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Most heritable information in eukaryotic cells is encoded in the nuclear genome, with inheritance patterns following classic
Mendelian segregation. Genomes residing in the cytoplasm, however, prove to be a peculiar exception to this rule. Cytoplasmic
genetic elements are generally maternally inherited, although there are several exceptions where these are paternally, biparentally
or doubly-uniparentally inherited. In this review, we examine the diversity and peculiarities of cytoplasmically inherited genomes,
and the broad evolutionary consequences that non-Mendelian inheritance brings. We first explore the origins of vertical
transmission and uniparental inheritance, before detailing the vast diversity of cytoplasmic inheritance systems across Eukaryota.
We then describe the evolution of genomic organisation across lineages, how this process has been shaped by interactions with the
nuclear genome and population genetics dynamics. Finally, we discuss how both nuclear and cytoplasmic genomes have evolved
to co-inhabit the same host cell via one of the longest symbiotic processes, and all the opportunities for intergenomic conflict that
arise due to divergence in inheritance patterns. In sum, we cannot understand the evolution of eukaryotes without understanding
hereditary symbiosis.
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INTRODUCTION
The vast majority of genes in eukaryotes are located within
chromosomal structures in the nucleus of the cell. These
transmit copies of themselves to the next generation via meiosis
involving strict segregation. However, eukaryotic cells also
harbour smaller genomes, which reside in the cytoplasm,
including: mitochondrial DNA, chloroplast DNA, and symbiont
genomes. Interestingly, cytoplasmic genetic elements have
been shown to have very different inheritance patterns to
classic Mendelian nuclear chromosomes. The first documented
evidence for this came from Carl Correns research on the four
o’clock plant Mirabilis jalapa, in which he detailed the non-
Mendelian inheritance of leaf colour (Correns 1909). Inheritance,
in this case, was strictly maternal: a seed derived from an ovule
from a non-green stem gave rise to non-green progeny,
irrespective of the source of pollen. By 1952, the evidence of
various forms of cytoplasmically inherited elements (CIEs) had
grown, leading Joshua Lederberg to synthesise the inheritance
of cellular organelles and symbionts into one framework in his
treatise “Cell genetics and hereditary symbiosis” (Lederberg
1952). Furthermore, evidence for diversity in inheritance
patterns (paternal or biparental) of CIEs started accumulating
for a wide range of taxa (Birky 2001).
Since then, studies have demonstrated that CIEs are diverse and

important - in many cases, encoding key aspects of organismal
function. Cytoplasmically inherited elements vary in their level of
integration with the host - in the case of organelles, the proteome is
jointly encoded in nuclear and organellar DNA, in addition to
integration into cellular physiology. For obligate microbial symbionts,
anatomical and physiological integration are evident but generally
without trafficking of host proteins into the microbe; they are

commonly present in particular tissues and have host organised
vertical transmission. Other microbial symbionts are less integrated,
present more diffusely in the host and invade the germ line to gain
vertical transmission.
In this review, we describe the diversity of inheritance systems of

CIEs, and highlight the evolutionary consequences that these
inheritance systems bring to cellular, organismal and population
dynamics (Fig. 1). For this, we focus on the three main groups of CIEs:
mitochondrial DNA, chloroplast DNA, and symbiont genomes. We
begin by outlining the origins of cytoplasmic inheritance and the
evolution of uniparental inheritance, documenting the diversity of
cytoplasmic inheritance systems so far observed. We discuss the
diversity and patterns of genome organisation for cytoplasmic
elements and examine the population genetics of CIEs, highlighting
the tension between within- and between-individual spread. We
summarise the evidence for the adaptive importance of cytoplasmic
genes before detailing coadaptation between the cytoplasm and the
nucleus, and amongst cytoplasmic components.

THE EVOLUTIONARY ORIGINS OF VERTICAL TRANSMISSION
AND UNIPARENTAL INHERITANCE
The ancestors of current cytoplasmically inherited genetic material
were free-living organisms (Sagan 1967), but how cytoplasmic
inheritance originated and came to be limited to one sex remains an
open question. For microeukaryotes (and indeed for the ancestral
protoeukaryote) the presence of a microbe inside the cytoplasm
would de facto produce inheritance on cell division. This would form
a continuous system if replication of the microbe within the cell was
occurring. Thus, the primary drive to cytoplasmic inheritance is
intracellular location and replication, which could be initially host
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driven (symbiont capture) or symbiont driven (infection of the host,
or escape from a phagolysosome).
Notably, the rate of vertical transmission for symbionts that can

also transmit infectiously is evolvable: symbionts with mixed modes
of transmission that are kept in continuously growing host
populations (where cell division provides ample opportunity for
vertical transmission) evolve a stronger tendency for heritable
transmission compared to those kept in populations at carrying
capacity (where the opportunity for vertical transmission is limited)
(Magalon et al. 2010). Thus, there is a trajectory in which infection
through the environment is lost.
When vertical transmission does evolve, there are two primary

consequences. First, the population size of symbionts and mixing of
strains declines, reducing within host conflicts. Second, symbiont
fitness becomes a product not only of host survival but additionally
host reproduction. Both of these processes drive the symbiosis
towards the mutualism end of the mutualism-parasitism continuum,
with current models indicating restrictions on symbiont diversity
through bottlenecks and reduced mixing opportunities being most
important in this transition, through quelling the conflicts associated
with within-host competition (Leeks et al. 2019). Later transitions
would then involve adaptation to the intracellular environment with
correlated loss of capacity for free-living life and infection processes.
All of these are reflected in the reductive genome evolution pattern
commonly observed in heritable symbionts (Moran et al. 2008).

The evolution of inheritance for symbionts of multicellular hosts
also has its origins in the association of free-living organisms, with
a transition from symbiosis where the parties reform symbiosis
through environmental association each generation to vertical
transmission. Indeed, some symbiont clades include both
symbionts acquired through the environment and heritable
symbionts (e.g., (Drew et al. 2021)). Vertical transmission may
arise passively through spatial structure (symbionts from a parent
are more likely to infect progeny of that parent through
proximity), actively through selection on the host to ensure
passage of a beneficial symbiont (host driven vertical transmis-
sion) or actively through selection on the microbe to infect the
next generation through the germ line. Evolution towards vertical
transmission may be constrained through location (e.g., soil
microbe-plant root associations have no proximity to the germ
line), and made less likely in environments where partner
availability is high (e.g., aquatic environments (Douglas 1998)) or
where the symbiont has utility only in a restricted part of host life
history (Hartmann et al. 2017).
Most cytoplasmic genetic material is inherited uniparentally -

that is to say from one parent only. It is notable that uniparental
inheritance is not restricted to anisogamous species - it is also
commonly observed in isogamous microeukaryotes associated
with mating types. This observation implies that uniparental
inheritance is not a simple by-product of gamete size, but rather is
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Fig. 1 Cytoplasmically inherited elements produce variation at multiple scales of biological organisation. New mutations that arise
immediately produce intra-organellar variation depicted here by differently coloured nucleoids (Mitochondria & Chloroplast panel). If
mutations (differently coloured nucleoids) spread between organelles, variation between organelles is observed (Plant Cell panel). Note that
mitochondria often form reticulated syncytia, rather than discrete compartments, in contrast to chloroplasts, which may facilitate
recombination and therefore spread of mutations throughout the cell. Intracellular variation can give rise to intra-tissue variation, depicted
here in the form of a variegated leaf (Psychotria leaf panel). Psychotria also features bacterial leaf nodules (dark green circles) that contain
Burkholderia bacteria which are vertically inherited through the seed. Variation within tissues can then give rise to variation across tissues
(Psychotria Plant panel). If germlines are segregated late, this can result in distinct alleles being propagated to the next generation from
different parts of the plant. As a consequence, the variation that originated at the individual organelle level can finally be observed between
individuals within populations (Psychotria population panel).
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an evolved state (Hurst and Hamilton 1992). Anisogamy itself is
considered by some as a potential onward adaptive mechanism
for imposing uniparental inheritance, in contrast to the passive
view that uniparental inheritance is a by-product of anisogamy
(Hurst 1990).
Evolutionary drivers of uniparental inheritance include the benefit

of preventing conflicts and the damage from cytoplasmic mixing.
Under a biparental inheritance scenario, we would expect a
heteroplasmic state, in which multiple distinct forms of the CIE exist
within the same cell, to be the norm. For mitochondria, heteroplasmy
interferes with cell functioning, with empirical work demonstrating
that it can cause organismal dysfunction (Nissanka and Moraes 2020).
Moreover, heteroplasmy reduces the variance between cells, and if
this is happening in the germ line, it then reduces the efficacy of
selection (Radzvilavicius et al. 2016). Mathematical models show that
selection against heteroplasmy can lead to the fixation of uniparental
inheritance in an ancestrally biparental population (Christie et al.
2015; Christie and Beekman 2017). Mathematical models indicate
that mitonuclear coadaptation is improved with uniparental
inheritance and mitochondrial bottlenecks under a wide range of
conditions (Hadjivasiliou et al. 2012).

BEYOND SIMPLE MATERNAL INHERITANCE
Whilst the majority of anisogamous species transmit CIEs
uniparentally, via the egg (Birky 2001), heteroplasmy via paternal
leakage can occur when maternal inheritance is not strictly
enforced (see Table 1 and Supplementary Table S1 for examples).
Most species appear to exhibit some degree of leakage if sampled
carefully enough (e.g., (Wagner et al. 1991; Kvist et al. 2003;
Fontaine et al. 2007; Bentley et al. 2010; Nunes et al. 2013)), but
the processes that contribute to variation in leakage rates are not
well understood. By contrast, a variety of mechanisms that
reinforce maternal inheritance by eliminating and/or silencing
paternally derived elements have been documented (Sato and
Sato 2013, 2017). Still, paternally derived CIEs occasionally
experience positive selection, resulting in introgression and even
replacement of the maternal CIE lineage by the paternal CIE
lineage (Wolff et al. 2013).
Notably, there exists a biological distinction between paternal

leakage versus paternal inheritance of CIEs. Paternal leakage, in
which CIEs are inherited mostly maternally, but with some minor
contribution from the paternal gamete, provides at least some
opportunity for genetic exchange between CIEs from different
lineages. By contrast, CIE lineages from separate parents are not
expected to interact or recombine under systems of paternal
inheritance, even if only occasional, in which all of the CIEs present
in an individual host are paternally derived (e.g., Ross et al. 2016).
The implications are that paternal leakage allows for breakdown of
linkage disequilibrium between separate nucleotides of the CIE

genome, such that beneficial mutations can be decoupled from
deleterious genomic backgrounds and vice versa (Hill and
Robertson 1966).
Evolutionary transitions from maternal to paternal inheritance

are not especially common, but do happen (Table 1, Supplemen-
tary Table S1). Interestingly, shifts in one organelle do not always
affect the other cytoplasmic elements within the cell (but see
Pelargonium (Weihe et al. 2009); Sequoia (Neale et al. 1989)),
indicating that the genetic machinery regulating cytoplasmic
inheritance is independent across separate CIEs. For example, in
Musa acuminata (banana), the mitochondria are inherited
paternally and the chloroplasts are inherited maternally (Fauré
et al. 1994). Some other examples of mixed uniparental
inheritance include cucumbers, melons (Havey 1997) (in contrast
to the rest of the Cucurbitaceae (Havey et al. 1998)), which follow
the same pattern as banana, and loblolly pines, which feature
maternally transmitted mitochondria and paternally transmitted
chloroplasts (Neale and Sederoff 1989).
When both parents contribute CIEs to the offspring, it is

probable that cells benefit from biparental mitochondrial inheri-
tance as it provides higher individual genetic diversity, which
leads to reduced susceptibility to deleterious mutation. However,
this naturally leads to competition and conflict between lineages.
Recent work has shown that biparental inheritance has the
potential to be beneficial and remain stable for hybridising
populations if the fitness cost of mitonuclear incompatibilities in
hybrids is greater than a stable state of heteroplasmy (which is
also detrimental to the individual, but less so) (Allison et al. 2021).
In hybridised Pelargonium (geranium) cultivars, for example,
mitochondrial and plastid biparental inheritance has been seen
alongside chloroplast variegation (Baur 1908). In these hybrids,
differing ratios of maternally and paternally derived cytoplasmic
genomes were observed across different tissues (Weihe et al.
2009). Based on the phylogenetic distribution of biparental
inheritance systems, it seems that the balance of reduced impact
of deleterious mutations vs. increased conflict between CIE
lineages favours the latter, as relatively few examples of fully
biparentally inherited CIEs exist.
A particularly interesting case of biparental inheritance of

mitochondria is that of doubly-uniparental inheritance (DUI) in
bivalves, in which the paternal mtDNA (M-type) is passed down to
male offspring and maternal mtDNA (F-type) is passed down to
offspring of both sexes (Breton et al. 2007; Passamonti and Ghiselli
2009; Zouros 2013). In this scheme, two independently evolving
mtDNA lineages are found in male individuals, but the sperm
produced only contain the lineage they inherited paternally
(Ladoukakis and Zouros 2017). The paternal mitochondria are largely
confined to the gonad and the maternal mitochondria the soma,
resulting in sperm that carry only the male mitochondrial line
(Ghiselli et al. 2020). The separate localisation of M-type vs. F-type

Table 1. Alternative cytoplasmic inheritance mechanisms observed in plant, fungal, and animal mitochondria and chloroplasts.

Inheritance pattern Cytoplasmic element Representative taxa Reference

Paternal leakage Mitochondria Mouse (Gyllensten et al. 1991)

Paternal leakage Chloroplasts Brassicaceae (Schneider et al. 2015)

Paternal inheritance Mitochondria Cucumis sativus (cucumber) (Havey 1997)

Paternal inheritance Chloroplasts Pinus taeda (loblolly pine) (Neale and Sederoff 1989)

Maternal leakage Chloroplasts Pinus radiata (Monterey pine) (Cato and Richardson 1996)

Divergent heteroplasmy Mitochondria Sphenodon punctatus (tuatara) (Macey et al. 2021)

Biparental inheritance Mitochondria Saccharomyces cerevisiae (Baker’s yeast) (Birky et al. 1978)

Biparental inheritance Chloroplasts Oenothera (Chiu et al. 1988)

Doubly-uniparental inheritance Mitochondria Mytilus edulis (blue mussel) (Skibinski et al. 1994)

See Supplementary Table S1 for expanded view.
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mtDNAs also makes it less likely that recombination between mtDNA
lineages occurs (but see (Zouros 2000; Burzyński et al. 2003;
Passamonti et al. 2003; Breton et al. 2006; Stewart et al. 2009)).
Heritable microbes are commonly considered as exclusively

transmitted from mother to offspring only; however, this rule is not
absolute. Many heritable viruses show biparental inheritance,
commonly with higher fidelity through the egg than sperm
(Roossinck 2010). For heritable bacteria, early studies of Volvox
carteri revealed efficient paternal inheritance of what are now
known to be Cand. Megaira symbionts (Lee and Kochert 1976);
later work showed biparental inheritance of Rickettsia in Nepho-
tettix planthoppers (Watanabe et al. 2014), and Sodalis glossinidia in
tsetse fly hosts (De Vooght et al. 2015). Biparental inheritance
allows symbionts to drive to high frequency without either
conferring a benefit to their host, or exhibiting reproductive
parasitism. It also creates an environment where mixed infections
become common, which may lead to the evolution of increased
virulence (associated with competition for transmission) and also
potentiates recombination.

GENOMIC ORGANISATION AND INTERACTIONS WITH THE
NUCLEAR GENOME
Genomic architectural organisation and variation in CIEs
Cytoplasmically inherited genomes are highly variable across
eukaryotes in terms of both size and structure (Smith and Keeling
2015). Mitochondrial and chloroplast genomes are rarely lost
entirely (but see (Hjort et al. 2010; Keeling 2010)); however, the
diminutive size of mtDNAs in Plasmodium species (~6 kb)
(Hikosaka et al. 2011) compared to the massive and multi-partite
mitochondrial genomes of Silene conica (~11.3 Mb) (Sloan et al.
2012) and Larix siberica (~11.7 Mb) (Putintseva et al. 2020)
highlight the diverse trajectories of cytoplasmic genome evolution
following the original endosymbiotic event and subsequent
massive transfer to the nucleus prior to the Last Eukaryotic
Common Ancestor (Sloan et al. 2018).
Plastid genomes are less variable in size than mitochondrial

genomes (Wu et al. 2020), but non-photosynthetic plastids have
seen dramatic reductions in size compared to their photosynthetic
ancestors (de Koning and Keeling 2006; Barbrook et al. 2014). While
many CIEs exhibit circular genomes (e.g., most bilaterian mito-
chondrial genomes (Boore 1999) and most eubacterial symbionts),
linear (Stampar et al. 2019; Escalante et al. 1998; Nosek et al. 2004;
Shao et al. 2009), branched (Oldenburg and Bendich 1996), and
multi-chromosomal arrangements (Wu et al. 2020) have arisen
multiple separate times across eukaryotes. The absence of
Mendelian inheritance in cytoplasmic genomes likely contributes
to the tremendous variation observed there, to the extent that
once multi-chromosomal genomes evolve, their inheritance is
highly fragmented and inconsistent (Wu and Sloan 2019).
In parallel, heritable symbiont genomes vary greatly in genome

complexity. There is a general pattern of genome reduction in
symbiotic microbes, first associated with the transition from
environmentally acquired to heritable, and then with the
transition from facultative (not required by the host) to obligate
(required by the host). Obligately required heritable symbionts
have genomes that are commonly <1 Mb, and may be as small as
112 kb (Bennett and Moran 2013), in comparison to free-living
microbes with genome sizes >4 Mb. Pseudogenization is rapid
during the first phases of evolution, often accompanied by
proliferation of mobile elements (Bennett and Moran 2013). G/C
content typically reduces as the genome shrinks, with obligate
symbiont genomes typically highly AT rich (Moran et al. 2008).

Interactions and molecular cross talk with the nuclear genome
It is common to observe genes in the nuclear genome which have
cytoplasmic origin, and transfer of material from both mitochon-
dria and microbial symbionts to the nucleus is ongoing

(Bensasson et al. 2001; Dunning Hotopp et al. 2007). Importantly,
recent nuclear derived symbiont sequences on occasion have
strong phenotypic effects, potentiating retention (Leclercq et al.
2016). In deep evolutionary time, these transfers fuelled the
seemingly inevitable gene transfer from the cytoplasm to the
nucleus and subsequent genome streamlining that CIEs have
repeatedly undergone (Timmis et al. 2004; Giannakis et al. 2021).
This process has resulted in the vast majority of proteins that
function in cytoplasmically inherited organelle compartments
being encoded by the nucleus (Millar 2007; Meisinger et al. 2008;
van Wijk and Baginsky 2011; Muthye and Lavrov 2018). The genes
and gene products that are still retained in CIE genomes must
therefore physically interact with nuclear-encoded gene products.
To wit, four of the five multi-subunit enzymes that comprise the
electron transport chain and the photosynthetic enzyme com-
plexes of chloroplasts feature intimate interactions between
subunits encoded by separately inherited and expressed genomes
(Rand et al. 2004; Forsythe et al. 2019).
Much attention has been paid to the molecular nature of these

cytoplasmic-nuclear interactions (Osada and Akashi 2011; van der
Sluis et al. 2015; Beck et al. 2015; Adrion et al. 2016; Mossman et al.
2017; Rand and Mossman 2020; Evans et al. 2021), but relatively
little is known about the stoichiometry of these interactions,
except that cytoplasmic gene expression is consistently higher
than expression of nuclear-encoded genes involved in the same
multi-subunit complexes (Havird and Sloan 2016). Further,
mitochondrial DNA depletion is associated with a number of
different diseases in humans (Blokhin et al. 2008; Clay Montier
et al. 2009; Monickaraj et al. 2012; Petersen et al. 2014; Pyle et al.
2016; Tin et al. 2016; Ashar et al. 2017; Liu et al. 2020), and
polyploid plants exhibit elevated cytoplasmic DNA content per cell
compared to diploid relatives to maintain cytonuclear stoichio-
metry following genome doubling (Fernandes Gyorfy et al. 2021).
Even from this currently limited understanding, it is clear that
complex stoichiometric relationships exist between the nuclear
and cytoplasmic genomes and gene products, and perturbations
to cytonuclear stoichiometry can therefore have drastic conse-
quences for the cells that experience them.

POPULATION AND EVOLUTIONARY GENETICS OF
CYTOPLASMIC ELEMENTS
Mutations and how they spread throughout the cytoplasm
Cytoplasmically inherited elements present a stark contrast to
Mendelian traits as sources of variation. As Bill Birky noted, CIEs are
‘non-stringent’ genetic traits that can vary in quantity as well as
sequence – in contrast to Mendelian elements limited to a copy
number of two in any diploid cell (Birky 2001). Instead, CIEs are often
highly multi-copy within cells (Kukat et al. 2011; Carelli et al. 2015;
Schaack et al. 2020). As such, the distribution of sequence variation in
CIEs is profoundly affected by the distribution of copy number
variation, as mutants must first establish within the pool inside a cell,
then amongst the cells within an individual, then amongst individuals
in the population. Variation in copy number within the cell is also
critical to the stoichiometric balance between the cytoplasmic and
nuclear genomes, as they contribute to the assembly of the multi-
subunit enzyme complexes that carry out bioenergetic processes like
photosynthesis and respiration (Forsythe et al. 2019).
Mutational spread in cytoplasmically inherited genomes is

fundamentally dependent upon the rate of occurrence of new
mutations (Sung et al. 2012; Waneka et al. 2021). However, the
multi-copy nature of CIEs makes it practically impossible to
determine their absolute mutation rates (Schaack et al. 2020).
Nevertheless, a large effort across decades has been dedicated to
quantifying relative mitochondrial mutation rates and frequency
spectra (Brown et al. 1979; Wolfe et al. 1987; Denver et al. 2000;
Haag-Liautard et al. 2008; Howe et al. 2009; Havird and Sloan 2016;
Allio et al. 2017; Konrad et al. 2017; Wu et al. 2020; Broz et al. 2021;
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Waneka et al. 2021), providing valuable information about the
extent of heteroplasmy caused by de novo mutations (Waneka
et al. 2021) and the probability of transmitting those hetero-
plasmies to the next generation (Konrad et al. 2017). Mutational
spectra of mtDNA are also important to mutational spread
(reviewed in (Katju and Bergthorsson 2019)). For example,
oxidation of guanines (i.e., 8-oxo-G), especially in mitochondria,
can result in elevated CG→ AT transversions through mispairing
with adenine (Cheng et al. 1992; Kino et al. 2017).
Despite the aforementioned difficulty in ascertaining absolute

mutation rates in CIEs, it is clear that CIE mutation rates vary
tremendously across taxa. For example, animal mtDNAs exhibit
substantially higher mutation rates than plant mtDNAs (Wolfe et al.
1987). Indeed, animal mtDNA mutation rate varies more than two
orders of magnitude across taxa (Nabholz et al. 2007). Certain plant
lineages have shown episodic accelerations in cytoplasmic genome
mutation rates (Sloan et al. 2014; Sloan 2015; Havird et al. 2015;
Williams et al. 2019; Broz et al. 2021). There is also tremendous
variation in mutation rate across different cellular genomes – animal
mtDNAs exhibit higher mutation rates than animal nuclear genomes
(Brown et al. 1979; Wolfe et al. 1987; Havird and Sloan 2016), but
plant nuclear genomes exhibit higher mutation rates than plant
cpDNA and plant mtDNAs (Wolfe et al. 1987).
Whilst mutation rate is not known for heritable microbes, it is

known they vary substantially in substitution rate, with some
heritable microbes evolving at a rate comparable to viruses (Gerth
et al. 2021), and others, like Wolbachia, two-three orders of
magnitude slower (Richardson et al. 2012). At least some of this
variation can be traced back to the different mechanisms of
replication and repair across taxa and compartments (Brown et al.
2005; Maréchal and Brisson 2010; Lewis et al. 2015; Gerth et al.
2021), all of which have implications for mutation rate (Longley
et al. 2005; DeBalsi et al. 2017; Wu et al. 2020).

Mutational masking in cytoplasmic elements
New mutations that arise in CIEs face a dramatically different
population genetic landscape compared to Mendelian elements
because there are typically many competing cytoplasmic genomes
present inside each cell, and because organellar cytoplasmic
elements do not experience segregation, as is the case for nuclear
genomes during sexual reproduction (Wilton et al. 2018). Thus,
new mutations face a steep drift barrier, with their effects on host
function being masked until reaching higher frequency within a
cell or individual (potentially as high as 80% (King and Attardi 1989;
Boulet et al. 1992; Stewart and Chinnery 2015)). As a consequence,
mutations that exist at low frequencies among CIEs in a parent are
likely to be lost as a result of the bottleneck that occurs between
generations in multicellular organisms.
There are two sides to the mutational masking that results from

harbouring many copies of cytoplasmic genomes inside cells: (1)
mutations with deleterious fitness effects on the host can persist
longer than they otherwise would if maintained in single-copy
form within the cell (Otto 2007), and (2) mutations with beneficial
fitness effects on the host can be lost at higher rates because their
effects are largely invisible to selection. Recent high-resolution
efforts support the existence of mutational masking, as non-
synonymous mutations are more common and exist at higher
frequencies than expected (Waneka et al. 2021). Moreover,
masking of the fitness effects of mutations is expected to result
in a deletion bias (Lawless et al. 2020), especially under relaxed
selection (Wickett et al. 2008), as CIEs with replication advantages
(e.g., CIEs with smaller genomes) can rise in frequency within cells
rapidly (Wallace 1989; Clark et al. 2012; Sloan and Wu 2014). This
latter pattern may contribute to the observation that CIEs exhibit
more streamlined genomes compared to their free-living relatives
(Timmis et al. 2004; Giannakis et al. 2021).
The population of CIEs within cells, of cells within tissues, of

somatic vs. germ line tissues, and of individual hosts within host

populations gives rise to the expectation of multi-level selection,
in which elements that have an advantage in terms of spread at a
lower level of organisation do not necessarily possess the same
advantage at higher levels of organisation (Fig. 1). To wit,
mutations that remain at low frequencies across generations in
human mtDNA can rise to high frequency in separate tissues
within the same individual (Samuels et al. 2013; Rebolledo-
Jaramillo et al. 2014; Li et al. 2015). Additionally, recent work in
which artificial mixed infections of Buchnera were created within
aphids demonstrated a ‘regular winner’, despite strong drift
effects - but the winner did not necessarily confer individual level
benefits (Perreau et al. 2021).

Recombination in the cytoplasm
The misconception that CIEs do not undergo recombination has
been largely debunked. For example, phylogenetic and other
experimental analyses of animal mitochondrial genomes consis-
tently recover signatures of inter-molecular recombination,
indicating that inheritance leakage may play a major role in CIE
genome evolution (Mita et al. 1990; Kajander et al. 2000;
Ladoukakis and Zouros 2001; Ladoukakis and Eyre-Walker 2004;
Piganeau et al. 2004; Barr et al. 2005; Ciborowski et al. 2007; Ma
and O’Farrell 2015; Leducq et al. 2017; Dahal et al. 2018). Plant
plastids and plant mitochondria exhibit recombination-directed
repair (Cerutti et al. 1995; Day and Madesis 2007; Maréchal and
Brisson 2010; Davila et al. 2011; Gualberto and Newton 2017;
Chevigny et al. 2020; Wu et al. 2020), as well as rampant structural
rearrangement via repeat-mediated recombination (Palmer 1983;
Ogihara et al. 1988; Palmer and Herbon 1988; Gray et al. 1999;
Arrieta-Montiel and Mackenzie 2011; Cole et al. 2018; Wu and
Sloan 2019; Xia et al. 2020). This latter phenomenon, termed
substoichiometric shifting, makes for extensive, but heritable
structural variation within individuals (Woloszynska 2009; Maré-
chal and Brisson 2010; Arrieta-Montiel and Mackenzie 2011; Davila
et al. 2011).
Recombination has played such a large role in plant CIEs that

their relatively slow rate of molecular evolution is thought to be
due, at least in part, to recombination (Palmer and Herbon 1988;
Chevigny et al. 2020; Wu et al. 2020), as heteroplasmies may be
eliminated from intracellular populations via gene conversion.
Whether the occasional and episodic accelerations in rates of
cytoplasmic genome evolution in some plant lineages (Williams
et al. 2019; Broz et al. 2021) is associated with altered
recombinatorial activity remains an open question. Heritable
microbes also show clear signatures of recombination (Baldo et al.
2006), as well as acquisition of genetic material from other
bacteria (Nikoh et al. 2014), which commonly involves phage
transfer (Kaur et al. 2021; Boyd et al. 2021).
The evolutionary consequences of cytoplasmic recombination

are profound: recombination can act as a barrier to new mutations
through gene conversion and can facilitate the rise of beneficial
mutations and the elimination of deleterious mutations by
separating those mutations from their genomic backgrounds
(Neiman and Taylor 2009), particularly when distinct CIEs occur
inside the same cell or organism.

Cytoplasmic adaptation
The seemingly asexual nature of animal cytoplasmic genomes
suggests that they, like other asexual elements, will experience
impaired adaptive evolution. Experimental evidence, however, has
found this not to be the case, as numerous studies have reported
signatures of positive selection acting within the mitochondrial
genome (Mishmar et al. 2003; Ruiz-Pesini et al. 2004; Meiklejohn
et al. 2007). Furthermore, clinal patterns in mtDNA genomes have
been detected across several species, indicating signatures of
adaptation (Camus et al. 2017; Silva et al. 2014). Early studies by
Lynch and Blanchard (1998) found that mitochondrial genes had
higher ratios of nonsynonymous to synonymous mutations in
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relation to the nuclear genome of plants, invertebrate and fungal
taxa (Lynch and Blanchard 1998). Most recently, Morales et al.
(2015) found evidence for positive selection on several amino
acids in the mtDNA of the Australian eastern yellow robin
(Eopsaltria australis) populations. The authors additionally found
nuclear genome homogeneity within the robin populations
sampled indicating that there were high levels of gene flow, thus
the signatures of positive selection were unique to the mtDNA
(Morales et al. 2015). The combined outcomes of these studies
suggest that certain mtDNA protein-coding genes of natural
populations might well have been shaped by positive selection.
Less evidence is available linking chloroplast genomes to

adaptive processes, but this could be because of the slower rates
of evolution, higher levels of complexity or the fact that dissecting
the contributions of multiple organelle genomes is complicated.
Nevertheless, there has been some work in domesticated species
testing these questions. For example, research on rice (Oryza) has
identified 14 chloroplast genes with strong signatures of positive
selection, with these genes being mainly related to photosynthetic
function. Interestingly, authors found that eight of these genes
were independently found in sun-loving species, whereas other
photosynthetic genes were selected in shade-tolerating species
(Gao et al. 2019). Other studies have directly examined the effects
of cytonuclear interactions across two different ecological environ-
ments. The sunflower genus Helianthus is commonly used as a
model as many of its species have adapted to very distinct niches
(Levin 2003). Sambatti and colleagues performed reciprocal
transplant experiments between H. annus and H. petiolaris which
inhabit mesic and xeric habitats respectively (Sambatti et al. 2008).
In addition to examining both coevolved strains, authors used all
possible backcross combinations to dissect the contribution of the
cytoplasm and nuclear genome, finding that the cytoplasm was
the main driver for fitness, and is therefore adapted to these two
contrasting environments (Sambatti et al. 2008).
Heritable symbionts have been commonly observed to be under

strong selection. Invasion of heritable symbionts into populations
in real time has been observed on numerous occasions. For
instance, a classic example is the wave of Wolbachia that induced
cytoplasmic incompatibility (CI) which swept through Californian D.
simulans populations in the 1980s (Turelli and Hoffmann 1991).
Similarly, heritable Spiroplasma that provide tolerance to nematode
parasitism have spread through North America, and Rickettsia
spreading through whitefly populations has been observed over
the last 20 years (Himler et al. 2011; Shi et al. 2021). It is also
common to observe that symbionts either themselves have low
diversity - or that associated mitochondria have low diversity -
implying a recent history of joint selection. Finally, it is notable that
heritable microbes (unlike mitochondria and chloroplasts) may
segregate during host reproduction, with a fraction of progeny not
inheriting them. Their maintenance thus requires some form of
drive - either a benefit to host survival or reproductive parasitism.
As such, it is argued they are never neutral traits, but are
maintained by a selection - segregational loss balance (Jaenike
2012). In addition, they present different modularities of adaptive
variation - like other CIEs they have different circulating variants in
a population, but in addition, these commonly exist alongside
uninfected cytotypes, which are the equivalent of a null allele.

COADAPTATION
Coadaptation with nuclear encoded proteins and systems
The transfer of genetic material from cytoplasmic elements to the
nucleus is thought to have created strong pressures for both
nuclear and cytoplasmic genomes to cooperate with one another.
Excessive amounts of conflict can have severe consequences to
both host and symbiont. One of the classic demonstrations of
mitonuclear coadaptation comes from studies using hybrid
crosses from natural populations. The copepod species Tigriopus

californicus has become one of the main wild model systems,
primarily due to the high level of intraspecific divergence in
mtDNA genomes. While crosses between populations give F1
offspring with normal (if not elevated) fitness compared to the
parental generation, there is a drastic decrease in fitness in the F2
generations and beyond (Burton 1990). Using backcrossing
approaches, they discovered that this decrease in fitness was
caused by severe mitonuclear incompatibilities (Burton and Lee
1994), and the proportion of the maternal nuclear genome
appears to be positively correlated with developmental rate in
backcrossed individuals (Han and Barreto 2021). The nuclear-
encoded mitochondrial genes (those interacting with genes
encoded in the mtDNA) of the T. californicus genome have also
been shown to coadapt with mtDNA, exhibiting elevated
mutation-rate-corrected rates of evolution (i.e., dN/dS) compared
to the rest of the nuclear-encoded DNA, matching the rapid pace
of evolution in their mtDNA counterparts (Barreto et al. 2018).
Similarly, chloroplast genomes are predicted to be under strong

selection to coadapt, and much work has been done to document
the effects of plastid-nuclear interactions on plant fitness (Greiner
et al. 2011; Postel and Touzet 2020). Nearly all of the ~75–80
proteins encoded by the chloroplast genome are involved in
protein complexes which exhibit important functions that are
essential to plant function, such as Rubisco and photosystems I
and II. One of the best examples of coadaptation between
chloroplast and nuclear genomes after intraspecific hybridisation
comes from the genus Oenothera (Stubbe 1989; Greiner and Bock
2013), in which three basic haploid nuclear genomes can be
paired with five different chloroplast genomes; giving a total of 30
possible chloro-nuclear combinations. Of these, only 12 produce a
viable green phenotype, whereas the 18 remaining associations
lead to various degrees of cytonuclear incompatibilities, from
reduced phenotypic capacity to embryo lethality (Cleland 1972;
Dietrich et al. 1997). Subsequent work suggests that the radiation
within Oenothera is approximately 1 million years old, suggesting
that incompatibilities and coadaptation mechanisms have rapidly
evolved (Greiner et al. 2008). Although most chloroplast genomes
evolve relatively slowly, occasional accelerations in evolutionary
rate have occurred throughout angiosperms (Williams et al. 2019).
In these cases, the nuclear-encoded interacting partners of
chloroplast-encoded proteins exhibit corresponding increases in
evolutionary rate, reflecting the co-evolutionary dynamics of
plastid-nuclear interactions (Bock et al. 2014; Zhang et al. 2015;
Dai et al. 2016; Weng et al. 2016; Rockenbach et al. 2016; Havird
et al. 2017; Li et al. 2019; Forsythe et al. 2021).
Heritable symbionts are distinct from organelles in their

interaction with the host in that symbiont proteomes are generally
considered to be encoded within their genomes, rather than jointly
with the nuclear genome. Thus, this route to coadaptation is less
important. Nevertheless, symbionts have profound interplay with
their host in terms of cell biology, organismal development,
physiology and anatomy. In particular, many heritable symbionts
form obligate partnerships with their host - such that neither party
can live alone. For beneficial symbionts, there are systems to control
symbiont number through antimicrobial production (Login et al.
2011), development of specific systems for housing and transmit-
ting symbionts, alongside membrane systems/transporters for
metabolite exchange (Feng et al. 2019), which all represent
adaptations on the host to house and maintain symbiosis. On the
symbiont side, there is loss of cell walls and pathways required for
growth outside of the host environment, leading to reliance on host
supply of nutrients. An interesting phenomenon is dependence -
where the host cannot live without the symbiont for reasons other
than the services supplied by the symbiont. One of the first cases of
hereditary microbial symbiosis - between bacteria and plants of the
family Rubiaceae - is one of these, where loss of the symbiont was
observed to impede host development (Miller 1990). Further cases
include the requirement of Asobara tabida for a particular strain of
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Wolbachia to complete oogenesis (Dedeine et al. 2001). These cases
likely represent the host evolving around the presence/products of
the symbiont, such that symbiont removal results in loss of function.

Coadaptation across the cytoplasm
The study of cytoplasmically inherited agents has acknowledged the
diversity of genetic material in the cytoplasm, but rarely examined
interactions between the parties. Interactions may be either direct
(e.g., a mito-symbiont interaction), or indirect (an evolutionary
response in one that impacts the other through coinheritance).
Whilst little is known about the former, evidence of indirect impacts
is plentiful - selection on one party feeds through to the other
inherited elements. For example, the spread of Wolbachia causing CI
through a population carries the linked mtDNA haplotype, and the
selective sweep reduces mtDNA diversity at the population level
(Turelli et al. 1992; Hurst and Jiggins 2005; Deng et al. 2021). Indeed,
there are a variety of cases where symbionts are thought to have
driven the movement of mtDNA across species boundaries (Turelli
et al. 1992; Hurst and Jiggins 2005; Deng et al. 2021). Following
spread, the presence of a symbiont at equilibrium in the population
has been considered to reduce the effective population of mtDNA to
that associated with the fraction which carries the symbiont,
conceptually equivalent to background selection removing certain
individuals from the pool of individuals out of which mutations arise
and spread. More recently, it has been argued the reciprocal pattern
is also likely - selective sweeps on mtDNA impact diversity (and
indeed frequency and presence) of symbionts (Fenton et al. 2021).
Thus, the diversity and population genetics of the cytoplasm should
be taken summatively, rather than simply with regard to individual
elements.

CONFLICTS BETWEEN CYTOPLASMICALLY INHERITED
ELEMENTS AND THEIR HOSTS
Maternal inheritance produces an association between symbiont
fitness and that of their female, but not male host. This has two
primary consequences - the mother’s curse (selection optimises
CIEs to female phenotype fitness) and reproductive parasitism
(selection optimises CIEs to maximise the production and survival
of infected daughters).

Mother’s curse
The theoretical framework for the mother’s curse hypothesis was
first described in the 1990s (Frank and Hurst 1996), with further
theoretical support proposed a decade later. This framework is
simple; the uniparental maternal inheritance of mtDNA means
that males are prone to inherit mutations that are selected
through the female lineage, even if these mutations are
detrimental to males. Consequently, males are expected to
accumulate these sexually antagonistic mutations over evolu-
tionary time (Fig. 2A).
The first experimental evidence for mother’s curse came from a

Drosophila study that examined the effects of mtDNA genetic
variation on the transcriptomic response (Innocenti et al. 2011).
This study used cybrids (cytoplasmic hybrids), in which the
mitochondrial genomes from five fly strains sourced from different
parts of the world were coupled independently to an isogenic
nuclear background, decoupling the effects of mtDNA from those
of the nuclear genome. Approximately 10% of the nuclear
genome was differentially expressed in males, whereas only a
handful of genes were affected in females. Interestingly, these
differentially expressed genes were particularly involved in the
male reproductive system (testes, accessory glands, ejaculatory
duct). Another clear example of mother’s curse came from
humans in which a male-biased mutation in the mtDNA resulted
in Leber’s hereditary optical neuropathy (Milot et al. 2017). The
particular mutation was tracked over a 290-year period, by
identifying via genealogical records that it was first recorded in

Canada from a woman arriving from France in the 1600s. Given
the large male fitness consequences conferred by the mutation,
natural selection would be expected to remove this variant from
the population, but authors noticed a slight increase in frequency,
suggesting a female fitness benefit (Milot et al. 2017). More
recently though, the scope of mother’s curse has broadened to

Fig. 2 Conflicts between cytoplasmically inherited elements and
their hosts. Differences in inheritance patterns between nuclear and
cytoplasmic elements provides an arena for intergenomic conflict.
A Mothers curse hypothesis: maternal inheritance of mitochondria
can result in the accumulation of mutations with sexually
antagonistic effects in the mtDNA genome. B Cytoplasmic sex ratio
distortion in species with separate sexes. Commonly, investment
into male and female offspring is equal. Maternal inheritance ties
symbiont fitness to the production and survival of female hosts. This
is manifested in parthenogenesis induction (left), where all progeny
are daughters. Male-killing (middle), where the symbiont kills male
progeny it enters, and sibling females have greater access to
resources, and higher survival, as a result. Feminisation (right), where
the symbiont impacts development in progeny that have a male
karyotype such that they differentiate as female hosts.
C Cytoplasmic incompatibility is the result of severe miscommunica-
tion between cytoplasmic and nuclear genomes, and a classic
example of how cytoplasmic elements can spread through a
population. When hosts carrying the symbiont (red) mate with
uninfected hosts (grey), CI can result in inviable offspring in a
unidrectional (left) or bidirectional (right) fashion.
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not only include reproductive traits, but also other sex-specific life-
history traits (Montooth and Dhawanjewar 2019; Nagarajan-Radha
et al. 2020; Carnegie et al. 2021).
What is not currently clear is the extent to which mother’s curse

impacts maternally inherited elements beyond mitochondria.
Conceptually, beneficial heritable symbioses are expected to
experience a parallel process in terms of adaptation - the capacity
of a maternally inherited symbiont to protect a male host, for
instance, derives solely from correlated selection from its impact
on female hosts. However, the degree to which maternally
inherited beneficial symbioses perform less well in male hosts has
not been investigated.

Reproductive parasitism: Investment into female over male
progeny and gametes
Both symbionts and mitochondria are known to bias the pattern
of host investment into, and survival of, female hosts/gametes
over male (see (Hurst and Frost 2015) for review). In hermaphro-
ditic plants, mitochondrial variants impact the development of
anthers and pollen formation in the phenotype of cytoplasmic
male sterility (CMS). These variants divert resources to reproduc-
tion through ovule/seed, and in so doing, promote their own
transmission (Fig. 2B).
In arthropods, symbionts variously induce parthenogenetic

reproduction (thus ensuring all progeny are female and can
transmit the element), feminise hosts that are otherwise
‘programmed’ to male development, or selectively kill male hosts
they enter. This last phenotype appears to be spiteful, but is
actually an adaptive phenotype when the death of male hosts
releases resources directly (through consumption) or indirectly
(through relaxed competition) to sibling females (Hurst and
Majerus 1993). In ladybirds, for instance, dead male eggs (through
which the symbiont cannot be transmitted) are consumed by their
sisters (which carry the symbiont and can transmit them).
Embryonic male-killing in dioecious species is thus conceptually
equivalent to CMS in hermaphrodites, as a source of resource
reallocation from male to female reproduction. Male-killing may
also occur later in development, and here it is commonly
associated with infectious transmission of symbionts from male
hosts, with the symbiont showing mixed modes of transmission
(maternal inheritance through females, infectious transmission
through males (Hurst 1991).
The sex ratio/allocation distorting phenotypes described above

have impacts on the individual, but also strong ecological and
evolutionary consequences. Parthenogenesis inducing symbionts
can spread to fixation, converting the species from sexual to
asexual (Stouthamer et al. 1990). Cytoplasmic male sterility,
feminisation and male-killing agents can cause strongly female-
biased population sex ratios, and these may alter patterns of
sexual selection (Jiggins et al. 2000; Charlat et al. 2007) and indeed
the capacity of a host to effectively reproduce (Dyson and Hurst
2004). Perhaps most importantly, they engender strong selection
on their hosts to restore sex allocation/sex ratio to parity. This is
reflected in nuclear restorer genes against mitochondria inducing
CMS (Frank 1989), and suppressor genes rescuing male function
against male-killers (Hornett et al. 2006) or preventing transmis-
sion of feminizers (Rigaud and Juchault 1992). The strongly
female-biased sex ratios created when cytoplasmic sex-ratio
distorters are common creates intense Fisherian selection for
suppression/restorer elements, such that the spread of suppres-
sion/restorer genes represents some of the strongest selective
events recorded in natural populations (e.g., (Charlat et al. 2007;
Hornett et al. 2014)). Further, the evolution of suppression may
hide the underlying reproductive parasitism, which may only
become apparent in crosses between populations (Hornett et al.
2006), hybridisation (Frank 1989), or for symbionts, transinfection
to a novel host species (Sasaki et al. 2002). Indeed, the
commonness with which CMS suppression evolves is reflected

in the emergence of CMS in about 20% of hybridisation events in
plants (Frank 1989).
There are several open questions in our understanding of sex

ratio distortion. In terms of incidence, mitochondrial sex allocation
distorters are commonly observed in plants, but not in animals.
This may be associated with differences in coding capacity/
genetics of plant vs. animal genomes (mutational constraint).
Symbionts that distort sex ratio/allocation are very commonly
observed in arthropods, and have been hypothesised as present in
sea urchins (Carrier et al. 2021). Given heritable microbes are
common, it is expected that sex ratio distortion would be present
in a wider array of host than is currently recognised. In terms of
impact, a key emerging question is the nature of restorer and
suppression mutations. What are the host systems that are
impacted in this co-evolutionary arms race? It has been widely
hypothesised these may involve modifications of the sex
determination system, as alterations of the signal or target of
the symbiont (Hornett et al. 2014). This awaits further discovery of
the mechanism of male-killing and of suppression; however, that
symbionts alter splicing of key sex determination genes like
doublesex supports sex determination as a focus for suppression
(Sugimoto et al. 2010).

Reproductive parasitism: Cytoplasmic incompatibility
Cytoplasmic Incompatibility (CI) phenotypes describe the failure of
zygote development where the male parent is infected with a
symbiont and the female parent either does not have that
symbiont, or carries a different strain of the symbiont. Originally
described as a phenotype of the Wolbachia in arthropods (Yen
and Barr 1971), this phenotype has since been associated with
diverse insect symbionts, including Cardinium and Rickettsiella
(Hunter et al. 2003; Rosenwald et al. 2020). The symbionts
conferring CI spread as it imposes a cost solely on uninfected
lineages; the positive frequency-dependent nature of the advan-
tage means invasion either requires the symbiont to reach a
threshold frequency, or has an alternate phenotype that allows
initial establishment. In contrast to symbionts with sex ratio
distorting phenotypes, the symbiont becomes less costly to the
host when it is common, simply because symbiont-infected
females are unaffected. Indeed, hosts are selected to retain the
symbiont to provide immunity against CI when the symbiont is
common (Fig. 2C).
Cytoplasmic Incompatibility is a very important phenotype for

two reasons. First, it can be applied in the form of release of
infected males to suppress target vector populations, and in the
form of inoculative release of strains that combine CI and suppress
viral replication, to reduce vectorial capacity. Thus, basic research
on cytoplasmic symbionts (Hedges et al. 2008; Teixeira et al. 2008)
has translated into applied public health protection measures
(Utarini et al. 2021). Second, spread of a CI inducing symbiont in
one population or species may provide a unidirectional barrier to
hybridisation against another, and the spread of distinct strains
may produce a bidirectional barrier (Bordenstein et al. 2001). In
both cases, the symbiont spread induces reproductive isolation
and thus potentiates speciation.

CONCLUSIONS
In 1919, Thomas Hunt Morgan in his Principles of Heredity wrote:

‘That there may be substances in the cytoplasm that propagate
themselves and are outside the influence of the nucleus, must,
of course, be at once conceded as possible despite the fact
that, aside from certain plastids, all the Mendelian evidence
fails to show that there are such characters’. (Morgan 1919)

By contrast, the past 100 years have created awareness of the
vast amount of genetic biodiversity found inhabiting the
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cytoplasm. Very early on it was noted that these genetic elements
did not follow Mendelian inheritance patterns, with inheritance
being mostly maternal. One topic that remains a long-standing
and unresolved question are why most organelle genomes
transmit maternally? Since the initial observations of CIEs, many
exceptions to this rule have been discovered, from paternal
inheritance of mtDNA in cucumbers, to doubly-uniparental
inheritance in bivalves to biparental inheritance in yeast, and
symbionts combining infectious and vertical transmission. Still, a
predominance for cytoplasmic elements to be inherited via the
maternal lineage is evident from the phylogenetic record. The
tight association of cytoplasmic genomes with the rest of the cell,
plus the non-Mendelian inheritance patterns of CIEs results in
fascinating co-evolutionary dynamics that manifest at multiple
scales of biological organisation. Thus, the diversity, inheritance,
and functional roles of CIEs across eukaryotes remain an important
and open question in biology, with fundamental implications for
the cells and organisms in which they reside.
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