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Abstract
Epistasis describes the phenomenon that mutations at different loci do not have indepen-

dent effects with regard to certain phenotypes. Understanding the global epistatic land-

scape is vital for many genetic and evolutionary theories. Current knowledge for epistatic

dynamics under multiple conditions is limited by the technological difficulties in experimen-

tally screening epistatic relations among genes. We explored this issue by applying flux bal-

ance analysis to simulate epistatic landscapes under various environmental perturbations.

Specifically, we looked at gene-gene epistatic interactions, where the mutations were as-

sumed to occur in different genes. We predicted that epistasis tends to become more posi-

tive from glucose-abundant to nutrient-limiting conditions, indicating that selection might be

less effective in removing deleterious mutations in the latter. We also observed a stable

core of epistatic interactions in all tested conditions, as well as many epistatic interactions

unique to each condition. Interestingly, genes in the stable epistatic interaction network

are directly linked to most other genes whereas genes with condition-specific epistasis form

a scale-free network. Furthermore, genes with stable epistasis tend to have similar evolu-

tionary rates, whereas this co-evolving relationship does not hold for genes with condition-

specific epistasis. Our findings provide a novel genome-wide picture about epistatic

dynamics under environmental perturbations.

Introduction
Epistasis refers to the phenomenon wherein mutations of two genes can modify each other’s phe-
notypic outcomes. It can be positive (alleviating), or negative (aggravating), when a combination
of deleterious mutations shows a fitness value that is higher, or lower, than expectation, respec-
tively. For example, a mutation that hampers a pathway’s function may allow for other mutations
in the same pathway without a fitness consequence, resulting in positive epistasis. Conversely,
genes or pathways with redundant functions can give rise to negative epistasis. It is well
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established that epistasis is important for the evolution of sex [1–3], speciation [4], mutational
load [5], ploidy [6], genetic architecture of growth traits [7], genetic drift [8], genomic complexi-
ty [9], and drug resistance [10]. As biological systems in nature have to face multiple genetic and
environmental perturbations, understanding the global landscape and dynamics of epistasis under
these perturbations remains an important issue in the evolutionary field. In an earlier study, we
addressed genome-wide epistasis dynamics under various genetic perturbations [11]. In this
study, we will investigate the impact of environmental perturbations on global epistasis dynamics.

How epistatic interactions among genes change in different environments has been inten-
sively studied in various model organisms, including E. coli [12–14], S. cerevisiae [15–17], C. ele-
gans [18, 19] andD. melanogaster [20–22]. The results of these studies, however, are very
controversial. While some studies observed increasing positive epistasis under harsh conditions
[13, 17, 20], others have opposite findings [14–16, 18, 19, 21–23]. Even within the same species,
different experimental studies might have conflicting conclusions (e.g. [13, 14]). One possible
reason for the above controversy could have originated from the fact that most studies only
looked at the epistasis dynamics based on a small number of genes, where the properties cannot
be generalized to the entire organism.

The main obstacle to exploring global epistatic dynamics under a variety of environments is
the difficulty of applying high-throughput experimental platforms. To explore epistasis on a
genomic scale, a number of technologies have been developed to systematically map genetic in-
teraction networks, such as synthetic genetic array (SGA) [24, 25], diploid-based synthetic le-
thality analysis with microarrays (dSLAM) [26, 27], synthetic dosage-suppression and lethality
screen [28–30] and epistatic miniarray profiles (EMAP) [31–33]. A key issue for all these ex-
perimental studies is that these epistatic networks have been constructed only under normal
laboratory conditions. However, cells in nature are constantly bombarded by various external
environmental stresses. Epistasis dynamics under these perturbations cannot be predicted
based on a single laboratory condition. Few studies have constructed epistatic networks for
multiple environments. A recent study that has only constructed epistatic networks for a group
of genes with specific functions under one normal and one harsh condition already requires a
large amount of effort [34]. Consequently, genome-scale epistasis landscapes under a variety of
environmental perturbations remain largely uncharacterized.

Here we explored this issue by using Flux Balance Analysis (FBA) to simulate epistasis dy-
namics among genes under multiple environmental perturbations. FBA can provide reliable
predictions by optimizating a presumed objective function, commonly growth maximization in
microbes, subject to the known reactions and constraints of a metabolic network [35–40]. Using
this platform, a previous study has investigated synthetic lethal interactions (one type of nega-
tive epistasis) under multiple environmental perturbations and showed the plasticity of epistatic
interactions in the metabolic networks [41]. Here we examined both positive and negative epis-
tasis using FBA, and were able to show that, on a genome scale, epistatic interactions tend to be-
come more positive in nutrient-limiting conditions relative to abundant-glucose media. In
addition, while a large proportion of epistatic interactions can be rewired dynamically under
varying environments, there is a set of epistatic interactions that are stable across all tested envi-
ronments. We also discovered different network and evolutionary properties for genes with sta-
ble and dynamic epistatic interactions. Implications of our findings were discussed.

Methods
Scripts for generating and analyzing the data can be found in the source code repository located
at https://github.com/bbarker/COBRAscripts/. Scripts and documentation specific to this
paper are located in the subdirectoryMyProjects/EnvironmentalEpistasisFBA.
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Flux Balance Analysis
Flux Balance Analysis attempts to tackle issues inherent in other methods of metabolic model-
ing, such as the need to measure a large number of parameters, slow speed of simulation, and
dependence on initial conditions [40, 42]. Other than needing a fairly complete understanding
of the reactions present in an organism, the only measurements required to perform a genome-
scale metabolic simulation are those for determining biomass constitution or a gene expression
profile [36, 43]. Strictly speaking, FBA is a particular type of constraint based modeling (CBM).
Constraint based modeling frames the stoichiometry that describe the reactions present in an
organism as a matrix equation with indeterminates (reaction fluxes) subject to constraints
[39, 43]. The optimization problem is described as follows:

maximize cTv

subject to Sv ¼ dx
dt

¼ 0

vlb⪯v⪯vub

ð1Þ

S is a matrix, in which rows and columns correspond to cellular metabolites and reactions
in the reconstructed network respectively. v is the reaction flux with upper and lower bounds
vub and vlb respectively. Multiplying the stoichiometric matrix S by the flux vector v equals the
concentration change over time (dx

dt
). At steady state, the flux through each reaction is given by

Sv = 0. Further details on the underlying methods can be found in the literature [11, 39, 44].
The fluxes of mutations employed in this analysis were restricted to be 50% of the wild-type

fluxes found for growth rate maximization by geometric FBA [44]. To find new conditions
with a specified carbon source or other limiting nutrient that achieves 20% of the high-glucose
growth rate, we can solve a linear program for the minimization of the limiting nutrient uptake
while requiring the growth rate to be equal to 20% of the abundant-glucose growth-rate. For
maximum growth rate conditions (S1 Table, S2 and S4 Figs.), we allowed unrestricted uptake
of the limiting nutrient to obtain the maximum growth in that condition, up to the point
where it would reach the high-glucose growth rate. Mutations affecting protein complexes and
pleiotropic genes are handled by uniform restriction across enzymes as described before [11].

Definition of epistasis
In each gene mutant pair, the epistasis value is calculated based on the equation:
ε =Wxy −WxWy, in whichWxy is the fitness of an organism with two mutations in genes
X and Y, whereasWx orWy refers to the fitness of the organism with mutation only at gene
X or Y respectively. Each fitness listed previously is calculated relative to the wild-type fitness.
Absolute fitness values are determined by the value of the biomass maximization objective
present in the model. Finally, a confidence threshold (|ε|� 0.01) was applied to generate epi-
static interactions [11, 25, 44]. We also conducted analyses based on a different threshold for
epistasis and the general conclusions still hold in our analysis (S1 and S3 Figs.).

Evolutionary rates and network parameters
Evolutionary rates of S. cerevisiae genes were downloaded from supplementary materials
of [45], in which orthologs were defined by four complete genomes of Saccharomyces species
(Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces mikatae and Saccharomy-
ces bayanus) and evolutionary rates at synonymous and nonsynonymous sites were calculated
based on a four-way yeast species alignment for S. cerevisiae genes by PAML. For the
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distributions in 5A, we randomly sampled gene pairs with the same number of gene pairs as in
three epistasis networks (epistasis in all 16 conditions, extremely stable epistasis, and extremely
dynamic epistasis, respectively), and calculated the average evolutionary rate differences be-
tween random gene pairs in each of these three sample sets. The simulations were repeated
10,000 times for each of the three groups, which are color coded to correspond to the epistasis
networks of the same size.

Network parameters such as the shortest path length, clustering coefficient and closeness
were calculated using the computer software Pajek, downloaded from: http://vlado.fmf.uni-lj.
si/pub/networks/pajek. The shortest path length between two genes in a network reflects the
overall network interconnectedness; the smaller the average shortest path length is, the higher
chance that genes in this network could interact with the other genes. The clustering coefficient
of a network is a measurement of the degree to which nodes in a network tend to cluster to-
gether; the larger the average clustering coefficient is, the more closely the genes are connected,
forming modules. The closeness of a network measures the centrality of nodes within a net-
work; nodes that occur on shortest paths with other nodes have higher closeness than those
that do not [46].

Results

FBAmodeling and simulated growth conditions
We applied the yeast S. cerevisiaemetabolic reconstruction iMM904 [43] to examine the dy-
namics of epistasis under various environmental perturbations. The reconstruction has 904
metabolic genes that are associated with 1,412 metabolic reactions. We conducted FBA simula-
tions under an abundant-glucose condition and 16 nutrient-limiting conditions. In 15 of these
conditions, the carbon source (abundant glucose) was replaced by one of the following: acetal-
dehyde, acetate, adenosine 3',5'-bisphosphate, adenosyl methionine, adenosine, alanine, allan-
toin, arginine, ethanol, glutamate, glutamine, glycerol, low glucose, trehalose, and xanthosine,
respectively. These conditions represent a wide variety of nutrient and energy sources: nucleo-
sides, amino acids, sugars, alcohols, etc. Additionally, we looked at abundant glucose under
limited phosphorus availability.

To ensure that all environments have the same growth rates in the following analyses, we re-
stricted the carbon source or phosphorous uptake levels for each of the 16 environmental per-
turbations such that only 20% of the high-glucose growth rate was attained. This was chosen
because it has been shown that metabolism is directly linked to growth and similar growth
rates often induce similar metabolic pathways [47]. It is therefore important to use a fixed
growth rate among different conditions to control for the relationship between growth rates
and the overall metabolic activity so as not to induce a growth-rate specific effect. The 20%
high-glucose level was chosen because some media types do not support high growth rates, re-
gardless of the abundance of the nutrient source. Specifically, the acetate condition had the
lowest wild-type growth rate (38.5% of the wild-type glucose growth rate) when unrestricted
carbon uptake was permitted. In order to allow flexibility with adding more conditions in fu-
ture studies while simultaneously not allowing extremely low growth rates that may be possible
to model but are unlikely to persist in natural environments, we chose a growth rate of approxi-
mately half of this minimal wild-type growth rate as the the wild-type growth rate for all
conditions.

In order to estimate epistasis between genes, we created a mutation for each gene in each
condition that restricted the flux to be 50% of the wild-type flux found by geometric FBA for
all reactions associated with the mutant gene [11]. Epistatic relations between any two genes
were calculated under each condition. We also tested our core findings allowing maximum
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growth in each condition (S1 Table) and the general trends in our results remained similar, as
described in the following.

More positive differential epistases from rich media to nutrient-limiting
conditions
To directly address how the sign and magnitude of epistases change under nutrient-limiting
conditions, we calculated differential epistasis (dε), which is defined as the epistatic change
from abundant-glucose media to the nutrient-limiting condition for each gene pair in each
growth condition. A gene pair with positive (or negative) differential interaction under an envi-
ronmental perturbation is defined as the gene pair having increasing (or decreasing) epistasis
values from the abundant-glucose media to that condition. Fig. 1A depicts the distribution of
differential epistases in two growth conditions (ethanol and glycerol) as an example. Only
genes with |dε|� 0.01 in at least one of the two conditions are included in this figure. As quan-
tified in S2 Table, there are 6.1% and 5.5% of all gene pairs with |dε|� 0.01 from abundant-
glucose media to ethanol and glycerol growth conditions, respectively. Among them, a large
number of gene pairs even change their sign of epistasis (S2 Table). Simulations in other condi-
tions show similar effects (S2 Table), indicating that epistatic relationships among genes can be
very dynamic between abundant-glucose media and nutrient-limiting conditions.

We further investigated the sign of differential epistasis from abundant-glucose to nutrient-
limiting conditions. As shown in Fig. 1A, we observed more yellow dots (positive differential
epistasis) than blue dots (negative differential epistasis) in both panels. Indeed, as quantified in
Fig. 1B, 72% and 57% of differential epistases are positive in ethanol and glycerol conditions,
respectively. We further explored all 16 nutrient-limiting conditions and the results are shown
in Fig. 1C. In most of our simulated conditions (13/16), there are significantly more positive
differential epistases than negative differential epistases (Binomial test, P< 10−5 for each of
the 13 conditions), indicating that epistasis tends to become more positive in nutrient-limiting
conditions. This conclusion does not depend on the criteria we used to define differential epis-
tasis (S1 Fig.).

A recent high-throughput experiment measured epistatic relations between roughly 80,000
gene pairs with and without perturbation by a DNA-damaging agent (methyl methanesulfo-
nate, MMS). The study represents the most comprehensive experimental study so far to ex-
plore epistatic dynamics from a rich medium to a harsh condition [34]. Interestingly, the
authors also found more positive differential epistases than negative differential epistases,
which is consistent with our general observation (Fig. 1C). We further allowed maximum
growth in each condition and the general trends in our results remained similar (S2 Fig.).

We found that differential epistasis had functional importance after performing both Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses
to compare genes with positive and negative differential epistases through the glucose-abundant
to ethanol transition. We chose the ethanol condition as an example because it is one of the
most widely used conditions for the baker’s yeast. We observed that 38 GO terms and 8 KEGG
pathways are enriched for positive differential epistasis, while 18 GO terms and 1 KEGG path-
ways are enriched for negative differential epistasis (S3 Table). More importantly, we found pos-
itive and negative differential epistases uniquely contribute to different aspects of ethanol and
energy metabolism. For example, positive differential epistasis is enriched in monohydric alco-
hol metabolic processes, oxidoreductase activity acting on aldehyde group donors, the TCA
cycle, and pyruvate metabolism, while negative differential epistasis is enriched in ethanol meta-
bolic processes and various amino acid terms and pathways, indicating the functional impor-
tance of differential epistasis (S3 Table). This is consistent with experimental results that show
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Figure 1. More positive differential epistases under environmental perturbations. (A) Heat maps
describe the global dynamics of differential epistasis from abundant-glucose medium to ethanol (left panel)
and glycerol (right panel) conditions. Only gene pairs with |dε|� 0.01 in either condition are included in the
figure. Different colors represent differential epistasis values as indicated by the color bar at the bottom. The
differential epistasis values are assigned to be 0.1 (or -0.1) in the heat-maps when it is greater than 0.1
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differential epistatic interactions, rather than static epistatic interactions, are functionally related
to the response of interest [34].

Several system properties were found to correlate with the ratio of the number of positive to
negative differential epistases (S4 Table). A strong correlation exists between the number of es-
sential genes in a given condition and the ratio of positive to negative differential epistasis on
transition from high glucose to that condition (r = 0.8392, P = 4.8107 × 10−5), which was a better
predictor than the number of non-zero fluxes in the wild-type vector for that environment
(r = 0.5115, P = 0.0428). Another strong predictor for positive differential epistasis was the mean
relative fitness of single mutants in the new environment (r = −0.8029, P = 2.7427 × 10−4); this
anticorrelation suggests that a propensity for a lower single mutant fitness can cause a shift to-
wards positive epistasis.

Dynamic epistasis between nutrient-limiting conditions
Fig. 1 explored the epistasis dynamics from abundant-glucose media to nutrient-limiting con-
ditions. As biological systems in nature constantly face perturbations to the environment, it is
interesting to investigate the epistasis dynamics among nutrient-limiting conditions. To
achieve this aim, we first explored the epistatic relationship between the same gene pairs in eth-
anol and glycerol environments. Fig. 2A lists the number of gene pairs that have various epi-
static relationships. It is noteworthy to point out that, consistent with previously published
results, there are significantly more positive epistases than negative epistases between genes in
either condition [44].

If two genes have the same sign of epistasis and |ε|� 0.01 in both conditions, they are de-
fined as having a similar epistatic relationship in these two conditions. To quantify epistatic dy-
namics between ethanol and glycerol growth conditions, we defined the percentage of gene
pairs with similar epistatic relations to be the number of gene pairs with similar epistasis rela-
tions shared in these two conditions (overlap) divided by the number of gene pairs with epista-
sis in either condition (union). Our results show that 79% of gene pairs have similar epistasis
relations between these two conditions. Fig. 2B shows the distribution for the percentages of
gene pairs with similar epistasis relations between any 2 of 16 conditions, demonstrating a vari-
able degree of epistatic similarity between any two conditions. This conclusion still holds when
we used different criteria to define epistatic relationships between genes (S3 Fig.).

To understand the global distribution of all epistatic relations, we considered 16 conditions
together and calculated the fraction of epistatic interactions existing in 1, 2, 3, . . . , 15, and 16
conditions, respectively. As shown in Fig. 3A, we found that there is a U frequency distribution
for the number of growth conditions in which a specific epistatic interaction is observed. This
means that approximately 52% of these interactions are either condition-specific (24%; termed
dynamic) or predicted to exist in all conditions (28%; termed stable), and about 48% is inter-
mediate (exists in multiple but not all 16 conditions). An analogous result was obtained previ-
ously, but only for synthetic lethal interactions [41]. We also changed the growth assumption
and allowed maximum growth in each condition and reanalyzed the global distribution of all
epistatic relations. The U frequency distribution for the number of growth conditions in
which a specific epistatic interaction is observed remained similar (S4 Fig.). Based on the result

(or less than -0.1). It is noteworthy to point out that the epistasis patterns are indeed very different between
the two conditions (Fig. 2A). (B) Percentage of positive and negative differential epistases under ethanol and
glycerol conditions. (C) Ratio of positive to negative differential epistases in each simulated condition. The
result from a high-throughput experiment is also shown. The letters A-P represent acetaldehyde, acetate,
adenosine 3',5'-bisphosphate, adenosyl methionine, adenosine, alanine, allantoin, arginine, ethanol,
glutamate, glutamine, glycerol, low glucose, phosphate, trehalose, and xanthosine, respectively.

doi:10.1371/journal.pone.0114911.g001
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in Fig. 3A, we further calculated the ratio of these three types of epistatic relations in each of
the 16 environmental perturbations. As shown in Fig. 3B, we found that in each environment,
about 40–60% of epistatic interactions are stable and that each environment also has many pri-
vate epistases among genes.

Different network properties for stable and dynamic epistasis
Analysis on network properties can reveal various organization principles (e.g. frequency of oc-
currence, centrality) for epistasis networks [24, 25] and therefore provide valuable information
to further distinguish stable and dynamic epistasis. To achieve this aim, we compared networks

Figure 2. Epistasis dynamics between environmental perturbations. (A) Number of gene pairs with various epistatic relationships between ethanol and
glycerol growth conditions. (B) The distribution for the percentages of gene pairs with similar epistasis relation between any 2 of 16 conditions. The frequency
is derived from the 120 pairs of environments simulated in this study.

doi:10.1371/journal.pone.0114911.g002
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Figure 3. The global distribution of epistatic relations under simulated conditions. (A) Distribution for the number of conditions in which each epistatic
interaction exists. Note that about 28% of epistatic relations are extremely stable (the very right bar) and about 24% are extremely dynamic (the very left bar).
(B) Fraction of three types of epistatic relations in each of the 16 environmental perturbations, as indicated by the color bar to the right. The numbers in the
brackets represent the number of conditions in which each epistatic interaction exists, as indicated in (A). The letters A-P represent the simulated conditions
as indicated in Fig. 1.

doi:10.1371/journal.pone.0114911.g003
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formed by extremely stable and extremely dynamic epistasis among genes and asked whether
they have distinct network properties. The degree distributions for both types of epistasis are
shown in Fig. 4A. Interestingly, extremely stable epistatic interactions form an exponential net-
work architecture, which is homogeneous, meaning that most nodes have a very similar num-
ber of links ( Fig. 4A, left panel). In contrast, the extremely dynamic epistatic interactions give
rise to a scale-free network topology, which is heterogeneous, meaning that the majority of
nodes have few links but a small number of hubs have a large number of links (Fig. 4A, right
panel).

In addition, we calculated three network parameters to compare these two types of epistatic
interactions. We found that the network formed by extremely stable epistases has a smaller
shortest path length, a larger clustering coefficient and larger closeness than the network
formed by extremely dynamic epistases (Fig. 4B). These results are consistent with the scenario
that genes with extremely stable epistasis are directly linked to most other genes and form an
exponential network topology, while genes with extremely dynamic epistasis form a scale-free
network. Our results also show that the network induced by intermediate epistases have inter-
mediate values of these parameters compared to that of extremely stable and extremely dynam-
ic epistasis networks (S5 and S6 Tables).

Co-evolution of genes with epistatic interaction
Gene pairs with epistasis identified in real experiments usually show similar evolutionary rates.
To investigate whether two genes with predicted epistasis also tend to co-evolve, we calculated
the evolutionary rate differences between two genes with epistasis from FBA modeling
(Fig. 5A). Evolutionary rates (dN/dS) based on orthologous gene sets from four yeast species of
the genus Saccharomyces were downloaded from a commonly used reference dataset [45].
Simulations based on the same number of gene pairs with FBA-predicted epistasis were con-
ducted to estimate the evolutionary rate differences for any two randomly selected genes. As
shown in Fig. 5A, the gene pairs with FBA-predicted epistatic interactions tend to have more
similar evolutionary rates than random expectation (P< 10−4).

In Fig. 4 we observed unique network properties for extremely stable and extremely dynam-
ic epistatic interactions. We further investigate the co-evolution between genes with these two

Figure 4. Network properties for the extremely stable and extremely dynamic epistatic interactions.
(A) Degree distribution for genes in two epistatic interaction networks. The networks have nodes that
correspond to genes and edges that correspond to epistatic interactions. (B) Three network parameters (the
definition of which are shown in Methods) for two epistatic interaction networks.

doi:10.1371/journal.pone.0114911.g004
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Figure 5. Co-evolution between genes with epistasis. (A) Average evolutionary rate differences between
gene pairs with FBA-predicted epistasis (green), extremely dynamic epistasis (blue) and extremely stable
epistasis (red) are highlighted by three arrows, respectively. The random simulations with the same number
of gene pairs as each of the three groups were repeated 10,000 times and the frequency distributions are
shown (marked by the same colors as the corresponding arrows, respectively). (B) The evolutionary rates for
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types of epistatic relationships. As shown in Fig. 5A, genes with extremely stable epistasis tend
to co-evolve (P< 10−4), while the difference between genes with extremely dynamic epistasis
and random expectation becomes much smaller (P = 0.06). The evolutionary rate difference
between gene pairs with extremely stable and extremely dynamic epistasis is also significant
(t-test, P = 8 × 10−6). This difference is not caused by genes that are involved in extremely sta-
ble or extremely dynamic epistasis, because these two groups of genes do not have significantly
different evolutionary rates (t-test, P = 0.796, Fig. 5B).

Discussion

Natural selection in nutrient-limiting conditions
Whether a genetic mutation has a fitness consequence depends on other sites, a phenomenon
called epistasis (see [48] for a recent review on molecular mechanisms). Positive epistasis allevi-
ates the total harm when multiple deleterious mutations combine together and thus reduces
the effectiveness of natural selection in removing these deleterious mutations, whereas negative
epistasis plays the opposite role by increasing the efficiency of purging deleterious mutations
by natural selection. Results from this study present an initial glimpse over environment-
induced epistasis dynamics at the genome scale. Using differential epistasis from abundant-
glucose to nutrient-limiting conditions, our results show that epistasis between specific genes
can become more positive or more negative in nutrient-limiting conditions, which is consistent
with previous findings in small scale studies [12–23]. However, we showed that, at the genome
scale, epistasis is more positive in nutrient-limiting conditions. Interestingly, our simulation re-
sults are consistent with a recent genome-wide study between laboratory and harsh growth
conditions [34]. How epistasis affects selection in harsh conditions has been controversial [49].
Our results provide the genome-wide evidence arguing that selection might be less effective in
removing deleterious mutations in harsh conditions, which could be one of the underlying rea-
sons for a recent observation that stimulation of a stress response can reduce mutation pene-
trance in Caenorhabditis elegans [50].

Network properties and evolutionary patterns for stable and dynamic
epistasis
Our results indicate that epistasis could be extremely stable or dynamic among various envi-
ronmental perturbations, which is consistent with a previous FBA study investigating synthetic
lethal relations among non-essential genes [41]. The inclusion of essential genes in our study
allows for investigation on many important metabolic pathways that were not previously ana-
lyzed. Nevertheless, the distribution of epistasis among multiple environments (Fig. 3A) re-
mains largely unchanged from the previous study [41] even when essential genes are included.

We also found that stable and dynamic epistatic relationships show totally different network
properties and evolutionary patterns, which might provide new biological and evolutionary in-
sights. The gene pairs with stable epistases tend to co-evolve with each other. In addition, from
the biological pathway perspective, the smaller shortest path length and larger closeness values
in the stable epistasis network both imply that genes with stable epistases tend to be functional-
ly associated with a large number of neighbors to form a condensed functional network, differ-
ent from genes in the dynamic epistasis network that are loosely connected. Furthermore, the

genes that are involved in extremely stable and extremely dynamic epistasis, respectively. The error bars
represent standard errors.

doi:10.1371/journal.pone.0114911.g005
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large clustering coefficient in the stable epistasis network also supports the idea that genes with
stable epistasis interactions form a network core in the whole epistasis network. Combined
with observations in Fig. 5, this core module of epistasis in the metabolic network might repre-
sent stable functional associations between genes that are essential for important biological
functions and evolutionarily conserved even under different environmental perturbations. The
lack of co-evolutionary pattern and scale-free network properties for the dynamic epistasis net-
work, however, might represent unstable functional associations between genes, which may
only be responsible for unique functions under specific conditions.

Implications and significance for exploring stable and dynamic epistasis
Our prediction about stable and dynamic epistasis could have important functional applica-
tions. A recent study showed that the synthetic lethal (negative epistasis) relationship between
fumarate hydratase and haem oxygenase can be employed successfully to identify an in vitro
drug target in hereditary leiomyomatosis and renal-cell cancer (HLRCC) cells [51]. Exploring
both dynamic and stable epistasis could be useful in this context; stable epistatic interactions
may be important for drug target detection in cancer or other pathogens, whereas it may some-
times be necessary to exploit dynamic epistatic relationships, possibly induced by treatment
with an external perturbation.

Furthermore, rational evolutionary design techniques such as OptKnock [52] and OptGene
[53] attempt to find which knockouts will enable a reaction of interest to be coupled with
growth (i.e. have positive epistasis with growth-associated genes in a specific environment).
However, these techniques do not take into account epistasis dynamics across different envi-
ronments. In this study, we have found that epistatic relations can be highly dynamic under
various environmental perturbations, which raises the possibility to improve these techniques
by considering epistasis dynamics in future studies. Research on using compensatory perturba-
tions to reach desired network states is ongoing [54].

Caveats and future directions
Though we show several novel insights into how varying environments can influence epistasis,
several caveats should be addressed. First, the FBA modeling used in this study, which was
proven to have great predictive power and has been successfully employed in addressing nu-
merous research problems [35, 36, 39], only includes metabolic genes. Second, even though
FBA offers the most comprehensive simulation method for studying epistasis, there are many
improvements that can be made in order to capture the empirically observed set of epistatic in-
teractions [55]. For example, integrating transcriptional regulation and physical interactions
into this framework could improve the current methods in predicting epistasis and other evo-
lutionary processes [56]. Related to this point, FBA as used herein only considers the steady
state and does not take into account any dynamics or initial conditions, and would necessarily
miss any epistatic interactions that are due to dynamics in the system, such as changing con-
centrations; dynamic FBA (which is part of rFBA) might be a solution, but would likely require
about a minimum of two orders of magnitude increase in computation time [55, 57]. Recent
work on new objective functions targeting metabolite turnover rather than flux per se has also
proven successful in recovering many epistases that were previously not found with FBA [58].

Third, in order to understand the impact of environmental perturbations on epistasis, we
used a reductive approach and only considered one mutation type per gene to simulate the
global epistatic landscape in 16 environments. There are countless environments in nature.
Furthermore, different mutations in the same gene and the interactions between genes and en-
vironment can likely have an even more complex impact on the epistasis dynamics. While it
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would be ideal to simulate a larger variety of environments for multiple mutations of the same
gene, the computational cost is a limiting factor. Our previous study showed that different mu-
tants of the same gene could have very dynamic epistatic interaction partners in a single envi-
ronment [11]. In this study, we chose to use one mutation per gene as we are focusing on
addressing how different environments could affect gene epistasis dynamics. Nevertheless, in
order to see how sensitive our results were, we performed the analysis for our core results by
simulating 16 environments using different growth assumption, where the organisms are al-
lowed to have unrestricted uptake of the limiting nutrient to obtain the maximum growth in
that condition. We found the major trends in our results are largely unchanged (S2 and S4 Figs.;
S1 Table).

Keeping these issues in mind, our analysis uncovered several prominent features of epistatic
interactions under a variety of environmental perturbations, and call on future effort to con-
firm these simulation results using high-throughput experimental platforms. More important-
ly, the enrichment of stable and dynamic epistasis provides a new perspective to understand
how biological systems may rewire epistasis in nature.

Supporting Information
S1 Fig. More positive differential epistases under environmental perturbations for differ-
ent thresholds of differential epistasis (|dε|� 0.01, A) and (|dε|� 0.05, B). Ratio of positive
to negative differential epistases in each simulated condition are shown. The letters A-P repre-
sent acetaldehyde, acetate, adenosine 3',5'-bisphosphate, adenosyl methionine, adenosine, ala-
nine, allantoin, arginine, ethanol, glutamate, glutamine, glycerol, low glucose, phosphate,
trehalose, and xanthosine, respectively.
(TIF)

S2 Fig. Analogous to Fig. 1B–C, but using a maximum growth rate for each condition,
where the maximum is constrained to be no higher than the high-glucose growth rate.
(A) Percentage of positive and negative differential epistases under ethanol and glycerol condi-
tions. (B) Ratio of positive to negative differential epistases in each simulated condition. The
result from a high-throughput experiment is also shown. The letters A-P represent acetalde-
hyde, acetate, adenosine 3',5'-bisphosphate, adenosyl methionine, adenosine, alanine, allantoin,
arginine, ethanol, glutamate, glutamine, glycerol, low glucose, phosphate, trehalose, and
xanthosine, respectively. Note that in (B), low glucose has the same growth rate as high-
glucose, but has different epistatic interactions since we still use the high-oxygen uptake level
associated with the low glucose condition.
(TIF)

S3 Fig. Epistasis dynamics between environmental perturbations under different epistasis
definition. (A) Number of gene pairs with various epistatic relationships between ethanol and
glycerol growth conditions under a lower (|ε|� 0.01) and a higher (|ε|� 0.05) epistasis thresh-
old. (B) The distribution for the percentages of gene pairs with similar epistasis relations be-
tween any 2 of 16 conditions under a lower (|ε|� 0.01) and a higher (|ε|� 0.05) epistasis
threshold.
(TIF)

S4 Fig. Analogous to Fig. 3A, but using a maximum growth rate for each condition, where
the maximum is constrained to be no higher than the high-glucose growth rate. Distribu-
tion for the number of conditions in which each epistatic interaction exists. Note that about
26% of epistatic relations are extremely stable (the very right bar) and about 19% are extremely
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dynamic (the very left bar).
(TIF)

S1 Table. Wild-type growth rates used in the maximal growth rate simulations used for
S2 and S4 Figs.
(XLSX)

S2 Table. Condition-specific epistases and sign-epistases prevalence in the iMM904 yeast
model.
(XLSX)

S3 Table. GO term enrichment analysis results for differential epistasis in transition to eth-
anol.
(XLSX)

S4 Table. Properties of simulated systems that correlate with the ratio of positive to nega-
tive differential epistases.
(XLSX)

S5 Table. List of epistatic interactions for the extremely stable, dynamic, and intermediate
epistasis networks.
(XLSX)

S6 Table. Table of network parameters for stable, dynamic, and intermediate epistasis.
(XLSX)
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