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Abstract: Acute kidney injury (AKI) is a major kidney disease characterized by an abrupt loss of renal
function. Accumulating evidence indicates that incomplete or maladaptive repair after AKI can result
in kidney fibrosis and the development and progression of chronic kidney disease (CKD). Hypoxia,
a condition of insufficient supply of oxygen to cells and tissues, occurs in both acute and chronic
kidney diseases under a variety of clinical and experimental conditions. Hypoxia-inducible factors
(HIFs) are the “master” transcription factors responsible for gene expression in hypoxia. Recent
researches demonstrate that HIFs play an important role in kidney injury and repair by regulating
HIF target genes, including microRNAs. However, there are controversies regarding the pathological
roles of HIFs in kidney injury and repair. In this review, we describe the regulation, expression,
and functions of HIFs, and their target genes and related functions. We also discuss the involvement
of HIFs in AKI and kidney repair, presenting HIFs as effective therapeutic targets.

Keywords: hypoxia; HIF; kidney injury; kidney repair; prolyl hydroxylase domain-containing
protein (PHD)

1. Introduction

Acute kidney injury (AKI), a major kidney disease with high morbidity and mortality,
is characterized by a rapid loss of renal function [1]. The most common causes of AKI include sepsis,
renal ischemia reperfusion (IR), and nephrotoxins. Pathologically, AKI is featured by sublethal and
lethal injury of renal tubular epithelial cells [2,3]. Besides its acute effect on mortality, AKI can also
contribute to the development and progression of chronic kidney disease (CKD) [4,5]. After initial
injury, surviving renal proximal tubular epithelial cells (RPTCs) undergo dedifferentiation and
proliferation to restore the integrity of renal tubules. However, when the injury becomes severe
or episodic, the incomplete or maladaptive repair promotes the progression to CKD [6,7].

Hypoxia is a condition in which a cell or an organism has insufficient supply of oxygen.
It occurs in microcirculation injury and hypoperfusion in tissues and organs including kidneys [8–10].
Hypoxia occurs in both AKI (not only the acute phase but also the recovery phase) and CKD
under a variety of clinical and experimental conditions [11–15]. Meanwhile, it is also related to
CKD-associated pathological states such as anemia [16] and inflammation [17]. The cellular response
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to hypoxia is centered on hypoxia-inducible factor (HIF). Under hypoxic condition, cells upregulate
HIF, a well-known heterodimeric transcription factor that controls the transcription of more than
100 genes including erythropoietin (EPO), vascular endothelial growth factor (VEGF), and glucose
transporter-1 (GLUT1) to restore tissue homeostasis by stimulating erythropoiesis, angiogenesis,
anaerobic glycolysis, and other adaptive processes [18,19]. In kidneys, oxygen diffusion shunt between
venous and arterial vessels that are in close physical relationship leads to a relatively low oxygen
tension in kidney tissues, especially in renal medulla [20]. However, renal tubules are high in oxygen
consumption [14]. Consequently, the low oxygen supply and high oxygen demand make the kidney
vulnerable to hypoxia. Emerging evidence indicates that HIF and hypoxia response play an important
role in various types of AKI [21–23] and CKD [14,15,24].

In this review, we will mainly concentrate on the function and mechanisms of HIF (HIF-1 and
HIF-2) in kidney injury and repair, as they are the master transcriptional regulators responsive to
hypoxia. We also discuss the therapeutic potential of targeting HIF for ameliorating kidney injury and
accelerating kidney repair.

2. Regulation of HIF

HIF is a protein heterodimer that is composed of an inducible α subunit (HIF-1α, HIF-2α,
or HIF-3α) and a constitutively expressed subunit HIF-β. Therefore, the expression and function of
HIF mainly depends on HIF-α. Notably, the stability of HIF-α is oxygen dependent. Under hypoxia,
two critical prolyl residues of HIF-α are hydroxylated by specific prolyl hydroxylase domain-containing
proteins (PHDs). Following prolyl hydroxylation, HIF-α binds to the von Hippel–Lindau protein
(pVHL)-E3-ubiquitin ligase complex for ubiquitination and rapid degradation by proteasome [25,26]
(Figure 1). All PHDs (PHD1, PHD2, and PHD3) are expressed in renal tubular epithelial cells [27].
Higher levels of PHDs are found in the thick ascending limb, distal convoluted tubule, and collecting
duct of inner medulla, where oxygen tension is known to be physiologically low. PHD1 is expressed
in the nucleus, while PHD2 is expressed in the cytoplasm, and PHD3 is found both in the nucleus and
cytoplasm [28]. Different PHDs have different roles. PHD2 is a key regulator of HIF-α expression [29],
while the relative abundance of PHD3 and PHD1 may determine the selectivity of HIF-1α and HIF-2α
expression [30]. What’s more, PHD2 seems to be the hydroxylase that is essential for HIF-α degradation
during normoxia [29,31], whereas PHD3 appears to play an important role in hydroxylating HIF-α
under reoxygenation [30].

In addition to PHDs, factor inhibiting HIF (FIH) is also a vital oxygen-sensitive enzyme for HIF
regulation. With oxygen, FIH hydroxylates an HIF-α’s asparaginyl residue to prevent the recruitment
of the CREB-binding protein (CBP)/p300 coactivators, which is required for the full transcriptional
activity of HIF [32,33]. Thus, PHDs control the stability or expression level of HIFαs, while FIH1
regulates HIF’s transcription activity, providing a dual mechanism of HIF upregulation in response to
hypoxia (Figure 1). Of note, FIH1 remains active at lower oxygen concentrations than PHDs, and may
therefore inhibit the activity of HIF that has escaped PHD-mediated destruction during moderate
hypoxia [34,35]. Under hypoxia, HIF-α becomes stable and translocates into the nucleus, and then
dimerizes with HIF-β to transactivate target genes. Meanwhile, FIH inactivation promotes CBP/p300
recruitment for increasing the transcriptional activity of HIF [31]. In the kidneys, FIH has been detected
in the distal tubules and podocytes [36].

Besides the classic regulation by PHDs and FIH, the stability, nuclear accumulation,
and transcriptional activity of HIF-α are also modulated by other signaling pathways. Recent studies
have indicated that direct phosphorylation of HIF-α plays an important role in regulating HIF-α
stability, nuclear localization, as well as transcription activity [37]. Both glycogen synthase kinase-3beta
(GSK-3β) and polo-like kinase 3 (Plk3) can enhance HIF-α degradation by directly phosphorylating
the HIF-α proteins [38,39]. In contrast, protein kinase A (PKA) may phosphorylate HIF-1α to
inhibit its proteasomal degradation and enhance its transcriptional activity [40]. Mylonis et al.
demonstrated that phosphorylation of HIF-1α by MAPK/ERK promoted its nuclear accumulation
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and transcriptional activity through blocking CRM1-dependent nuclear export [41,42]. Interestingly,
ERK-dependent activation of HIF-1 could be inhibited by HIF-1α-derived cell-penetrating peptides [43].
Kalousi et al. found that casein kinase 1delta (CK1δ) phosphorylated HIF-1α to prevent its association
with HIF-β and attenuate HIF-1 activity [44]. CK1δ could also phosphorylate HIF-2α; however,
this phosphorylation promoted the nuclear accumulation and transcription activity of HIF-2α [45].Cells 2019, 8, x 3 of 22 

 

 
Figure 1. Regulation of the stability and transcription activity of HIF. In the presence of oxygen or 
normoxia, PHDs hydroxylate two prolyl residues of HIF-α. The hydroxylated HIF-α then binds to 
VHL-E3-ubiquitin ligase complex, leading to poly-ubiquitination and proteosomal degradation. 
Meanwhile, FIH hydroxylates an asparaginyl residue of HIF-α. Asparaginyl hydroxylated HIF-α 
prevents the recruitment of CBP/p300 coactivators, which is required for the full transcriptional 
activity of HIF. In the absence of O2 or hypoxia, PHD-mediated prolyl residue hydroxylation is 
inhibited, resulting in HIF-α stabilization. The stabilized HIF-α translocates into nucleus and then 
dimerizes with HIF-β to transactivate target genes. Meanwhile, FIH-mediated asparaginyl residue 
hydroxylation is also inhibited, causing the recruitment of CBP/p300 coactivators to enhance the 
transcription activity of HIF. In addition to oxygen, phosphorylation and ROS may play dual roles in 
HIF-α regulation; HSP90 inhibitors, HDACIs, RACK1, and sumoylation can decrease the stability of 
HIF-α, while NO-mediated S-nitrosylation can enhance the stability of HIF-α. Abbreviations: 
hypoxia-inducible factor (HIF), prolyl hydroxylase domain-containing protein (PHD), von Hippel–
Lindau (VHL), factor inhibiting HIF (FIH), CREB-binding protein (CBP), hypoxia response element 
(HRE), reactive oxygen species (ROS), histone deacetylase inhibitors (HDACIs), receptor of activated 
protein kinase C 1 (RACK1), phosphorylation (P), glycogen synthase kinase-3beta (GSK-3β), polo-like 
kinase 3 (Plk3), protein kinase A (PKA), and nitric oxide (NO). 
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Figure 1. Regulation of the stability and transcription activity of HIF. In the presence of oxygen or
normoxia, PHDs hydroxylate two prolyl residues of HIF-α. The hydroxylated HIF-α then binds
to VHL-E3-ubiquitin ligase complex, leading to poly-ubiquitination and proteosomal degradation.
Meanwhile, FIH hydroxylates an asparaginyl residue of HIF-α. Asparaginyl hydroxylated HIF-α
prevents the recruitment of CBP/p300 coactivators, which is required for the full transcriptional activity
of HIF. In the absence of O2 or hypoxia, PHD-mediated prolyl residue hydroxylation is inhibited,
resulting in HIF-α stabilization. The stabilized HIF-α translocates into nucleus and then dimerizes with
HIF-β to transactivate target genes. Meanwhile, FIH-mediated asparaginyl residue hydroxylation is
also inhibited, causing the recruitment of CBP/p300 coactivators to enhance the transcription activity of
HIF. In addition to oxygen, phosphorylation and ROS may play dual roles in HIF-α regulation; HSP90
inhibitors, HDACIs, RACK1, and sumoylation can decrease the stability of HIF-α, while NO-mediated
S-nitrosylation can enhance the stability of HIF-α. Abbreviations: hypoxia-inducible factor (HIF),
prolyl hydroxylase domain-containing protein (PHD), von Hippel–Lindau (VHL), factor inhibiting
HIF (FIH), CREB-binding protein (CBP), hypoxia response element (HRE), reactive oxygen species
(ROS), histone deacetylase inhibitors (HDACIs), receptor of activated protein kinase C 1 (RACK1),
phosphorylation (P), glycogen synthase kinase-3beta (GSK-3β), polo-like kinase 3 (Plk3), protein kinase
A (PKA), and nitric oxide (NO).

A growing number of studies, even if being conflicting, have indicated that reactive oxygen
species (ROS) can regulate HIF-α under normoxia and hypoxia [46–48]. Under normoxia, ROS appear
to act as signaling molecules for HIF-1α [49]. Hypoxia results in increased production of ROS at
the electron transport chain, which may increase HIF-1α’s stability and activity by inhibiting PHD’s
activity [50,51]. Additional studies showed that increased ROS production could prevent hydroxylation
and degradation of HIF-1α and HIF-2α [52]. However, other studies demonstrated that increased ROS
promoted the degradation of HIF-1α via the ubiquitin–proteasome system [48]. Thus, the regulation
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of HIF by ROS may depend on cellular and experimental context [47,52–54]. Moreover, it may involve
the feedback through nuclear factor kappa B (NF-κB) and Nrf2 [51,55,56].

In addition, heat shock protein 90 (HSP90) inhibitors and histone deacetylase inhibitors (HDACIs)
were reported to accelerate HIF-α degradation in a manner independent of pVHL [57,58]. Receptor of
activated protein kinase C 1 (RACK1) may prompt HIF-1α degradation via competing with HSP90 [59].
Under certain conditions, nitric oxide (NO)-mediated S-nitrosylation can enhance the stability and
activity of HIF-1α [60]. In addition, sumoylation also plays a role in regulating HIF-α stability [61]
(Figure 1).

3. Expression Patterns and Functions of HIFs

There are three subtypes of HIFs named HIF-1, HIF-2, and HIF-3 due to the labile subunit
HIF-α (HIF-1α, HIF-2α, or HIF-3α). HIF-1α is ubiquitously expressed in organs of most cell types,
whereas HIF-2α expression is tissue limited and detected particularly in highly vascularized tissues
and organs [62,63]. In kidney, HIF-1α is found in most renal epithelial cells, while HIF-2α is mainly
expressed in renal interstitial fibroblast-like cells and endothelial cells. In addition, HIF-1α is also
detected in endothelial and interstitial cells of the papilla and inner medulla, but not in the outer
medulla and cortex [64].

In general, both HIF-1α and HIF-2α are activated by hypoxia but in different phases: HIF-1α
takes part in the initial adaptation process of hypoxia as it is rapidly induced and then falls to a low
level within 72 h, whereas HIF-2α accumulation begins under prolonged hypoxic conditions [65–67].
Upon prolonged hypoxia, upregulated natural antisense RNA of HIF-1α may destabilize HIF-1α’s
mRNA to decrease its expression in lung epithelial cells, whereas the expression of HIF-2α is not
affected [68]. Chen et al. showed that the elevated HIF-1α under chronic hypoxic pulmonary
hypertension may activate the transcription of PHD2 and PHD3, suggesting that upregulated PHDs
under chronic hypoxia may act as a negative feedback mechanism for HIF-1α [69]. Later research
indicates that LIMD1, a HIF-1 target gene, mediates a negative feedback for HIF-1α degradation under
chronic hypoxic conditions by modulating PHD2–LIMD1–VHL complex formation [70].

Functionally, HIF-1 plays an important role in regulating metabolism. It not only mediates the
transition from oxidative metabolism to glycolysis to generate ATP in an oxygen-independent manner,
but also mediates the subunit conversion in cytochrome c oxidase under hypoxic conditions to improve
the efficiency of electron transfer [71,72]. In addition, HIF-1 also takes part in the regulation of fibrosis,
cell death, and inflammation [73], although the underlying mechanisms are less clear. HIF-2 is a major
regulator of erythropoietin production [16] and vessel remodeling in diseases [74,75]. In contrast,
the function of HIF-3 remains largely unknown and controversial. There are studies that suggest
full-length HIF-3 may act as an oxygen-regulated transcriptional activator for a unique transcriptional
program in response to hypoxia. On the other hand, some short HIF-3 variants may suppress HIF-1
and HIF-2 by acting as dominant-negative inhibitors that compete for HIF-β [76]. In addition, HIF-1
can transcriptionally activate the expression of HIF-3α, adding another layer of complexity [77].

4. Well-Known HIF Target Genes and Their Functions in Kidney

Under hypoxia, HIFs accumulate and bind to the hypoxia response elements (HRE) in the
enhancer or promoter region of their target genes, resulting in transcription [20,26,78]. Both HIF-1
and HIF-2 promote oxygen delivery and cellular adaptation to hypoxia via stimulating multiple
cellular and tissue responses, including erythropoiesis, angiogenesis, anaerobic glucose metabolism,
iron metabolism, and adenosine and NO metabolism [18,19]. Among them, erythropoiesis,
angiogenesis, and anaerobic glucose metabolism, which are respectively regulated by EPO, VEGF,
and glycolytic genes, are the most important hypoxia responses in kidney injury and repair. There is
evidence that glycolytic genes are predominantly regulated by HIF-1 [79], whereas VEGF and EPO
induction are preferentially regulated by HIF-2 [80–82]. Interestingly, in cells lacking HIF-1, there is no
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induction of hypoxia responsive genes, suggesting that HIF-1 is a prerequisite for inducing this family
of genes in some cells [83].

4.1. Erythropoietin (EPO)

EPO, a hematopoietic growth factor secreted by the kidney and liver, promotes red blood
cells generation (erythropoiesis) in the bone marrow, thus enhancing the blood’s oxygen carrying
capacity [72]. Upon hypoxia, HIF accumulates and binds to the HRE of EPO in the 3′ enhancer
region [20,84]. The chief function of EPO is to promote erythropoiesis. In the regulation of
erythropoiesis, kidney is the most important oxygen sensor, which responds to systemic hypoxia,
and then increase the production of EPO rapidly by renal interstitial fibroblast-like cells [85,86].
Liver can also produce EPO to promote erythropoiesis in an oxygen-dependent mode, but it is not
sufficient to compensate the loss of kidney EPO in end-stage renal disease, leading to anemia that
requires systemic treatment with recombinant EPO [87]. In addition, EPO can also protect against
kidney injury by reducing apoptosis and inflammation, and increasing tubular cell proliferation [88].

4.2. Vascular Endothelial Growth Factor (VEGF)

VEGF, induced by hypoxia or ischemia, plays an important role in angiogenesis by activating
the receptor tyrosine kinases (VEGFR-1, VEGFR-2, and VEGFR-3) [89,90]. The function of renal
glomerulus is dependent on the specialized vasculature maintained by VEGF [91]. Overexpression of
podocyte-derived VEGF in glomeruli leads to a collapsing glomerulopathy [92], whereas suppression
of podocyte VEGF expression destroys the filtration barrier, resulting in protein leakage and glomerular
thrombotic microangiopathy (TMA) [93].

5. HIF in AKI and Mechanisms of HIF Signaling in AKI

Depending on the condition of perfusion, the oxygen supply to the kidneys, especially the cortex,
can vary significantly. Notably, the renal proximal tubule cells have very limited capacity of ATP
production via anaerobic glycolysis, resulting in rapid consumption of, and high dependence on,
oxygen in maintaining oxidative metabolism. These make the kidney susceptible to hypoxic damage.
In hypoxia (or ischemia in vivo), HIFs play an important role in the pathogenesis of AKI.

5.1. HIF in IR-Induced AKI

Renal ischemia-reperfusion injury (IRI) is one of the main causes of AKI associated with a
variety of clinical conditions, such as kidney transplantation, renal vascular occlusion, and cardiac
arrest resuscitation [94]. The involvement of HIFs in kidney IRI has been demonstrated in numerous
studies. Both ischemic pre-conditioning (caused by short-term ischemia) and hypoxia pre-conditioning
(caused by carbon monoxide, which reduces tissue oxygen availability through blocking the oxygen
carrying capacity of hemoglobin) can induce HIF, leading to resistance against subsequent IR
injury [95,96]. Activating HIF-1α and HIF-2α by pretreatment with pharmacological PHDs inhibitors
significantly reduced ischemic kidney injury by reducing apoptosis, macrophage infiltration, and
vascular cell adhesion molecule 1 (VCAM1) expression, and upregulating HIF target genes [21,96–101].
However, the effect of post-ischemic treatment with pharmacological PHDs inhibitors is controversial.
Jamadarkhana et al. found that administrating PHD inhibitor TRC160334 at 2 h, 6 h, and 10 h post the
onset of kidney ischemia activated the expression of HIF-1 and attenuated kidney injury by inducing
heat shock protein 70 (HSP70) [102]. Also, administrating granulocyte colony-stimulating factor
(G-CSF) and stem cell factor (SCF) 6 h after IRI also activated the expression of HIF-1 and reduced the
degree of kidney tissue injury by upregulating the expression of VEGF and EPO [103]. But, other studies
demonstrated that administrating PHD inhibitors after renal ischemia had no effects in attenuating
AKI and renal fibrosis [99,100]. There are several possible causes of the apparent discrepancy between
these studies [99,100,102]: (1) the frequency of the administration of PHD inhibitors—the research
by Jamadarkhana et al. [102] involved repetitive application of PHD inhibitor, while the research
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by Wang et al. [99] included only single application; (2) the method of the administration of PHD
inhibitors—the PHD inhibitor was administered by oral gavage by Kapitsinou et al. [100], while the
PHD inhibitor was injected by Jamadarkhana et al. [102]; (3) Jamadarkhana et al. [102] tested various
doses, whereas Wang et al. and Kapitsinou et al. [99,100] tested only a single dose; and (4) the time
of the administration of PHD inhibitors. Thus, there may be a narrow therapeutic window of PHD
inhibitors for treatment when given post ischemia.

Conde et al. showed that short interfering RNA (siRNA) against HIF-1α exacerbated renal IR
injury [11]. A later study further demonstrated that inhibiting HIF-1α by siRNA during reperfusion
had deleterious effects on kidney injury and renal fibrosis by downregulating miR-127-3p and inducing
its target gene Bcl6 [104]. Meanwhile, Zhang et al. discovered that HIF-1α siRNA counteracted
the protective effect of isoflurane on renal ischemia-reperfusion injury [105]. Hill et al. found that
heterozygous HIF-1α and HIF-2α knockdown (KO) mice had more pronounced renal IR injury than
wild-type littermates [98]. Using HIF-2α knockdown mice, Kojima et al. demonstrated that HIF-2
protected against renal ischemia by ameliorating oxidative stress [106]. Remarkably, Kapitsinou
et al. analyzed the functions of HIF-1 and HIF-2 in endothelial cells during renal IR injury by
testing conditional endothelial cell (EC)-specific HIF-1α and HIF-2α double or single knockout mouse
models, demonstrating that endothelial HIF-2, but not endothelial HIF-1, protected from renal
ischemia-reperfusion injury by reducing the expression of VCAM1 [21].

Mechanistically, apart from the aforementioned mechanisms such as oxidative stress, upregulating
HIF target genes, and reducing VCAM1 expression, several studies have demonstrated that
HIF-induced microRNAs play important roles in ischemic AKI. MicroRNAs are short non-coding
RNAs that control post-transcriptional gene expression by translational inhibition and/or mRNA
degradation through binding to target gene mRNA. For example, our recent study showed that
microRNA-489 is induced via HIF-1 in ischemic AKI to protect renal proximal tubules by targeting
relevant genes [107]. Our latest research further demonstrated that HIF-1 induces miR-668 to protect
against ischemic AKI via repressing MTP18 to preserve mitochondrial dynamics [108]. Conde et al.
showed that downregulating miR-127-3p by HIF-1α interference may promote induction of collagen
I and α-SMA, and loss of E-cadherin [104]. Meanwhile, HIF-1 may also protect against IR-induced
kidney injury via miR-21 target pathways [101,109], further indicating that HIF may protect kidneys
via microRNAs. On the other hand, HIF can also induce the expression of injurious microRNAs. For
example, miR-687 is induced via HIF-1 in proximal tubule cells in ischemic AKI, and blocking miR-687
attenuated kidney injury by preserving PTEN expression and attenuating renal apoptosis and cell
cycle activation [110]. Thus, in addition to the induction of protective microRNAs, HIF may also
induce injurious microRNAs. Regardless, all these studies supported an important role of HIFs in the
pathogenesis of ischemia AKI. Interestingly, a recent study by Mathia and colleagues showed that
miR-22 was induced to repress HIF-1α in a mouse model of rhabdomyolysis-associated AKI. Specific
antagonism of miR-22 resulted in HIF-1α upregulation, but it was unable to ameliorate AKI likely due
to the expression of both protective and injurious genes [111].

5.2. HIF in Cisplatin-Induced AKI

Induction and activation of HIF have also been implicated in the pathogenesis of nephrotoxic
AKI. One such example is AKI induced by cisplatin, a chemotherapeutic drug widely used to treat
various malignancies. During cisplatin treatment of cancer, more than one-quarter of patients
developed kidney problems, especially AKI [112]. In addition to causing renal tubule cell death,
cisplatin also induced vascular dysfunction, resulting in hypoperfusion or hypoxia in kidneys [113].
In vitro, proximal tubular cells preconditioned with hypoxia reduced cisplatin-induced apoptosis in
HIF-1α-dependent manner. In addition, in vivo, rats preconditioned with carbon monoxide prior
to cisplatin administration ameliorated cisplatin-induced AKI [114]. Consistently, activating HIF-1
by pretreatment with pharmacological PHDs inhibitors such as cobalt and FG-4592 significantly
attenuated cisplatin-induced AKI by inhibiting mitochondrial signaling pathways and upregulating
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HIF target genes [22,115]. In addition to drug intervention, implantation of stem cells had sparked
great interest in the area of kidney repair following AKI. Wang and colleagues found that human
adipose-derived stem cells (hASCs) transfected with HIF-1α provided obvious protective effects against
cisplatin-induced kidney injury on tubular structure and renal function by suppressing inflammation,
reducing renal tubular apoptosis and upregulating heme oxygenase 1 (HO-1) gene expression [116].
What’s more, delayed administration of lithium promoted recovery from cisplatin or IRI-induced AKI
by stabilizing pro-proliferative molecules including HIF-1α [117].

In conclusion, these findings indicated that intrinsic HIF activation, even at a modest level, may
benefit kidneys during cisplatin chemotherapy.

5.3. HIF in Sepsis-Associated AKI

Sepsis is a systemic inflammatory response caused by infection and is the most common
contributing factor in the development of AKI [118]. The systemic inflammatory response can
be initiated by bacterial lipopolysaccharide (LPS) and/or other microbial component into the
lymph and circulatory system. Early research indicated that pre-conditioning with chronic hypoxia
protected against LPS-induced AKI by attenuating oxidative stress and inflammatory cytokine
release via enhancing the ratio of intrarenal antioxidant/oxidative protein [119]. In septic patients,
EPO and HIF-1α play important roles in the pathogenesis of sepsis-AKI [120]. He and colleagues
reported that pre-conditioning with LPS led to HIF-2α accumulation via NF-κB in endothelial
cells, which was responsible for the resistance of the pre-conditioned mice to subsequent ischemic
AKI [121]. Importantly, Stoyanoff et al. indicated that phosphorylated NF-κB, p65, and HIF-1α

were simultaneously overexpressed in LPS-induced renal damage, and EPO administration
attenuated septic-AKI through decreasing HIF-1α and NF-κB expression [122]. Consistently, landiolol
hydrochloride, acting as an ultra-short-acting beta-blocker, attenuated LPS-induced AKI by
ameliorating HIF-1 upregulation and normalizing inflammatory cytokines such as TNF-α [123].
Together, these results suggested that the activation of HIF-1 may be harmful during septic or
LPS-induced AKI.

5.4. HIF in AKI Induced by Other Causes

There are reports that HIF also takes part in AKI induced by rhabdomyolysis [23], gentamicin [124],
and contrast medium in combination of nitric oxide synthase (NOS) inhibitor and cyclooxygenase
inhibitor [125]. Selectively activating HIF in renal tubules by Pax8-rtTA-based inducible knockout
of von Hippel–Lindau protein (VHL-KO) protected against rhabdomyolysis-induced renal damage
through a metabolic sHIFt to anaerobic energy metabolism [23]. In gentamicin-induced AKI, activating
HIF-1 by continuous infusion of cobalt ameliorated renal damage by reducing renal tubular apoptosis
and macrophage infiltration [124]. Early studies indicated that contrast medium could reduce renal
oxygen tension via increasing tubular oxygen consumption for solute reabsorption and decreasing renal
perfusion by vasoconstriction and peritubular capillaries compression [126,127]. In a multi-insult-AKI
rat model caused by contrast medium, NOS inhibitor, and COX inhibitor, furosemide treatment
ameliorated kidney injury with an unexpected HIF-1α increase [125]. Thus, HIF induction is a common
observation in various AKI models. Following induction, HIF generally has a renoprotective role but
it may contribute to AKI under specific conditions (Table 1).
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Table 1. Summary of in vivo studies on the effect of HIFs in kidney injury.

AKI Model Approach for HIF
Activation/Inhibition

Which HIF Was
Activated/Inhibited

Effects on
Kidney Injury Mechanisms References

IRI in mice 15 min renal ischemic
pre-conditioning HIF-1 was activated Attenuate AKI Increasing the

expression of miR-21 [95]

uIRI in rat Carbon monoxide HIF-1 and HIF-2 were
activated Attenuate AKI

Alleviating apoptosis
and macrophage

infiltration
[96]

uIRI in mice PHD inhibitor HIF-1 and HIF-2 were
activated Attenuate AKI

Alleviating apoptosis
and macrophage

infiltration
[98]

IRI in rat PHD inhibitor HIF-1 and HIF-2 were
activated Attenuate AKI Upregulating HIF target

genes, including EPO [99]

uIRI in mice PHD inhibitor HIF-1 and HIF-2 were
activated Attenuate AKI Reducing VCAM1 [21]

IRI in mice PHD inhibitor HIF-1 and HIF-2 were
activated

Attenuate AKI
and renal
fibrosis

Reducing inflammation [100]

uIRI in rat Cobalt chloride HIF-1 was activated Attenuate AKI Inducing renoprotective
gene expression [97]

IRI in mice Cobalt chloride HIF-1 was activated Attenuate AKI Upregulating VEGF and
miR-21 [101]

IRI in rat HIF-1α siRNA HIF-1 was inhibited Aggravate AKI [11]

IRI in mice HIF-1α(+/−) or
HIF-2α(+/−) mice

HIF-1 or HIF-2 was
inhibited Aggravate AKI [98]

IRI in mice HIF-2α knockdown
mice HIF-2 was inhibited Aggravate AKI Enhancing oxidative

stress [106]

uIRI in mice EC-specific PHD2−/−
mice

Endothelial HIF was
activated

Attenuate
kidney injury Reducing VCAM1 [21]

uIRI in mice
EC-specific HIF2α−/−

mice with PHD
inhibitor

HIF-1 was activated
Ineffective in
attenuating

AKI
[21]

Cisplatin-AKI in rat Cobalt HIF-1 was activated Attenuate AKI Inhibiting mitochondrial
signaling pathways [115]

Cisplatin-AKI in mice PHD inhibitor HIF-1 was activated Attenuate AKI Upregulating HIF target
genes [22]

LPS-AKI in rat Landiolol
hydrochloride

Ameliorate the
upregulation of HIF-1 Attenuate AKI Normalizing

inflammatory cytokines [123]

Rhabdomyolysis-AKI
in mice

Pax8-rtTA–based
inducible VHL-KO

Renal tubules HIF was
activated Attenuate AKI

Metabolic sHIFt toward
anaerobic energy

metabolism
[23]

Gentamicin-AKI in rat Cobalt HIF-1 was activated Attenuate AKI Reducing apoptosis and
macrophage infiltration [124]

Multi-insult-AKI in
rat(contrast medium,
NOS inhibitor, and

COX inhibitor)

Furosemide HIF-1 was activated Attenuate AKI Upregulating HO-1 [125]

AKI, acute kidney injury; HIF, hypoxia-inducible factor; IRI, ischemia-reperfusion injury; uIRI, unilateral
ischemia-reperfusion injury; PHD, prolyl hydroxylase domain-containing protein; EPO, erythropoietin; VCAM1,
vascular cell adhesion molecule-1; VEGF, vascular endothelial growth factor; siRNA, short interfering RNA; EC,
endothelial cell; LPS, lipopolysaccharide; VHL-KO, knockout of von Hippel–Lindau protein; NOS, nitric oxide
synthase; COX, cyclooxygenase; HO-1, heme oxygenase 1.

6. Role of HIF in Kidney Repair

After injury, the kidney has the capacity of repair. This is particularly true for renal tubules. If the
initial injury is mild, kidney repair can be complete resulting in intact, fully functional repair; however,
if the initial injury is severe, kidney repair is incomplete and may lead to chronic pathologies and
gradual decline of renal function. HIFs have been implicated in kidney repair in various models
(Table 2).
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Table 2. Summary of in vivo studies on the effect of HIFs in kidney repair.

AKI Model Approach for HIF
Activation/Inhibition

Which HIF was
Activated/Inhibited

Effects on Kidney
Repair Mechanisms References

IRI in rat PHD inhibitor HIF-1 was activated Attenuate AKI Inducing HSP70 [102]

IRI in rat SCF and G-CSF HIF-1 was activated Attenuate AKI Upregulating VEGF
and EPO [103]

IRI in rat HIF-1α siRNA HIF-1 was inhibited Aggravate AKI and
renal fibrosis

Downregulating
miR-127-3p and

inducing its target
gene Bcl6

[104]

IRI in rat PHD inhibitor HIF-1 and HIF-2 were
activated

Ineffective in
attenuating AKI [99]

IRI in mice PHD inhibitor HIF-1 and HIF-2 were
activated

Ineffective in
attenuating AKI and

renal fibrosis
[100]

IRI in rat HIF-1α siRNA HIF-1 was inhibited Aggravate AKI [11]

uIRI in mice EC-specific HIF-1a
HIF-2α−/−mice

Endothelial HIF-1 and
HIF-2 were inhibited

Impair kidney
recovery and worsen

renal fibrosis
Activating VCAM1 [21]

uIRI in mice
EC-specific

HIF-1α−/− or
HIF2α−/−mice

Endothelial HIF-1 or
HIF-2 was inhibited

Inactivation of
endothelial HIF-2 but

not HIF-1 impairs
kidney recovery

Activating VCAM1 [21]

Cisplatin-AKI
in mice

Lentivirus-mediated
HIF-1α-transfected

hASCs
HIF-1 was activated Attenuate AKI Upregulating HO-1 [116]

LPS-AKI in
mice EPO HIF-1 was inhibited Attenuate AKI Promoting

angiogenesis [122]

AKI, acute kidney injury; HIF, hypoxia-inducible factor; IRI, ischemia-reperfusion injury; PHD, prolyl
hydroxylase domain-containing protein; HSP70, heat shock protein 70; SCF, stem cell factor; G-CSF, granulocyte
colony-stimulating factor; VEGF, vascular endothelial growth factor; EPO, erythropoietin; siRNA, short interfering
RNA; uIRI, unilateral ischemia-reperfusion injury; EC, endothelial cell; VCAM1, vascular cell adhesion molecule-1;
hASCs, human adipose-derived stem cells; HO-1, heme oxygenase 1; LPS, lipopolysaccharide.

6.1. Integral Introduction of Kidney Repair

After AKI, the kidneys have the capability to repair damaged tubules. Depending on the
severity of injury, the repair can be complete or incomplete. Complete repair (also called “adaptive
repair”) can restore the integrity and function of renal tubules, whereas incomplete or maladaptive
repair, characterized by undifferentiated and atrophic tubules and persistent inflammation, leads to
renal interstitial fibrosis and possible progression to CKD [6,7,128,129]. Tubulointerstitial hypoxia is
considered to be a common pathway for progressive kidney disease. Hypoxia inhibits the growth
of renal tubular epithelial cells and results in failure of remodeling by accelerating dedifferentiation
and apoptosis [130,131]. In addition, hypoxia can also convert tubular epithelial cells to a pro-fibrotic
phenotype [132] and promote tubulointerstitial inflammation [133]. Human microarray data have
identified the hypoxia target genes in cell death (GsE12546), cellular proliferation (GsE4725),
differentiation (GsE9510 and GsE4630) and inflammation (GsE968 and GsE10723) [134]. Although
resident renal cells upregulate HIFs and relevant genes upon hypoxia, hypoxia adaptation through HIF
is not sufficient in CKD as HIF is suppressed by many factors such as uremia and oxidative stress [135].
A list of in vivo studies on the effect of HIFs in kidney repair is presented in Table 2.

6.2. HIF in Kidney Cell Death, Dedifferentiation, and Proliferation

One mechanism for HIF involvement in kidney repair is by regulating kidney cell death. It is well
known that appropriate kidney repair involves a precise balance between renal tubular cell death and
proliferation [136]. Hypoxia may induce cell death of renal tubules and, to a limited extent, endothelial
cells [131,137]. HIF-1α affects cell death by regulating Bcl-2 family genes, interacting with p53, and/or
targeting mitochondria enzymes [138]. A large amount of work has demonstrated that HIF activation
decreases renal apoptosis in different kinds of AKI models [96,98,114–116]. Consistently, inhibiting
HIF-1 in vitro by HIF-1α interference promoted cell death [11]. In chronic models of progressive
Thy1 nephritis and the remnant kidney, activating HIF by cobalt also reduced apoptotic tubular
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cells [139,140]. In addition, upregulated HIF-1α promoted kidney tissue repair from acute tubular
necrosis [103].

In non-lethal injury, proliferation and re-differentiation of proximal tubule cells are the major
contributors to tubular repair [141]. Maladaptive tubular cells’ repair may occur when epithelial
cells are not fully re-differentiated [142] or arrested in G2 phase of cell cycle [143]. Many groups
have indicated that surviving tubular cells could transiently upregulate tubular epithelial cell
dedifferentiation markers such as alpha-smooth muscle actin, vimentin, and S100A4. Co-expression
of PCNA-proliferating cell nuclear antigen with these markers indicated that the dedifferentiated
cells are actively replicating [144,145]. In addition, The dedifferentiated cells respond to diverse
proliferative signals, including epidermal growth factor (EGF), hepatocyte growth factor (HGF),
transforming growth factor β (TGF-β), and VEGF [146]. Under this condition, HIF-1α may facilitate
cell proliferation [147]. HIF-1α induction during reperfusion acts as a key factor in proximal epithelial
cell regeneration by promoting the expression of tissue repair genes [11]. In the remnant kidney model,
HIF activation preserved the peritubular capillary networks by increasing the number of proliferating
glomerular and peritubular endothelial cells [140]. Mechanistically, HIF-1 can enhance tissue repair by
upregulating EPO to stimulate cellular regeneration as well as inhibit apoptotic cell death [148] and
induce stromal cell-derived factor-1 (SDF-1) to promote recruitment of progenitor cells for regenerating
tissues [149]. On the other hand, HIF-1α can also inhibit cell proliferation [150]. A recent study
reported that the induction of HIF-1α during hypoxia inhibited the proliferation of mesenchymal
stem cells through increasing the cell cycle inhibitor p27 [151]. What’s more, HIF-1α inhibition by
siRNA induced proximal tubule cells proliferation during renal I/R [104]. Thus, in terms of tubular
cell proliferation, HIF may be a double-sided sword.

6.3. HIF in Kidney Fibrosis

Maladaptive repair post-AKI leads to renal interstitial fibrosis [6]. Increasing evidence indicates
that HIF is a pivotal regulator of kidney fibrosis under various pathological conditions [21,100,152].
However, it remains controversial whether HIF promotes or antagonizes renal fibrosis. In 2007, Higgins
et al. demonstrated a critical role of renal tubular HIF-1 in renal fibrosis during unilateral ureteral
obstruction (UUO) [24]. In ischemia-reperfusion injury, Kapitsinou et al. showed that activating HIF
by pharmacological PHD inhibitor GSK1002083A before ischemia ameliorated AKI-induced fibrosis,
but post-ischemic PHD inhibition had no effect on renal fibrosis [100]. In remnant kidney model,
pharmacological activating HIF ameliorated tubulointerstitial injury and decreased fibrosis [140,153].
Further research indicated that the renoprotective effect of HIF in the remnant kidney model relied on
the timing and isoform of HIF activation [154]. Administrating a PHD inhibitor (HIF stabilizer) at an
early stage accelerated renal fibrosis, while administrating at a more advanced stage decreased renal
fibrosis. Notably, the PHD inhibitor given at early stage activated both HIF-1α and HIF-2α, whereas
PHD inhibitor given later only activated HIF-2α with no effect on HIF-1α [154]. The time-dependent
effects suggest that renal fibrosis in this model may be related to the activation of specific HIF isoforms
in specific cells. In the model of hypertensive type 2 diabetes, pharmacological activating HIF by
CoCl2 also attenuated renal fibrosis [155]. In contrast, Conde et al. found that HIF-1α siRNA increased
the expression of fibrotic markers and promoted the epithelial-to-mesenchymal transition (EMT)
process in renal I/R [104]. Furthermore, Kobayashi and colleagues indicated that genetic activation
of HIF suppressed fibrogenesis in UUO [156]. In addition, using genetic methods, Kapitsinou et al.
demonstrated that inhibiting endothelial HIF accelerated renal fibrosis both in IR model and UUO
model [21].

On the contrary, there are many studies demonstrated that HIF was pro-fibrotic in
kidney. Kimura and his colleagues found that injection of a pharmacologic HIF-1 inhibitor
(3-(5’-hydroxymethyl-2’-furyl)-1-benzyl indazole) decreased renal fibrosis in UUO [157]. In rat
angiotensin II-induced renal injury and chronic ischemic renal injury, the increase of fibrotic
proteins (α-smooth muscle actin and collagen) was blocked by HIF-1α shRNA [152,158]. Consistently,
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in hypoxia/reoxygenation model, persistent activation of HIF-1α by using an HIF-1α∆ODD-expressing
adenovirus significantly increased the expression of α-smooth muscle actin and decreased the
expression of E-cadherin [159]. Genetic ablation of proximal tubule epithelial HIF-1α impeded the
development of kidney fibrosis in UUO model [24]. Similarly, genetic overexpression of HIF-1α in
tubular epithelial cells by von Hippel–Lindau tumor suppressor (VHL) deletion exacerbated interstitial
fibrosis in a 5/6 renal ablation model [157]. Mechanistically, HIF signaling may promote renal fibrosis
via at least four mechanisms: (1) transcriptional regulation of fibrogenic genes; (2) cross-talk with
other pro-fibrotic signaling pathways such as TGF-β, NF-κB, Notch, and PI3K/Akt pathways; (3) its
potential role in EMT; and (4) epigenetic regulation [73].

Collectively, these studies demonstrate an important regulatory role of HIF in renal fibrogenesis.
However, whether HIF is pro- or anti-fibrotic may depend on which, where, and when HIF is activated.

6.4. HIF in Kidney Inflammation

Persistent inflammation is a characteristic of maladaptive kidney repair post AKI. Interestingly,
inflammation and hypoxia often coexist and have been shown to regulate each other. On one
hand, hypoxia and HIF-1 strongly influence inflammatory cell recruitment [160] and function [161].
On the other hand, inflammatory cells regulate the activation of hypoxic signaling pathways [162].
In the unilateral ischemia-reperfusion (uIR) and remnant kidney models, HIF activation by cobalt
chloride decreased macrophage infiltration [97,140]. A latter study indicated that macrophages
exhibited phenotype sHIFt (from M1 to M2) during the kidney repair process [163]. In a rat renal
IR model, silencing HIF-1α exacerbated inflammatory response by activating NF-κB and inducing
pro-inflammatory factors [104]. In a mouse model of UUO, global or conditional knockout of HIF-1
and HIF-2 in myeloid cells caused more severe inflammation. In the meanwhile, activating HIF via
myeloid-specific VHL-knockout suppresses inflammation [156]. Moreover, conditional knockout of
endothelial HIF-2α, rather than HIF-1α, led to enhanced inflammatory cell infiltration in both uIR and
UUO mouse models [21]. On the contrary, in renal epithelial cells, genetic ablation of HIF-1α decreased
inflammatory cell infiltration in mice UUO model [24]. Together, these studies indicate that HIF may
play a modulatory role in inflammation in kidney injury and repair. HIF may suppress inflammation
directly by working in immune cells and indirectly by working in epithelial and endothelial cells
(Figure 2).
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Figure 2. Role of hypoxia and HIF in kidney repair. Hypoxia accelerates the progression of CKD by 
inhibiting renal tubular epithelial cell growth and promoting dedifferentiation, apoptosis, EMT, and 
inflammation. Upregulation of HIFs by genetic or pharmacological treatment may (1) inhibit renal 
tubular cell death by regulating Bcl-2 family genes, interacting with p53, and/or targeting 
mitochondria enzymes; (2) promote renal tubular and glomerular cell proliferation by inducing tissue 
repair genes such as EPO and SDF-1; (3) inhibit mesenchymal stem cell proliferation by increasing 
the cell cycle inhibitor p27 expression; (4) promote or inhibit kidney fibrosis by regulating fibrogenic 
genes, cross-talking with other pro-fibrotic signaling pathways, EMT, and epigenetic regulation; and 
(5) inhibit kidney inflammation by reducing the expression of NF-κB and pro-inflammatory factors. 
Abbreviations: epithelial-to-mesenchymal transition (EMT), chronic kidney disease (CKD), 
erythropoietin (EPO), stromal cell-derived factor-1 (SDF-1), and hypoxia-inducible factor (HIF). 
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in vivo. Hypoxia occurs frequently in diseased kidneys and HIF is often suboptimal under these 
conditions. This is particularly true for AKI and post-AKI kidneys under repair. Thus, there is a great 
therapeutic potential by targeting or activating HIF. As discussed above, HIF is primarily modulated 
by the PHD–VHL pathway. A major breakthrough in clinical application is that multiple clinical trials 
have shown the therapeutic effects of PHD inhibitors for anemia in CKD patients. The first PHD 
inhibitor, roxadustat, was recently approved for clinical use in China. Of note, these are Pan-PHD 
inhibitors and do not have specificity for a specific PHD isoform. There are three PHD isoforms that 
have different characteristics, including target selectivity for HIF-α isoforms and expression levels in 
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isoform that are expected to be safer and have specific therapeutic spectrum. In addition, excessive 
activation of HIF may sometimes have deleterious effects. It is therefore important to systematically 
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Figure 2. Role of hypoxia and HIF in kidney repair. Hypoxia accelerates the progression of CKD
by inhibiting renal tubular epithelial cell growth and promoting dedifferentiation, apoptosis, EMT,
and inflammation. Upregulation of HIFs by genetic or pharmacological treatment may (1) inhibit
renal tubular cell death by regulating Bcl-2 family genes, interacting with p53, and/or targeting
mitochondria enzymes; (2) promote renal tubular and glomerular cell proliferation by inducing tissue
repair genes such as EPO and SDF-1; (3) inhibit mesenchymal stem cell proliferation by increasing the
cell cycle inhibitor p27 expression; (4) promote or inhibit kidney fibrosis by regulating fibrogenic genes,
cross-talking with other pro-fibrotic signaling pathways, EMT, and epigenetic regulation; and (5) inhibit
kidney inflammation by reducing the expression of NF-κB and pro-inflammatory factors. Abbreviations:
epithelial-to-mesenchymal transition (EMT), chronic kidney disease (CKD), erythropoietin (EPO),
stromal cell-derived factor-1 (SDF-1), and hypoxia-inducible factor (HIF).

7. Therapeutic Potential of HIF in AKI and CKD

HIF is the master switch for hypoxic adaptation in cells and tissues. In kidneys, as in other organs,
HIF increases oxygen supply and improves the tolerance to conditions of hypoxia or ischemia in vivo.
Hypoxia occurs frequently in diseased kidneys and HIF is often suboptimal under these conditions.
This is particularly true for AKI and post-AKI kidneys under repair. Thus, there is a great therapeutic
potential by targeting or activating HIF. As discussed above, HIF is primarily modulated by the
PHD–VHL pathway. A major breakthrough in clinical application is that multiple clinical trials have
shown the therapeutic effects of PHD inhibitors for anemia in CKD patients. The first PHD inhibitor,
roxadustat, was recently approved for clinical use in China. Of note, these are Pan-PHD inhibitors and
do not have specificity for a specific PHD isoform. There are three PHD isoforms that have different
characteristics, including target selectivity for HIF-α isoforms and expression levels in cell types.
Therefore, there is an urgent need to develop agents that can specifically inhibit each PHD isoform that
are expected to be safer and have specific therapeutic spectrum. In addition, excessive activation of HIF
may sometimes have deleterious effects. It is therefore important to systematically titrate and optimize
the degree, timing, and duration of HIF activation. Finally, despite various experimental studies, it
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remains unclear if targeting HIF-PHD is an effective treatment for kidney diseases in human patients.
In this regard, we expect serious efforts in both experimental and clinical test of PHD inhibitors in
coming years.
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