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BetterKatz is a bacteriophage isolated from a soil sample collected in Pittsburgh, Pennsylvania using the host Gordonia terrae
3612. BetterKatz’s genome is 50,636 bp long and contains 75 predicted protein-coding genes, 35 of which have been assigned
putative functions. BetterKatz is not closely related to other sequenced Gordonia phages.
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Gordonia spp. are common environmental inhabitants (1) and
several bacteriophages have been isolated using Gordonia

hosts (2–6). To understand the genetic diversity of Gordonia
phages, the integrated research-education Science Education
Alliance-Phage Hunters Advancing Genomic and Evolutionary
Science (SEA-PHAGES) program is using Gordonia terrae 3612 to
isolate and genomically characterize bacteriophages (7). Phage
BetterKatz was recovered from a soil sample from Pittsburgh, PA
by direct plating of filtered soil extract on a lawn of G. terrae; it was
plaque purified, amplified, and viral dsDNA was extracted. Bet-
terKatz virions have a siphoviral morphology with an isometric
head, and a flexible tail 220 nm in length.

BetterKatz was sequenced using the Illumina MiSeq platform
using 140 bp single-end reads and assembled using Newbler to
yield a single major contig of 50,636 bp with an average coverage
of 247-fold. The genome has defined ends with 10 base 3= single
stranded DNA extensions (5=-TGCCGCGGTA) and is 67.1%
G�C, similar to its host (67.8%). BetterKatz does not share ex-
tensive nucleotide sequence similarity to other sequenced
phages or prophages, although there are two segments span-
ning approximately 10 kbp— corresponding to virion struc-
tural genes—with similarity to a putative prophage in Gordonia
sp. KTR9 (8) that is integrated at an attB site overlapping a
tRNAala gene (KTR9_RS07590).

Seventy-five BetterKatz protein-coding genes were predicted
using Glimmer and Genemark (9, 10) and putative functions were
assigned using BLASTP, HHpred, and Phamerator (11, 12); no
tRNA genes are predicted using Aragorn (13). All are transcribed
rightwards with the exception of five genes—including a tyrosine-
integrase and the immunity repressor—near the center of the ge-
nome. The attachment site (attP) is located immediately down-
stream of int (39) and BetterKatz is predicted to integrate into the
same attB site overlapping a tRNAala gene, where prophages lie in
both Gordonia sp. KTR9 and Gordonia bronchialis DSM 43427
(14). The genes in the left arm are predominantly virion structure
and assembly genes, and several genes in the right arm encode
putative DNA metabolism functions including a DNA primase, a
DNA methylase, and an exonuclease. We note that 31 of the pre-

dicted genes have no amino acid sequence similarity to other
actinobacteriophage-encoded proteins in a data set of over
150,000 genes.

The lysis cassette in BetterKatz is located immediately down-
stream of the virion tail genes and there are two genes with pre-
dicted endolysin functions, gp29 that encodes a cysteine protease-
like protein and gp30 encoding a glycoside hydrolase. The product
of gene 31 has three predicted transmembrane domains and is the
likely holin, although gp32 is also a putative membrane protein
with four transmembrane domains and may also play a role in
lysis. Immediately to the right of the lysis cassette is a leftwards-
transcribed HicAB-like toxin-antitoxin system (15). A putative
transcription promoter is located upstream of the toxin gene (35)
and a region of dyad symmetry overlaps the putative �10 motif to
which the antitoxin (gp34) may bind to regulate TA transcription.

Accession number(s). The BetterKatz genome sequence is
available from GenBank under accession number KU963261.
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