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Pathogen persistence in the respiratory tract is an important preoccupation, and of 
particular relevance to infectious diseases such as tuberculosis. The equilibrium between 
elimination of pathogens and the magnitude of the host response is a sword of Damocles 
for susceptible patients. The alveolar macrophage is the first sentinel of the respiratory 
tree and constitutes the dominant immune cell in the steady state. This immune cell is 
a key player in the balance between defense against pathogens and tolerance toward 
innocuous stimuli. This review focuses on the role of alveolar macrophages in limiting 
lung tissue damage from potentially innocuous stimuli and from infections, processes 
that are relevant to appropriate tolerance of potential causes of lung disease. Notably, 
the different anti-inflammatory strategies employed by alveolar macrophages and lung 
tissue damage control are explored. These two properties, in addition to macrophage 
manipulation by pathogens, are discussed to explain how alveolar macrophages may 
drive pathogen persistence in the airways.
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inTRODUCTiOn

The lung serves the vital function of gas exchange, bringing oxygen to every single cell of the body, 
and disposing carbon dioxide. We inspire almost 11,000 l of air daily containing countless particles 
that include antigens, toxins, and microbes. It is remarkable that the lungs maintain a healthy and 
functional state, permitting in most instances considerable longevity. Ignoring harmless inhaled 
proteins, adapting to toxicants and limiting immune responses to bacteria and their cellular com-
ponents are essential forms of adaptation that reduce tissue damage and that may be considered to 
be aspects of lung tolerance. However, while clearance of nocive inhaled substances is an optimal 
strategy, in some instances the host defense strategy decreases the host susceptibility to tissue damage 
but may permit pathogen survival. In other terms, disease tolerance is the result of the magnitude of 
the host reaction to the organism, which limits tissue damage but in doing so may fails to eliminate 
the pathogen. Here, we describe two important components leading to limiting of lung disease by 
alveolar macrophages (Aφs) by (i) repair of tissue damage and (ii) modulation of inflammation.

The Aφ is the first sentinel of the respiratory tree and constitutes the dominant immune cell in 
the steady state. These innate immune cells, derived from the yolk sac, are present as early as the 
first week after birth and are regulated in part by granulocyte-macrophage colony-stimulating factor 
(GM-CSF) (1, 2). Their niche in the alveolar space makes them important guardians of pulmonary 
homeostasis. Aφs regulate the response to infections and to epithelial damage. These functions 
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require the engagement of different cellular pathways, one of 
which is pro-inflammatory and the other trophic, requiring a 
range of macrophage properties that often lead to a dichotomous 
classification of the Aφ phenotype.

The term macrophage (from Greek: μακρύς, makros = large 
and φαγειν, phagein = eater) was introduced by Elie Metchnikoff 
in 1883, following the description of the fundamental property of 
phagocytosis (3). A century later, macrophages had been observed 
in every single organ of the body and were recognized among 
the first actors of innate immunity. The ultra-structure of Aφs 
of mouse lung was described by Karrer (4) and the phagocytosis 
of India ink particles in the alveolar space by Aφs was observed 
30 min after intranasal instillation. In the steady state, Karrer also 
observed a large amount of ferritin within Aφs suggesting that 
they ingested red blood cells. Sixty years later, the link between 
erythrocytes and macrophage biology has been established 
through the role of the heme signaling pathway in the develop-
ment, differentiation, and function of macrophages (5). The most 
common function of Aφs phagocytosis is the removal of apoptotic 
cells to ensure tissue homeostasis. Extensive work by Fadok et al. 
described different receptors involved in this process (6). Aφs 
use different receptors such as immunoglobulin receptors and 
complement receptors to recognize opsonized microorganisms, 
facilitating their phagocytosis (7). The recognition of damage and 
pathogen-associated molecular patterns (DAMPs and PAMPs, 
respectively) by pattern recognition receptors, such as toll-like 
receptors or C-type lectin receptors, allows them to recognize the 
presence of pathogens or products of injury, and respond directly 
to provide optimal host protection (8). For instance, it has been 
recently shown that CD206 (mannose receptor) is involved in the 
recognition of Mycobacterium tuberculosis and the subsequent 
signaling (9). Aφs are also responsible for cleaning the epithelial 
environment by removing “waste materials” such as oxidized 
lipids using scavenger receptors. Notably, expression of MARCO 
and class A scavenger receptors (SR-AI/II) on Aφs is augmented 
so as to decrease pulmonary inflammation after oxidant inhala-
tion (10). Finally, protection offered by pathogen recognition 
is complemented by enhancing the presentation of antigens to 
T cells. However, it seems that human Aφs are less efficient in 
this process due to a reduced expression of B7 costimulatory 
cell surface molecules (11), perhaps a useful characteristic in the 
avoidance of an exuberant response to harmless antigens.

MACROPHAGe PHenOTYPeS

The opposing properties of Aφs designed to kill pathogens 
or to promote cellular proliferation and repair of tissues have 
been associated with supposedly discrete phenotypes termed 
the M1/kill and M2/repair macrophages (12, 13). Mills based 
this dichotomy on arginine metabolism: M1 can metabolize 
arginine to nitric oxide (and citrulline), an inhibitor of prolifera-
tion through cyclic guanosine monophosphate-dependent and  
-independent pathways (14), while M2 produce ornithine (and 
urea), a promoter of proliferation. Whether macrophages display 
an M1 or M2 profile is dependent upon the tissue environment as 
the tissue context may direct macrophages to provide an appro-
priate response (15). This plasticity results in a large spectrum 

of macrophage properties. In order to organize a classification 
of these macrophages, a consortium has published nomenclature 
and experimental guidelines (16).

Some of our understanding of the physiological functions 
of Aφs in the lung has resulted from observing the effects of 
their depletion. For example, the immunosuppressive proper-
ties of Aφs in the response to inhaled sensitizing proteins 
are manifested by prior depletion that results in an enhanced 
inflammatory response and an increased recruitment of antigen-
presenting cells to regional lymph nodes and lung tissues (17). 
More recent studies confirm Aφ’s anti-inflammatory properties 
from the augmentation of inflammation in allergen challenged 
animals in which depletion has been induced prior to challenge 
(18, 19). Adoptive transfer of Aφs from allergen-resistant to 
allergen-susceptible rats prevents allergen-induced AHR and 
the inflammatory cytokines interleukin-13 and tumor necrosis 
factor-α (20). These findings indicate that quiescent Aφs have 
anti-inflammatory properties. Aφs harvested from allergen 
challenged animals are less effective in suppressing inflammation 
following adoptive transfer (18). The epithelial-derived alarmins 
IL-33 and TSLP promote the differentiation of quiescent Aφs to 
the M2 phenotype and augment macrophage-dependent allergic 
inflammation in the mouse (21, 22). Thus, Aφs show plasticity 
that is dependent on the microenvironment and whereas qui-
escent Aφs are predominantly immunosuppressive to avoid the 
development of unnecessary inflammatory responses to the host 
of inhaled foreign proteins encountered within the airway tree, 
when activated in the context of allergen challenge, the cells are 
less effective in their anti-inflammatory role.

ALveOLAR MACROPHAGeS in TiSSUe 
DAMAGe COnTROL

Whether tissue damage is of infectious or inflammatory origin, 
Aφs must reduce the inflammation in first instance to limit the 
extent of injury. To do so, Aφs have been described to develop dif-
ferent anti-inflammatory strategies (Figure 1). Aφs are effectors of 
the resolution of inflammation through phagocytosis of apoptotic 
cells (efferocytosis), preventing dying cells from releasing pro-
inflammatory and toxic contents into the environment while trig-
gering the release of anti-inflammatory and repair factors (23). In 
vivo and in vitro studies have shown that apoptotic cell clearance 
induces the secretion of transforming growth factor β1 (TGF-β1), 
prostaglandin E2 (PGE2), and platelet-activating factor (PAF), 
with associated suppression of pro-inflammatory cytokines, 
chemokines, and leukotriene C4 (24–26). These findings have 
been confirmed in human. Indeed, defective lipopolysaccharide 
(LPS)-stimulated uptake of apoptotic cells by Aφs from patients 
with severe asthma has been associated with failure to induce 
the synthesis of PGE2 and 15-hydroxyeicosatetraenoic acid  
(15-HETE) (27). Moreover, defective phagocytosis has been 
observed in several respiratory pathologies. In severe asthma in 
children, macrophage function is abnormal and characterized 
by reduced phagocytic function and excessive apoptosis (28). In 
addition to asthma (27, 29), defective phagocytic function has 
been described in chronic obstructive pulmonary disease (30), 
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FiGURe 1 | Anti-inflammatory strategies of alveolar macrophages favoring tissue damage control. Removal of apoptotic cells by Aφs (efferocytosis) leads to the 
secretion of anti-inflammatory mediators, such as transforming growth factor β1 (TGF-β1), prostaglandin E2 (PGE2), and platelet-activating factor (PAF), which in turn 
suppress the synthesis of pro-inflammatory cytokines, chemokines, and leukotriene C4. During phagocytosis of apoptotic cells or in response to inflammation-
associated cytokines, Aφs also release insulin-like growth factor 1 (IGF-1). Binding of IGF-1 to its receptor on epithelial cells changes their phagocytosis pattern. 
Epithelial cells reduce the clearance of apoptotic cells while increasing the uptake of anti-inflammatory macrophage-derived microvesicles containing suppressor of 
cytokine signaling proteins (SOCS). Contact-dependent intercellular communication between Aφs and epithelial cells, using connexin 43 (Cx43)-containing gap 
junction channels, leads to synchronized calcium waves, using the epithelium as the conducting pathway and drives anti-inflammatory actions. Finally, Aφs promote 
the differentiation of regulatory T cells to further control inflammation.
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cystic fibrosis (31, 32), and idiopathic pulmonary fibrosis (33) and 
also has been attributed a role in sustained/chronic inflammation.

Allergens, such as house dust mite, can cause apoptotic 
epithelial cell death (34) and trigger the synthesis of IL-4 and 
IL-13 from mast cells and type-2 innate lymphoid cells (ILC2s). 
These events lead to the production of insulin-like growth fac-
tor 1 from Aφs that enhances the uptake of anti-inflammatory 
macrophage-derived microvesicles by airway epithelium (35). 
Bourdonnay et  al. report that Aφs can secrete suppressors of 
cytokine signaling SOCS1 and -3 in exosomes and microparticles, 
respectively, for uptake by alveolar epithelial cells and subsequent 
inhibition of STAT activation (36). Notably, airway epithelial 
cells can use PGE2 as a signal to evoke SOCS3 release from Aφs 
to dampen their endogenous inflammatory responses in an LPS 
inflammation model (37). Contact-dependent communication 
between Aφs and alveolar epithelium has been described also 
to modulate immunity through gap junction-like connections 
and the propagation of calcium waves (38). The consequence 
of this intercellular communication was immunosuppressive. 
The binding of CD200R and TGF-βR, expressed by Aφs, with 
their ligands (CD200 and TGF-β, respectively) present on the 
cell membrane of epithelial cells is a negative regulator of Aφ 
activation (15).

An alternative mechanism by which Aφs limit inflammation 
is through promoting a regulatory T cell (Treg) response. Cancer 

cell-activated M2-like macrophages induce activated Treg cells 
from CD4+CD25− T cells in vitro. Interestingly, the authors also 
demonstrated a positive-feedback loop in which activated Tregs 
skewed the differentiation of monocytes toward an M2-like 
phenotype (39). Lung tissue-resident macrophages (Siglec F+ 
CD11c+ AutoFluorescenthi, likely Aφs) isolated from mouse and 
pulsed with ovalbumin when cocultured with antigen-specific 
CD4 T cells result in the generation of Foxp3+ Treg cells. Treg cell 
induction required both TGF-β and retinoic acid. Transfer of the 
antigen-pulsed tissue macrophages into the airways correspond-
ingly prevented the development of asthmatic lung inflammation 
upon subsequent challenge with ovalbumin. However, other 
allergens, such as extracts from Dermatophagoides pteronyssinus, 
Aspergillus fumigatus, or cat dander, did not induce Tregs because 
of protease and TLR-mediated signals (40). Macrophages may 
also induce Tregs by an indirect pathway. Interleukin-6, a soluble 
mediator commonly associated with inflammation and elevated 
in humans with severe respiratory infection, is actually critical 
in promoting the resolution of the host response to respiratory 
viral infection and in limiting disease. Early, but not late, IL-6 
signaling is required for the resolution of respiratory syncytial 
virus-induced immunopathology (41). Production of IL-6 after 
infection induces the production of the regulatory cytokine 
interleukin-27 by Aφs and recruited Ly6C+ monocytes, which in 
turn promotes the local maturation of Treg cells.
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Since macrophages stand poised to rapidly produce large 
amounts of inflammatory cytokines in response to danger signals, 
it is logical that they are also the target of the process of resolu-
tion of inflammation. Indeed, several types of molecular controls 
work to downregulate the inflammatory responses of activated 
macrophages. These regulatory controls have been exhaustively 
reviewed by Mosser et  al. (42). Regrettably, very few studies 
focused on Aφs are referenced, suggesting a gap in this field.

Once inflammation is controlled, tissue repair must take place 
to restore the normal tissue architecture. In the lung, the main 
cells damaged by infection and inflammation are epithelial cells. 
As long as the injury persists, pro-inflammatory signals continue, 
and further damage the epithelium. Thus, the repair process may 
be considered an integral part of the resolution of inflammation.

Important aspects of tissue repair by macrophages have been 
reviewed (23). Aφs with an M2 profile are the best candidates to 
orchestrate the repair of the epithelium since the metabolism of 
arginine to ornithine leads to cell proliferation and collagen pro-
duction. Unexpectedly, M1 (or classically activated macrophages) 
may also participate in the lung repair by producing a large amount 
of amphiregulin in a mouse with LPS-induced acute lung injury 
(43). Amphiregulin, a ligand for the epidermal growth factor 
receptor, as well as other growth factors are necessary to ensure an 
optimal repair. Aφs produce these growth factors to counteract 
the epithelial damage induced by infection. For instance, Aφs that 
phagocytose apoptotic neutrophils produce hepatocyte growth 
factor (HGF) during bacterial pneumonia in mice (44). HGF is 
also produced by Aφs to enhance alveolar epithelial proliferation 
during influenza infection (45). Another major growth factor, 
also involved in tolerogenic response, is TGF-β1. Interestingly, 
macrophages that engage in efferocytosis may inhibit the TGF-
β1 induced-epithelial–mesenchymal transition in lung alveolar 
epithelial cells via PGE2, PGD2, and HGF (46).

In studying the role of Aφs in lung physiology, precautions 
should be taken since the population of Aφs is heterogeneous. 
Indeed, monocyte-derived Aφs, recruited from the bone marrow 
during the inflammatory response, evoke different outcomes 
than resident Aφs. Monocyte-derived Aφs recruited in response 
to airway epithelial-derived monocyte chemoattractant protein 
1/CCL2, are involved in airway inflammation and remod-
eling in allergic asthma (47). In a mouse model of lung injury 
(bleomycin and influenza A virus infection), monocyte-derived 
Aφs drive lung fibrosis and persist in the lung (48). However, 
monocyte-derived Aφs recruited after γ-herpesvirus (murid 
herpesvirus 4) infection may inhibit the development of house 
dust mite-induced experimental asthma (49). Thus, depending 
on the trigger for lung tissue damage and repair, Aφs but also 
monocyte-derived Aφs may have either beneficial or deleterious 
functions and more studies are required to better delineate the 
role of these macrophage subtypes in lung diseases.

TiSSUe DAMAGe COnTROL MAY DRive 
PATHOGen PeRSiSTenCe

The environment created by the tissue damage control may 
favor the persistence of pathogens in the airways. Indeed, the 

immunosuppressive properties of Aφs during the process of 
the control of tissue damage are presumably key in leading to 
immune evasion. Evasion from immune surveillance is an impor-
tant parameter leading to the persistence of pathogens (50). The 
incidence of methicillin-resistant Staphylococcus aureus (MRSA) 
pneumonia in otherwise healthy individuals is increasing (51). 
These bacteria persist in lower airways by surviving within Aφs. 
An in vitro study found that S. aureus persists and replicates inside 
a murine Aφ cell line (52). Among the mediators used by Aφs 
to control tissue damage, we previously mentioned that PGE2 is 
produced after efferocytosis and exerts anti-inflammatory effects. 
PGE2 is known to suppress natural killer cell activity by increasing 
cellular cyclic adenosine monophosphate (53) and downregulates 
MHC class II expression on dendritic cells to decrease antigen 
presentation (54). More recently, it has been shown that the 
anti-inflammatory action of PGE2 in the lung is mediated only 
by the prostaglandin E receptor 4 (EP4) (55). In this way, it seems 
pathogens can take advantage of PGE2. Indeed, PGE2 can inhibit 
bacterial killing by Aφs by inhibiting NADPH oxidase (56). In 
macrophages infected by M. tuberculosis, PGE2 generated by 
TLR2 stimulation/p38 MAPK phosphorylation triggers EP4 to 
produce increased amounts of PGE2. Then PGE2 provides protec-
tion against necrosis via EP2 (57). Production of PGE2 by the host 
is a protective mechanism against M. tuberculosis by inhibiting 
type I IFN (58) as well as inducing apoptosis in macrophages  
(59, 60). Similarly, Influenza virus induces PGE2 to suppress type 
I IFN subverting innate immunity (61). Taken together, it seems 
that pathogens have developed mechanisms to induce PGE2 
production by macrophages to suppress inflammation and better 
survive within the host. A recent study by Roquilly et al. shows 
that dendritic cells and macrophages developing in the lungs after 
the resolution of a severe infection acquire tolerogenic properties 
that contribute to persistent immunosuppression and suscepti-
bility to secondary infections (62).

Aφ plasticity associated to the control of tissue damage is an 
important factor in pathogen persistence. The prevalence of the 
so-called M2 phenotype has been often associated with a positive 
outcome because of its ability to control tissue damage. However, 
M2 macrophages represent a permissive niche for the persistence 
of many intracellular pathogens (63). Indeed, persistence of 
bacteria has been described for several human diseases including 
Legionnaires’ disease (64) and tuberculosis (65). Alarmins, such 
as IL-33, IL-25, and TSLP, play an important role in macrophage 
polarization during tissue damage (66). The synthesis of IL-33 
by epithelial cells, characteristic of the lung environment after 
birth, triggers the release of IL-13 by ILC2s and induces an anti-
inflammatory M2 phenotype. Such an environment has been 
associated with the delayed response to Streptococcus pneumoniae 
infection in mice (67).

Decreased antimicrobial activity and augmented oxidative 
metabolism of M2 macrophages compared to glucose-dependent 
metabolism of M1 cells represent the main factors contributing 
to pathogen persistence in the host. The decreased production of 
nitric oxide following IL-4-driven arginase-1 expression facilitates 
the survival of pathogens sensitive to this reactive species (68) and 
perhaps explains why Chlamydia pneumoniae has been reported 
to prefer the M2 than M1 macrophage for its proliferation in vitro 
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(69). In this scenario, pathogens not only benefit from but also 
drive macrophages toward the M2 phenotype that better suits 
their own requirements, as suggested by recent publications. A 
mathematical model has been proposed to facilitate the investiga-
tion of M1 to M2 switching following infection of macrophages 
with M. tuberculosis (70).

Mycobacterium tuberculosis upregulates the expression of 
peroxisome proliferator-activated receptor-γ in infected mac-
rophages leading to increased lipid droplet formation, expression 
of M2 markers and downregulation of the M1 response, including 
the respiratory burst and nitric oxide production (71). In this way, 
M. tuberculosis not only circumvents the protective host response 
but may also guarantee the nutrient rich environment required 
for its growth and survival. Indeed, M. tuberculosis secretes a 
hydrolase to catalyze host lipid hydrolysis (72). This capacity 
of pathogens to use cell metabolism to persist in the airspaces 
seems unavoidable. Further, M2 macrophages demonstrate an 
iron metabolism of benefit for pathogens. M2 macrophages have 
reduced iron storage and increased iron and heme uptake result-
ing in a high iron label pool (73), thus favoring the growth and 
survival of pathogens (63). For instance, M. tuberculosis can use 
macrophages as an iron source and produce siderophores able 
to sequester iron from host transferrin and lactoferrin, leading 
to augmentation of iron concentrations in infected macrophages 
and favoring its growth (74). Other metal metabolism can be 
“highjacked” by pathogens, such as zinc. Vignesh et  al. have 
shown that IL-4, a well known M2-polarizing signals, alters 
macrophage zinc homeostasis via metallothionein 3 and the zinc 
transporter SLC30A4, promoting pathogen persistence in M2 
macrophages (75).

COnCLUSiOn

Taken together, these studies demonstrate that Aφs have a central 
place in lung disease tolerance by (i) involvement in limiting lung 
tissue damage from potentially innocuous stimuli (ii) decreasing 
immune surveillance and (iii) by hosting pathogens. Pathogen 
persistence in the respiratory tract is an important preoccupation, 
and of particular relevance to conditions such as tuberculosis. 
Indeed, the equilibrium between the elimination of pathogens 
and maintenance of tissue integrity is a sword of Damocles for 
susceptible patients. Better understanding of the mechanisms 
of disease tolerance and in the appropriate setting breaking this 
tolerance may provide therapeutic options. An important field 
requiring further exploration is the discrimination of the role of 
resident macrophages versus recruited macrophages in the lung 
environment. How recruited macrophages interfere with various 
functions of resident Aφs to conserve the lung homeostasis is of 
great interest.
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