00
Foz.)=Y " fo(n.1) and Fi(z.0)=Y 2" fi(n.1).

n=0 n=0

We differentiate generating functions with respect to time, use (1), and after some
simplifications, we get

0Fo(z 1) _ (z— 1)[k0Fo(z, 1) — J/M] —B LD L, Fiz0
ot dz 0z
F F
%:(Z—1)|:k1F1(z,t)—VM]"‘Fl(z’t)()’_Z) @)
P 9z 2
g ARED
0z
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Now we differentiate the above equations with respect to z once and twice, set z = 1,
time derivatives to zero, and get the following algebraic equations for the moments
of the stationary probability distribution of the number of protein molecules:

Ao+ A =1

Binyo —aA; =0

koAo — y (n)o — B(n®)o +a(n) =0

kiAy —y(n)1 +y A+ B(n?)o — a(n) =0

2ko(n)o — 2y (n(n — 1))o — B(n*(n — D)o+ a(n(n — 1)); =0
2ki(n)1 — 2y {n(n — )1 + 2y ((n)1 — Ap) + B(n®(n — D)o —aln(n — 1)); =0

3

The above system is hierarchical, equations for lower moments involve higher mo-
ments (unlike equations in the classical model of unregulated gene expression ana-
lyzed in Thattai and van Oudenaarden 2001). It is not closed (there are more variables
than equations) and, therefore, in principle cannot be solved. In order to get explicit
formulas for moments, in particular the variance, one has to close somehow the in-
finite chain of equations. Several concepts and techniques were developed (Nasell
2003; Barzel and Biham 2011; Barzel et al. 2011). Here, we will use the so-called
mean-field approximation well known in statistical physics of interacting particles
(Huang 1963; Ma 1985; Migkisz and Szymanska 2012) and introduced recently in
the context of regulatory genetic systems in Ohkubo (2010). Namely, we replace n in
the switching term in (1) by its unknown expected value, that is instead of Bnfy(n)
we write 8 {nko fo(n). It follows that (3) is replaced by

Ao
Ao+ A1 =1
Bn)o—aA; =0
koAo — y (n)o — YL (n)o +a(n)1 =0
kiAy =y ()1 +y AL+ BE2 (n)o — afn)) =0 @

2ko(n)o — 2y (n(n — D)o — BLL (n(n — D)o +a(n(r — 1)1 =0
2k ()1 = 2 {n(n — D)1 +2y ((n)1 = AD) + BEL (n(n — D)o
—a(n(n— 1)1 =0

We obtained a closed system of equations. Let us observe that when one adds the
third equation and the fourth one of either (3) or (4), results are the same (switching
terms cancel out). The same applies to adding the fifth equation and the sixth one.
Hence, independent of approximations, the following relations are always satisfied:

(n)="0A40+4 A4, + 4,

5)
(n(n = D) =2 (n)o + 2 (n)1 + (n)1 — Ay

One can solve (4) (in fact we only need to solve first four equations), obtain the
self-consistent value for (n);,i =0, 1, use (5) and var(n) = (n(n — 1)) + (n) — (n)?
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Fig. 2 Total inhibition probability, mean, variance, and Fano Factor of the number of protein molecules
in the stationary state, plotted as a function of log(w) for X4 =100 and X ad — 40. For the variance, the
curves asymptotically approach values computed in the slow-switching case (1585 for the one-gene model
and 678 for two gene copies) and in the adiabatic case (52 and 59 for the one and two-gene model, respec-
tively). Continuous and dotted lines are obtained analytically within the mean-field approximation, crosses
and pluses are points obtained by solving the system of Master equations (Egs. (1) and (8)) restricted to
the maximum of 200 particles

to get the expression for the variance of the number of protein molecules in the sta-
tionary state.

Here, we set k1 = 0 and following Hornos et al. (2005) introduce new parame-
ters: X® = %—equilibrium constant of the switching process, X4 = % = é‘—;ﬁ—
measure of protein concentration, and w = £—adiabaticity parameter. It appears that
all equations can be written in terms of these parameters.

From the first four equations of (4), we get the quadratic equation for Ay,
Affw —2X" @+ 1) — X*9) 4+ A [(4X* + X9 — 1)o +4X* + X°1]
—2X%w+1)=0 (6)

which has only one positive solution smaller than 1.
Equation (4) allows us to express var(n) as a function of Ay,

var(n) = (2X% — 1)X*9A; + 22X (1 — A)) + 4] = [2X%(1 - A + A ]
@)

The variance as a function of log w is presented in Fig. 2. We see that the variance
is a decreasing function of the switching rate.
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We would like to check the validity of the mean-field approximation in two ex-
treme cases: in the limits of the infinitely fast and infinitely slow switching. In the
fast-switching case, we divide equations in (3) by « and assume that Z—’ = % =0.
However, this does not help us in closing the system (3), the number of equations
is still too small. It is usually assumed, for example, in Hornos et al. (2005) that in
the fast switching case, in the so-called adiabatic limit, one may put (n); = A;(n),
i =0, 1. Such a procedure closes (3). We would like to point out however that this is
another approximation and it is not true even in the limit «, 8 — 00; see Sect. 4. In
the slow-switching case, we assume that for a given gene state, the system attains its
stationary state (if k1 = 0, then of course all protein molecules are degraded in the sta-
tionary state). In such stationary states, we have from Thattai and van Oudenaarden
(2001) formulas for the variance even in the model with transcription and translation;
in our simplified model stationary states have the Poisson distribution and so the
variance is equal to the expected value. Then we take into account switching between
gene states—we simply use the conditional variance formula; see Sect. 5. Alterna-
tively, we may close (3) by dividing equations by k¢ and assuming that ,f‘—o = kﬁo =0,
details are shown in Sect. 5. We see in Fig. 2 that the mean field-approximation co-
incides with the fast-switching solution in the limit of the infinite @ and with the
slow-switching one in the limit of zero w.

To validate the mean-field approximation, we truncated the Master equation (1) by
restricting the number of protein molecules to be at most 200. The rigorous solution
of the truncated Master equation agrees with the mean-field solution for the whole
range of the adiabaticity parameter w as it can be seen in Fig. 2.

3 Repression with Two Gene Copies

Now we assume that the gene is present in two copies. It follows that the gene sys-
tem can be in three states: 0, 1, and 2, where 0 means that both promoter sites are
unbound, 1 means that exactly one promoter is bound, and 2 that both promoters are
bound. Both copies of the gene produce proteins independently. To keep the mean
expression approximately at the same level as in the one-gene case, we set k1 = %
and k» =0 5o Xag = (ko + k1 + k2) /3y = ko/2y as before. That is we assume that
production rates of both genes are set to %0 We also made calculations for the pro-
duction rates of two genes equal to kg, they are literally copies of original genes.
The mean and the variance are then approximately doubled, but the Fano factor (the
variance divided by the mean) remains the same; see Fig. 3.
The Master equation now reads:

%fo(n) = ko[ fon — 1) — fom)] +y[(n + 1) fo(r + 1) — nfo(m)]
— Bnfo(n) + afi(n)

%fl(”) = %ko[fl (=1~ fim]+y[nfitt+1) =@ —1 fi(n)] ®)
+ Bnfo(n) — afi(n) + 2afa(n) — B(n — 1) f1(n)
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Fig.3 Fano factor as a function of log(w), X4 = 100 and X ad — 40 for one- gene model, (a) for two-gene
model with the production rate ky/2 (b) for two-gene model with the production rate kg

d
- 2= y[(n =D fa(n+1) = (0 =2) o(m)] = 2afo2(n) + B(n — 1) fi(n)

for n > 2 and we may write similar equations for n = 1 and n = 0 with obvious terms
not present.

We replace n in the switching term in (8) by its unknown expected value, that
is instead of Bnfo(n) and Bnfi(n) we write 50 {n)o 2 fo(n) and B4 1 L f1(n) respectively.

We introduce three generating functions, repeat the procedure of the previous section,
and get a closed system of equations in the mean-field approximation,

Ao+ A1+ Ar=1

B{n)o—aA; =0

Blnhi — 20y — BAI =0

Kodo — 7 {m)o — 42 +aln =0

(Sko+ 1) A1 — yin)1 + B8 — an) — B 4+ Bin) +2a(n)2 =0
2y Ay =y ()2 + BLD — Blni — 2a(n) =0 ©)
2ko(n)o — 2 (n(n — D)o —ﬂm(n(n—l))oJra(n(n—l))l =0

(ko +2y)(m)1 — 2y A — 2y<n(n—1)>1+ﬁ 9 (n(n — 1)o
el = D) = (B — Byt — Dy 4+ 2 — D)2 =0
Ay ()2 —dy s — 2y — 1)

(B — B)(n(n — 1)) = 2a(n(n — D)y =0

We add the fourth equation, the fifth, and the sixth one of (9) and then the last
three equations of (9) and again as in the one-gene case we get relations which are
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Fig. 4 Variance as a function of the mean, X = 100 and X2d = 40, so that w is the only changing
parameter, —3 < log(w) < 3

satisfied independent of approximations:

(n) =040+ 32 A1 +24, + A

— ko{n)o+Sko(n

) (10)
" L+ 2(n)y + (n)1 — 245 — Ay

(n(n—1)

As in the one-gene case, all equations can be expressed in terms of X® = %,
X = W = 5—3 and w = £. We proceed exactly in the same way as in the
one-gene case. We solve the system (9) and get an expression for the probability of
total inhibition, the expected value of the number of produced proteins, the variance,
and the Fano factor as functions of log(w) in the stationary state; see Fig. 2. We see
that the variance and the Fano factor are bigger for the one-gene case than for the
two-gene case and that the difference decreases to zero as the rates of gene switching
increase. In Fig. 4, we graph the variance as the function of the expected value of the
number of proteins as we vary the adiabaticity parameter w while keeping X°®? and
X% fixed. We observe the linear dependence, the slope is bigger in the two-gene case

than in the one-gene case.

4 Fast Switching Gene

Here, we consider the situation when gene states are switched infinitely fast. For
simplicity, we discuss one-gene case. Let us assume for a moment that there is no
self-regulation and the gene is switched between its two states with constant rates:
from the state 1 to the state O with the rate « and from O to 1 with the rate 8 (not fn
with n being the number of protein molecules as in the self-regulating gene case). We
will show (as it might be expected) that the expected value of the number of protein
molecules in a given state is equal to the expected value of the number of molecules
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times the frequency of that state, that is (n); = A;(n); i =0, 1. As in Sect. 2, f;(n)
are probabilities that there are n protein molecules in the system and the gene is in
the state i. Now instead of (1), we have the following Master equation (we do not
assume here that k1 = 0):

d
Efo(n, 1) =ko[foln —1) — fon)]
+y[(+ D fon+ 1) —nfo(m)] — Bfo(n) +afi(n)

4 11)
Efl (n,0) =ki[ foln — 1) — fo(n)]
+y[m+ D filn+1) — @) fin] Bfon) — afi(n)
The equations for generating functions (see Sect. 2) now read
dFy(z, dFy(z,
% =(z— 1)[koFo(Z, 1) — V%ﬂ} —BFo(z, 1) +aFi(z,1)
aF) oF (12)
% =(z— 1)|:k1F1 (z,1) — V%} + BFo(z,t) —aFi(z,t)

As in Sect. 2, we differentiate the above equations with respect to z once and twice,
set z = 1, time derivatives to zero, and get the following algebraic equations for the
moments of the stationary distributions of the number of protein molecules:

Ag+ A1 =1

Bn)o—aA; =0

koAo — y(n)o — B{n)o +a(n)1 =0

kiAr —y(n)1+ B{n)o—a(n)1 =0

2ko(n)o — 2y (n(n — D))o — B{n(n — D)o+ a(n(n —1))1 =0
2ky(n)1 —2y(n(n — D)1+ B{n(n — 1))o —a(n(n — 1)); =0

(13)

The above system of equations is closed and it can be solved. In particular, we get

Ag = ﬁ and A| = % (this of course follows immediately from the assumption

about constant switching rates) and

_ kola+y)Ao+ koA

(n)o (14)
ya+B8+y)
koAo + k1 Ay
(n)=——— (15)
14
In the limit of infinitely fast switching, that is when Iff—g — 0, it follows that (n)g =

Ap(n) and then (n); = A (n). The two-gene case and in general n-gene case can be
treated in the same way and the same conclusion follows.

Gene expression models with constant switching rates were discussed in Pauls-
son (2004, 2005) and Paszek (2007) and formulas for the variance of the number of
protein molecules in the stationary state were derived.
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Now we discuss self-repressing genes. It is suggested in Hornos et al. (2005) that
also in this case, (n); = A;(n) in the limit of infinitely fast switching. Let us examine
this. The second line in (3) reads

A= B{n)o (16)
o
It might also be written as
__Blo Bl an
aAg+ oA aAg+ Bin)o

It is easy to see that (n)o = Ag(n) is equivalent to
A= P (18)

o+ B(n)

which is the equilibrium mass action law as discussed in Hornos et al. (2005). How-
ever, in the limit of infinitely fast switching, for any fixed n, the gene state is in
equilibrium, and hence

A=t (19)
o+ Bn
In the stationary state, we have to average the above expression, and we get
A= < pn > (20)
o+ Bn

which in general is different from (18). We have also considered a simple cut-off
system with maximally two protein molecules allowed. In such a case one can get
analytical formulas for the stationary probability distribution. It appeared that in the
adiabatic limit, (n); # A; (n) but we are very close to the equality. Numerical calcula-
tions of the exact, but not explicit formula presented in Hornos et al. (2005) indicate
that (n); = A;(n); i =0, 1 is a very good approximation.

Now we set (n); = A;(n); i =0, 1. This closes (3) for the one-gene case and the
analogous system of equations in the two-gene case. We see in Fig. 2 that in the fast-
switching case, the mean-field and adiabatic approximations practically coincide. We
will now show how far is the variance from the mean in the adiabatic approximation.

In the one-gene case, (5) together with (n); = A;(n); i =0, 1 give us

var(n) = (n) — Aj (21)
For the two-gene case, from (10) it follows that
var(n) = (n) — Ay — 2A, (22)

We can also get that for large mean expression levels, when one may neglect one
protein molecule bound to the promoter, in the adiabatic limit var(n) = (n).
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5 Slow Switching Gene

Int he slow-switching case, we divide (3) by kg and k1, respectively, and assume that
% = —[_ =0 and get
—k
(n)o =7 Ao
(n)1="SLA1 + A
(n(n — 1)) = @< )o
(n(n— D) = ( )+ (n) — Ay

(23)

The formula for the variance takes the following form:

var(n) = (n(n — 1)) + (n) — <n>2

k() kl k1 ko ki
= Ao+ A1+2 A+ —Ap+ —A1+ A4
14 14 14 14 14

k k 2
(0A0+ A1+A1> (24)
Y Y

Now we use the conditional variance formula
Var(X) = Var(E(X|Y)) + E(Var(X|Y)), (25)

where X is the random variable describing the number of protein molecules and Y
describes the gene state. For a fixed state of the gene, Y =i, the stationary state of
production and degradation processes is Poissonian and, therefore, Var(X|Y =0) =
EX|Y =0) = k—" and Var(X|Y =1) = ‘, EX|Y=1)= % + 1. It is easy to see
that we get exactly the same formula as (24).

The approximation of slow switching has been also used in Qian et al. (2009),
but only for the one-gene case. It was of course assumed that when the binding and
unbinding rates approach 0, we have two Poisson distributions for the unbound and
bound states that we may plug into the Master equation and calculate the total prob-
ability that there are n proteins in the system.

6 Discussion

We analyzed analytically a simple model of a self-repressing system with one and two
gene copies. We showed that the stationary variance and the Fano factor are bigger
for the one-gene case than for the two-gene case, and the difference decreases to zero
as switching rates increase.

We derived our formulas within the self-consistent mean-field approximation. The
approximation was tested in two extreme cases: fast switching and slow switching
genes. We discussed the validity of the adiabatic approximation for fast switching
genes and showed that both mean-field and adiabatic approximations agree in this
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regime. In the slow-switching case, we derived rigorous formulas, which coincide
with the mean-field approximation formulas.

We also established the linear dependence of the variance with respect to the mean
as the adiabaticity parameter increases; the slope is bigger in the two-gene case than
in the one-gene case.

It would be interesting to use mean-field approximation in other regulatory gene
systems, like the toggle switch, and in general in systems with bistabilities.
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