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Introduction
A genome-wide association study (GWAS) is an analysis  
of categorical data. The GWAS data consist of categorical var-
iables (categories) with patterned DNA sequences and a 
quantitative variable (observations) with real numbers for a trait 
of interest. This article introduces a new method for measuring 
association between categories and observations, named the 
hierarchical association coefficient (HA-coefficient) algorithm. 
The algorithm measures the association between categories 
and observations based on the degree of variance among the 
averages for all categories. If averages across n categories are 
similar, this suggests a situation where observations are ran-
domly distributed into categories. If averages across different 
categories are clearly different, this suggests a situation where 
observations are assigned into categories by some criterion, and 
it can be said that categories and observations are associated. 
This foundation also applies to the F test which calculates a  
P value referring to the degree of variance among averages for  
all categories and is widely used for GWAS.1–4

To measure the association between categories and observa-
tions, the HA-coefficient algorithm uses 2 sorting extremes: (1) 
observations being increasingly sorted into stratified ascending 
categories (HA-coefficient = 1), and (2) observations being 
decreasingly sorted into stratified ascending categories 
(HA-coefficient = 0). Note that the stratified ascending catego-
ries means a condition where observed categories are aligned in 
ascending order based on the average of observations in each 
category. The sorting extremes are conditions where the degree 
of variance among the averages for all categories are maximized. 
Meanwhile, the F test calculates a ratio of intercategorical vari-
ability to intracategorical variability, in which the greater the 
ratio, the more variance among the averages for all categories is 

found.5 Simulations revealed that the HA-coefficient algorithm 
and F test produce similar results. The F test is a method for a 
hypothetical test, whereas the HA-coefficient algorithm calcu-
lates an objective measurement.

Theory and Methods
Hierarchical association distance

Given the whole population set has 2 or more members and is 
categorical, let us make the following conventions:

1.	 Every member has a positive real number as an 
observation.

2.	 Every member has a categorical identifier.
3.	 Averages of observations in different categories are 

different.

Then, the categories can be stratified based on the average 
of observations. On this basis, let us define:

Definition 1.  “Hierarchical” means that all categories are strat-
ified in ascending order based on the average of each category.

Definition 2.  Suppose that all categorical boundaries in hierar-
chical stratification are fixed, and observations are permutable. 
“Top categorization” means a condition in which observations 
are arranged in ascending order in each category leading to 
ascending order across all categories.

Definition 3.  Suppose that all categorical boundaries in hier-
archical stratification are fixed, and observations are permuta-
ble. “Bottom categorization” means a condition in which 
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observations are arranged in descending order in each category 
leading to descending order across all categories.

Definition 4.  “Hierarchical association coefficient” means  
a proportion representing how close the top and observed  
categorizations are, or how distant the bottom and observed 
categorizations are.

Definition 5.  Suppose that n categories are stratified in 
ascending order based on the average of each category from 
left to right, in which n = the number of all categories. There 
are n − 1 categorical boundaries. At each categorical boundary, 
we can make 2 categories by collapsing the other categorical 
boundaries. Let us call the result “hierarchical binary catego-
rization” and designate the sum of the right subset as x1 and 
the sum of the left subset as x2 at any categorical boundary. 
The x1 is a representative value for a respective hierarchical 
binary categorization.

Regarding Definitions 1 to 3, graphical instructions are 
shown in Figure 1. Definition 5 always assures that (1) x1 in 
the top categorization is equal to or greater than x1 in the 
observed categorization, and (2) x1 in the bottom categoriza-
tion is equal to or less than x1 in the observed categorization. 
The use of x1 allows us to quantify the hierarchical association 
distance by substituting x1 as a value for an observed categori-
zation for x in the following equation:
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where x is the variable, dx  is the hierarchical association 
distance given x, g1 is the x1 in the top categorization, g2 is 
the x2 in the top categorization, and y is the sum of all 
observations. 

Equation 1 can be derived as follows:
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where y is the sum of all observations, g1 is the x1 in the  
top categorization, g2 is the x2 in the top categorization, r1 is 
the x1 in the observed categorization, r2 is the x2 in the 
observed categorization, x is the variable, and dx is the hierar-
chical association distance given x.

It is always true that  1 1 1( / )g r  and 1 2 2( / )r g  so that 
1 dx. In the top categorization, dx = 1 , whereas the bottom 
categorization maximizes dx . At any categorical boundary, x1 
and x2 must be different. Otherwise, dx  is unsolvable. Figure 2 
shows a graph for d xx = −( / )(( / ) )40 30 70 1  in which x1s for 

≤ ≤
≤

the bottom, observed, and top categorizations are 10, 25, and 40, 
respectively.  The dx  graph can be drawn only in quadrant I; 
that is, only positive real numbers can be observations.

HA-coeff icient algorithm

Given Equation 1, let us designate the area delimited 
between x1s at the bottom and top categorizations as W and 
the area delimited between x1s at the bottom and observed 
categorizations as R. The W and R represent cumulative 
hierarchical association distances and can be calculated as 
follows:
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Ultimately, the HA-coefficient can be calculated as follows:
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where HA is the HA-coefficient, W is the area delimited 
between x1s in the bottom and top categorizations, R is the 
area delimited between x1s in the bottom and observed cate-
gorizations, g1 is the x1 in the top categorization, g2 is the x2 
in the top categorization, y is the sum of all observations, x is 
the variable, obs. is the x1 in the observed categorization, btm 
is the x1 in the bottom categorization, and top is the x1 in the 
top categorization.

It is always true that 0 ≤ R ≤ W so that the HA-coefficient 
results in a proportion. If x1 in the observed categorization 
equals x1 in the bottom categorization, HA-coefficient = 0. If 
x1 in the observed categorization equals x1 in the top cate-
gorization, HA-coefficient = 1. Equation 4 calculates an 
HA-coefficient if the whole population set consists of 2 cat-
egories. If the whole population set consists of equal to or 
more than 2 categories, either of the following 2 algorithms 
can be used:

1.	 HA-coefficient algorithm based on geometric mean
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2.	 HA-coefficient algorithm based on arithmetic mean
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Figure 1.  Three categorizations (A, B, C) including 3 categories (blue, green, red). Each bar represents an observation. All categorizations contain the 

same observations. (A) Observed categorization in which categories are sorted in ascending order based on the average of each category. (B) The top 

categorization. (C) The bottom categorization. 
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where HA is the HA-coefficient, n is the total number of 
categories, k is the loop variable, y is the sum of all observa-
tions, x is the variable, obs.[k] is the x1 in the observed cate-
gorization given the kth categorical boundary, btm[k] is the 
x1 in the bottom categorization given the kth categorical 
boundary, and top[k] is the x1 in the top categorization given 
the kth categorical boundary.

Equations 5 and 6 produce closely similar results. I rec-
ommend Equation 5 because unification of the equation is 
foundational in comparing multiple HA-coefficients. If 2 or 
more categories have the same average, the HA-coefficient 
algorithm is not applicable.

Prehierarchical and posthierarchical categorizations

Hierarchical stratification among categories can be deter-
mined independent of or dependent on observations.

Definition 6.  If hierarchical stratification among categories is 
determined independent of observations, categories are “prehierar-
chical.” If hierarchical stratification among categories is determined 
dependent on observations, categories are “posthierarchical.”

Prehierarchical categorization makes it feasible that 
HA-coefficient = 0, whereas posthierarchical categorization 
does not.

Simulations

To demonstrate robustness and reliability of the HA-coefficient 
algorithm, simple simulations were used. Figures 3A, 3B, and 
3C refer to matrices of 1200 by 1201. The green triangle refers 
to the 1201st column, including 1200 natural numbers increas-
ing by 1 from 1001 to 2200. Figures 3A, 3B, and 3C include 2, 
3, and 4 couples of blue and yellow triangles, respectively. In 
each matrix, blue and yellow triangles are equal in shape and 
area. The number of blue triangles in each matrix equals the 
number of types of categorical identifiers. Figures 3A, 3B, and 
3C have categorical identifiers of 2 (0, 1), 3 (0, 1, 2), and 4 (0, 
1, 2, 3) types, respectively. In each matrix, the top blue triangle  
is filled with 0s, the next  blue triangle is filled with 1s, and so 
on. The yellow triangles are filled with random categorical 
identifiers. As a column coordinate n changes from 1 to 1200, 
the HA-coefficient between nth and 1201st columns gradually 
increases to 1. The minimum HA-coefficient must be greater 
than 0 because each categorization is posthierarchical. The 100 
times simulations were averaged into smooth plots and aim to 
answer the following questions:

Question 1. Do the HA-coefficients from Figures 3A, 3B, 
and 3C increase from left to right?

Question 2. Do the HA-coefficients from Figures 3A, 3B, 
and 3C coincide?

Question 3. Do the HA-coefficients and P values calculated 
by the F test show a consistent pattern?

Figure 2.  A curve for d xx = −( / )(( / ) )40 30 70 1 . The whole colored area is 

delimited by two x1s in the bottom and top categorizations. The orange area 

is delimited by two x1s in the bottom and observed categorizations. 

Figure 3.  Three simulated data sets of 1200 by 1201. Green triangles refer to a vector containing 1200 observations increasing by 1 from 1001 to 2200. 

The 1200 by 1200 squares in (A), (B), and (C) are filled with categorical identifiers of 2, 3, and 4 types, respectively. In each matrix, the first blue triangle is 

filled with 0s, the next blue triangle is filled with 1s, and so on. The yellow triangles are filled with random categorical identifiers.



Kim	 5

Figure 4.  Plots (A), (B), and (C) represent patterns of the HA-coefficients obtained by applying the HA-coefficient algorithm to data sets in Figures 3A, 3B, 

and 3C, respectively. 
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Regarding Question 3, the linear model (LM) for the F test 
was set as:
	 yij i ij= + +µ α ε 	 (7)

i = 1, 2, 3, ..., a
j = 1, 2, 3, ..., n

where yij is the jth observation for ith category, µ is the mean 
of all observations, αi  is the constant for ith category based 

Figure 5.  Plots (A), (B), and (C) represent patterns of the P values obtained by applying F test to data sets in Figure 3A, 3B, and 3C, respectively. 

Table 1.  Pearson correlation coefficients among the 3 plots in Figure 4.

Figure 3A Figure 3B Figure 3C

Figure 3A 1 0.999893 0.999845

Figure 3B 0.999893 1 0.999883

Figure 3C 0.999845 0.999883 1
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on random deviation from µ, and εij is the random effect 
containing all uncontrolled sources of variability.5

Through 100 times simulations, the resulting P values were 
averaged into smooth plots. If the answers to all questions are 
positive, the HA-coefficient algorithm is reliable and robust. 
All computations were conducted using R.6 All R scripts are 
included in Supplementary R scripts.

Results and Discussion
Figure 4 shows 3 plots obtained by applying the HA-coefficient 
algorithm to data sets in Figures 3A, 3B, and 3C. This illustrates 
a common increasing pattern and gives a positive answer to 
Question 1. Each plot ranges between about 0.6 and 1.0. 
Because the simulated data sets are posthierarchical, it is infea-
sible that HA-coefficient = 0. The 3 different simulated data sets 
have the same observations at regular intervals and equal pro-
portions of blue and yellow sections when comparing the same 
columns. Therefore, the 3 simulated data sets have the same 
pattern in terms of the association between categories and 
observations. If the HA-coefficient algorithm is robust and reli-
able, the same result must be produced from the 3 simulated 
data sets. Table 1 shows the Pearson correlation coefficients 
among the 3 plots coincide. This gives a positive answer to 
Question 2. The increasing pattern of all plots in  Figures 4 and 
5 gives a positive answer to Question 3. All answers to the above 
questions are positive. This indicates that the HA-coefficient 
algorithm is robust and reliable. The curves generated by the F 
test in Figure 5 are bent downward because the −log10 lifts small 
P values upward but pushes moderate P values downward. The 
F test  (see Equation 7) has the following constraints:

Constraint 1. Given the top categorization, P values = 0. It is 
impossible to represent −log10 (0).

Constraint 2. Three assumptions for the LM are required: 
(1) εij s  conform the normal distribution, (2) εij s  have the 
same variance for each i, and εij s  are independent of each 
other and the αis.5

The above constraints do not apply to the HA-coefficient 
algorithm. Regarding Constraint 1, the graph lines obtained by 
the F test (Figure 5) do not reach the right end, while graph lines 
obtained by the HA-coefficient algorithm (Figure 4) are fully 

drawn from left to right ends. Regarding Constrain 2, the 
HA-coefficient algorithm produces an objective measurement; 
that is, assumptions for statistical inference are not needed. The 
simulations revealed that the HA-coefficient algorithm is faster 
than the F test based on the LM, e.g. when applied to Figure 
3A, the former and the latter took 739 and 956 seconds (Intel 
i7-5600U CPU), respectively.

Conclusion
This study shows a comparison of the HA-coefficient algo-
rithm and F test because both methods calculate the asso-
ciation between categories and observations based on the 
degree of variance among averages for all categories. The 
HA-coefficient algorithm’s objectivity, reliability, robustness, 
and speed enable the algorithm to become an alternative to 
the F test. When it comes to GWAS, the HA-coefficient 
algorithm will be suited for a population grown in the same 
environment because the same environment is fundamental in 
identifying unbiased QTL. Posthierarhichical categorizations 
are shown by the data sets in Figure 3. GWAS data sets have 
the posthierarchical categorization. The application of the 
HA-coefficient algorithm to a prehierarchical categorization 
is shown in Supplementary example. The HA-coefficient 
algorithm will be useful in many disciplines.
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