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A B S T R A C T

Background: The rapid global spread of the SARS-CoV-2 virus has provoked a spike in demand for hospital care.
Hospital systems across the world have been over-extended, including in Northern Italy, Ecuador, and New York
City, and many other systems face similar challenges. As a result, decisions on how to best allocate very limited
medical resources and design targeted policies for vulnerable subgroups have come to the forefront. Specifically,
under consideration are decisions on who to test, who to admit into hospitals, who to treat in an Intensive Care
Unit (ICU), and who to support with a ventilator. Given today’s ability to gather, share, analyze and process data,
personalized predictive models based on demographics and information regarding prior conditions can be used
to (1) help decision-makers allocate limited resources, when needed, (2) advise individuals how to better protect
themselves given their risk profile, (3) differentiate social distancing guidelines based on risk, and (4) prioritize
vaccinations once a vaccine becomes available.
Objective: To develop personalized models that predict the following events: (1) hospitalization, (2) mortality,
(3) need for ICU, and (4) need for a ventilator. To predict hospitalization, it is assumed that one has access to a
patient’s basic preconditions, which can be easily gathered without the need to be at a hospital and hence serve
citizens and policy makers to assess individual risk during a pandemic. For the remaining models, different
versions developed include different sets of a patient’s features, with some including information on how the
disease is progressing (e.g., diagnosis of pneumonia).
Materials and Methods: National data from a publicly available repository, updated daily, containing information
from approximately 91,000 patients in Mexico were used. The data for each patient include demographics, prior
medical conditions, SARS-CoV-2 test results, hospitalization, mortality and whether a patient has developed
pneumonia or not. Several classification methods were applied and compared, including robust versions of
logistic regression, and support vector machines, as well as random forests and gradient boosted decision trees.
Results: Interpretable methods (logistic regression and support vector machines) perform just as well as more
complex models in terms of accuracy and detection rates, with the additional benefit of elucidating variables on
which the predictions are based. Classification accuracies reached 72 %, 79 %, 89 %, and 90 % for predicting
hospitalization, mortality, need for ICU and need for a ventilator, respectively. The analysis reveals the most
important preconditions for making the predictions. For the four models derived, these are: (1) for hospitali-
zation:age, pregnancy, diabetes, gender, chronic renal insufficiency, and immunosuppression; (2) for mortality: age,
immunosuppression, chronic renal insufficiency, obesity and diabetes; (3) for ICU need: development of pneumonia (if
available), age, obesity, diabetes and hypertension; and (4) for ventilator need: ICU and pneumonia (if available),
age, obesity, and hypertension.

1. Introduction

Currently, the world is facing a health and economic crisis due to
the spread of the virus SARS-CoV-2 which causes a disease referred to

as COVID-19 [1]. By the end of April 2020, the virus has spread to over
3.3 million people worldwide and has killed over 230,000 [2,3]. During
this pandemic, governments and hospitals have struggled to allocate
scarce resources, including tests, treatment in intensive care units
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(ICUs) and ventilators [4,5].
As the virus continues to spread, predicting hospitalizations, mor-

tality, and other patient outcomes becomes important for several rea-
sons: (i) using risk profiles to inform decisions on who should be tested
(for the virus and/or antibodies) and at which frequency, (ii) providing
more accurate estimates of who is more likely to be hospitalized and the
type of care they may need, (iii) informing plans for staffing, resources,
and prioritizing the level of care in extremely resource-constrained
settings. Equally importantly, as societies adapt to the pandemic, pre-
dictive models can (i) assess individual risk so that social distancing
measures can transition from “blanket" to more targeted (e.g., deciding
who can return to work, who is advised to stay at home, who should be
tested, etc.) and (ii) direct policy decisions on who should receive
priority for vaccination, which will be critical as initial vaccine pro-
duction may not suffice to vaccinate everybody.

In an attempt to understand better the disease, several predictive
models have been developed during this pandemic [6]. One of the
limitations of all of these predictors is their high-risk of bias given their
small sample sizes. In fact, out of the 66 predictors summarized in [6],
the mean and standard deviation of the sample size and test size used
are 443.5 ± 560 and 155 ± 276 respectively. In turn, our work provides
with a less biased predictor by employing a dataset which is 4.7 times
larger than the biggest dataset reported in [6].

To develop predictive models, we leverage supervised machine
learning methods that learn from given examples of predictive variables
and associated outcomes – the so called training set. Performance is then
evaluated on a separate test set. In the specific application of interest,
we will focus on classification, a setting where the outcome is binary,
e.g., someone is hospitalized or not.

Many models have been used to predict a patient admission to a
hospital, mortality and other health care applications based on co-
morbidities. Some examples include: predicting morbidity of patients
with chronic obstructive pulmonary disease [7], febrile neutropenia
[8], as well as classifying the hospitalization of patients with pre-
conditions on diabetes [9], heart disease [10,11], and hospital read-
mission for patients with mental or substance use disorders [12]. Recent
advances in the machine learning literature have suggested that sparse
classifiers, those that use few variables (e.g., l 1-regularized Support
Vector Machines), have stronger predictive power and generalize better
on out-of-sample data points than very complex classifiers [13]. Related
work has shown that regularization is equivalent to robustness, that is,
learning models which are robust to the presence of outliers in the
training set [14]. Moreover, the benefit of using sparse predictors is the
enhanced interpretability they provide for both the model and the re-
sults.

1.1. Objective

Construct data-driven predictive models using data from patients
tested for SARS-CoV-2 to predict if a patient will (1) be hospitalized, (2)
succumb to the disease, (3) need treatment in an ICU, and/or (4) need a
ventilator. To train and test these classifiers we use a public dataset
[15] made available by the Mexican government that contains in-
dividual information on: demographics (e.g., location), preconditions
(e.g., hypertension) and outcomes (e.g., admission to an ICU) for every
person who has been tested for SARS-CoV-2 in Mexico.

1.2. Main contributions

• We provide descriptive statistics of the distribution of hospitalized
and deceased patients given basic information on preconditions and
demographics.
• We develop interpretable models that not only predict the outcomes
but also quantify the role of various variables in making these pre-
dictions.
• The models we develop leverage data from Mexico. This can

motivate additional work using the same data, while the models
could be applicable to other Latin American countries with similar
population characteristics. This adds to existing work using
Electronic Health Records which has focused on patients in the US,
Europe, or Asia.

The remainder of the paper is organized as follows: In Section 2 we
describe the data used accompanied by descriptive statistics and pre-
processing procedures. In Section 3 we describe the binary supervised
classification models used and the performance evaluation metrics
employed. In Section 3, we present the main results. Discussion of the
results can be found in Section 4 and Conclusions in Section 5.

2. Data description and preprocessing

2.1. Data

We use a dataset that has been open for the general public by the
Mexican Government (and updated daily) [15]. These data include
information about every person who has been tested for SARS-CoV-2 in
Mexico. They include demographic information such as: Age, Location,
Nationality, the use of an indigenous language; as well as information on
prior medical conditions, including whether the patient has: diabetes,
chronic obstructive pulmonary disease (COPD), asthma, immunosuppression
(e.g., due to treatment for cancer or auto-immune conditions [16]), hy-
pertension, obesity, pregnancy, chronic renal failure, other prior diseases,
and whether was or is using tobacco. In addition, the data report the
dates on which the patient first noticed symptoms, the date when the
patient arrived to a care unit, and the date when the patient was de-
ceased (if applicable). Finally, it contains fields showing whether the
patient was hospitalized, has pneumonia, needed a ventilator, was
treated in an ICU, as well as the result of the SARS-CoV-2 test. To
confirm a case, the Ministry of Health in Mexico requires that, in ad-
dition of being tested positive, the patient presents at least two of:
cough, fever or headache, and at least one of: dyspnea, arthralgia,
myalgia, odynophagia, rhinorrhea, conjunctivitis or chest pain. More
technical details on the surveillance model used are provided in [17].

As of May 1 st, 2020, the data contained more than 91,179 ob-
servations out of which more than 20,737 account for positive tests,
around 15,000 tests were being processed, and the rest are negative test
results. Table 1 provides a more precise description of the dataset.

2.2. Basic analytics

We provide plots that help us observe trends in the data. We begin
by disaggregating data into age groups. In the lower plot of Fig. 1 the
number of observations of patients having a positive test or waiting
their result per age is shown. In addition, the upper bar plot denotes the
percentage of the patients in a certain age range who have been hos-
pitalized. This information is aligned with the current knowledge on
COVID-19, which indicates that older people have higher risk of being
hospitalized. Also, this plot suggests that the risk of being hospitalized
increases linearly from the age of thirty up to seventy-five and then
plateaus. We ran an ordinary linear regression (OLS) to calculate the
rate at which the percentage of hospitalization increases for every ad-
ditional year of age. The rate results to be 0.014 with an R2 equal to
0.99. This suggests that the risk of hospitalization increases by ap-
proximately 1.4 % for every year of age between 30 and 75 years old.

Next, in Fig. 2 we report the fraction of patients who have been
hospitalized, deceased, needed an ICU or a ventilator given a certain
precondition, e.g., in the upper-left box we divide the number of hos-
pitalized patients with pneumonia by the total number of patients with
pneumonia. We observe that for both hospitalizations and deaths,
preconditions such as chronic renal insufficiency, COPD, diabetes, im-
munosuppression, cardiovascular disease and hypertension are critical.
Nevertheless, even though this gives us information about the risk of a
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precondition, it does not include the sensitivity regarding how age and
preconditions affect a patient with COVID-19.

To complement the previous table, we report the percentage of the
hospitalized by age group and by existing preconditions in Fig. 3. To
that end, we create age groups for every five years and report results for
groups with at least ten observations, otherwise the bin is left blank. On
the top row of the table, we include the statistic for a patient without
any preconditions. As an example, the top-left entry reports the ratio of
the number of patients between 0–5 years old without preconditions
who have been hospitalized divided by the number of patients between
0–5 years without preconditions who may or may not have been hos-
pitalized. We observe that chronic renal insufficiency, diabetes, and
immunosuppression are among the preconditions that are associated
with a higher hospitalization rate.

Finally, we present histograms reporting the lag times among

various states of the disease for the Mexican population. For this ana-
lysis, we separate the data in three groups: individuals with ages be-
tween 0–20, 20–50, and patients over 50 years old. In Fig. 4 (left), we
plot the distribution of the number of days between the onset of
symptoms and a subsequent hospitalization. Fig. 4 (center) depicts the
distribution of time (days) between hospital admission and death. In-
terestingly, we observe that a large portion of the patients who were
hospitalized died the same day they were admitted. This could be ex-
plained either by a healthcare system working at capacity in which only
seriously-ill patients are admitted or by the abrupt deterioration of a
patient’s condition [18,19] and should be further investigated. The rest
of the distribution behaves like the tail of a Weibull distribution with
very few patients being hospitalized for more than three weeks. Finally,
Fig. 4 (right) shows the distribution of the number of days between the
onset of symptoms and death (the mean is 9.8 days).

2.3. Preprocessing

2.3.1. Removing outliers
We found a few outliers which are easily identified, for example, the

pregnancy of male patients, the date of death of a patient being earlier
than the day the patient was admitted to the hospital. Such data points
were removed from the dataset.

2.3.2. One-hot encoding
The data contain precondition features reported as categorical.

Specifically, each of these precondition features takes the value yes, no,
unknown or unspecified. We generate one-hot encoding for all these
features. One-hot encoding converts the categorical feature to multiple
binary variables by creating auxiliary variables that help distinguish
between the different categories of a feature. For the case of our data,
one-hot encoding generates three binary variables for each specific
precondition; these variables (as opposed to categories) are: no, un-
known and unspecified. Then, for each observation, at most one of these
variables will be active, pointing to the correct value for the original
feature. If none of the three is active, then the value of the precondition
is yes.

2.3.3. Removing correlated variables
We find and delete variables that are highly correlated since they, in

general, provide similar information. Specifically, we compute pairwise

Table 1
Descriptive statistics of data set as on May 1 st, 2020. In parenthesis, we denote
the number of observations belonging to the randomly selected test set.

Total number of tests 91,179
Positive 20,737 (6239)
Waiting for Result 15,445 (4677)
Negative 54,997
Total number of patients hospitalized 24,099 (3801)
Positive and hospitalized 8221 (1996)
Waiting for Result and hospitalized 4389 (1737)
Negative and hospitalized 11,489 (0)
Pneumonia and hospitalized 14,462 (1737)
Need Ventilator 1809 (246)
Need ICU 2059 (258)
Deceased (Positive or Waiting for Result) 3192 (501)
Number of patients with non-negative test
Diabetes 6042 (1878)
COPD 825 (231)
Asthma 1235 (385)
Immunosuppression 632 (190)
Hypertension 7238 (2161)
Pregnant 221(64)
Cardiovascular disease 991 (267)
Obesity 6998 (2056)
Chronic renal insufficiency 820 (235)
Demographics of patients with non-negative test
Contact with a positive COVID case 11,355 (3360)
Speak an indigenous language 466 (128)

Fig. 1. Lower: Number of patients tested positive or waiting for result by age; Upper: Percentage of these patients that have been hospitalized.
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correlations among the variables, and remove one variable from each
highly correlated pair (using a threshold of 0.8 for the absolute corre-
lation coefficient). We found that the correlated binary features were
the ones corresponding to unknown or unspecified for preconditions.
This is because observations that contain an unknown or unspecified
value, typically have this same value for all preconditions (not just for

one), indicating potential issues in data gathering. Hence, we remove
all these auxiliary variables denoting unknown or unspecified pre-
conditions.

Fig. 2. Fraction (%) of patients with a precondition that have been hospitalized, have died or required an ICU or ventilator.

Fig. 3. Fraction (%) of population per age group being hospitalized given a precondition. Gender refers to female patients.
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3. Methods and metrics

In this section, we briefly introduce the methodologies used to build
the binary classifiers. For each model, we train the classifier using four
different supervised classification methodologies: sparse Support Vector
Machines (SVM), sparse Logistic Regression (LR), Random Forests (RF)
and gradient boosted decision trees (XGBoost). For healthcare appli-
cations, the first two are preferable due to their interpretability. In turn,
the last two are the state-of-the-art classification algorithms today and
will serve as a basis to compare the accuracy of the interpretable
methods with the non-interpretable benchmark models. Appendix B
provides details on these methods, particularly because the robust/
sparse LR and SVM formulations are not standard.

3.1. Cross-validated recursive feature elimination

Classifiers based on few variables are desirable because they have
stronger predictive power, generalizing better out-of-sample, and of-
fering enhanced interpretability [20,21]. Aiming to reduce the number
of variables, we employ a Recursive Feature Elimination (RFE) proce-
dure [22] to find the variables that optimize a given performance me-
tric. The general framework of this algorithm begins by building a
classifier using all the features and computing an importance score for
each predictor. In the case of Logistic Regression (or Linear SVM), we
use as important score the absolute value (or magnitude) of the linear
coefficient i of feature i. After this step, the least important feature (the
one with the smallest | |i ) is deleted from the dataset. We repeat
iteratively this process until we are left with one feature. Then, for each
of these iterations we report the performance of the model (using cross-
validation over the training set) and we pick the set of features that
maximize this value. Additionally, at each iteration, we use the same
cross-validation process to tune the hyper parameters of the classifier to
achieve the best performance. In this work, we use LR to eliminate
variables based on their coefficients as described earlier, as it gives a
clear and interpretable meaning of the score for each variable. At each
iteration we use a stratified ten-fold cross-validation (over the training
set) to estimate the AUC performance until we are left with one vari-
able. Finally, we pick the features for which we obtain the model with
the maximum AUC value. This subset of variables is then used to train
all the predictive models.

3.2. Performance evaluation

The primary objective of learning a classifier is to maximize the
prediction accuracy (or equivalently minimize a loss function), and in
our health care setting offer interpretability of the results.

We characterize the prediction accuracy of a classifier using two
commonly used metrics: (1) the false positive (or false alarm) rate which

measures how many patients were predicted to be in the positive class,
e.g., hospitalized, while they truly were not, as a fraction of all negative
class patients. In the medical literature, the term specificity is often used
and it equals 1 minus the false positive rate; and (2) the detection rate
that captures how many patients were predicted to be on the positive
class while they truly were, as a fraction of all positive class patients.
This term is often referred to as sensitivity or recall. Another term
commonly used is precision defined as the ratio of true positives over
true and false positives.

A single metric that captures both types of error is the Area Under
the Curve (AUC) of the Receiver Operating Characteristic (ROC). ROC
plots the detection rate (or sensitivity or recall) over the false positive
rate. A naïve random selection (assigning patients to classes randomly)
has AUC of 0.5 while a perfect classifier an AUC of 1. To complement
the AUC metric, we report the accuracy that computes the ratio of the
number of correct predictions over all predictions within the test set. In
addition to the ROC AUC and accuracy, and rather than evaluating the
precision and recall for both the positive class and the negative class, we
report a single metric, the weighted F1-score. Specifically, the F1-score
is the harmonic mean of precision and recall and can be computed for
both the positive and negative classes. The weighted F1-score is just an
average of the per class F1-scores weighted according to the number of
(test) samples in each class. We are interested in this performance
metric because it is as important to accurately predict who is not likely
to have a specific outcome (e.g., hospitalized), in addition to who will.
For example, one can ease restrictions on those who are predicted to
have lower risk. In fact, having more false positives corresponds to
being more conservative with patients by assigning higher-risk profiles,
and what is needed is striking the right balance between being con-
servative vs. having a lot of false positives. The weighted F1-score is one
appealing way of quantifying this trade-off.

For individual variables and each different model, we also report
the Odds Ratio (OR), which indicates how the odds of observing the
outcome are scaled by having that variable take the value 1 (vs. 0),
while controlling for all other variables in the model.

We finally emphasize that all metrics we report are computed on a
randomly selected test set of patients (i.e., out-of-sample) which cor-
responds to 30 % of the observations and has not been used for training
the models. In addition, all metrics were calculated using a discriminant
classification threshold which was selected by optimizing the AUC and
reported in Table 2: Summary of results of all models using LR.

4. Results

We build binary classification models to predict hospitalization,
mortality and the need for an ICU or ventilator. At a minimum, all
models use a set of base features composed by: age, gender, diabetes,
COPD, asthma, immunosuppression, hypertension, obesity, pregnancy,

Fig. 4. Histograms showing (left) the time between the onset of symptoms and death, (center) the time between hospital admission and death, and (right) the time
between the onset of symptoms and death.
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chronic renal failure, tobacco use, other disease, as well as the SARS-
CoV-2 test result, which is either positive or pending (we exclude all
negative cases to train our models). In this section, we provide a
summary of the results while in Appendix A we provide all results.

4.1. Hospitalizations

Our first model predicts if a patient who has tested positive or is
waiting for the test result will be hospitalized given their base features.
This model has a moderate accuracy for all methodologies employed
which accounts for an AUC of 0.74 and an accuracy of classifying 72 %
of the observations correctly. An interesting observation is that SVM
and LR performs better than RF and XGBoost.

The coefficients of the SVM and LR models have the same trend and
suggest that the features that contribute the most for predicting the
hospitalization of a patient are: age over 80 (OR=3.2), age between
65−80 (OR=2), pregnancy (OR=2.3), diabetes (OR=2.3), chronic
renal insufficiency (OR=2.3), immunosuppression (OR=2), COPD
(OR=1.5), and gender. The rest of the variables (Obesity,
Hypertension, Other, Tobacco Use, Cardiovascular disease and Asthma)
have a much smaller impact. It is however possible that some of these
variables have smaller coefficients because the effect is captured by
another highly correlated variable (e.g., obesity and diabetes).

4.2. Mortality

We explore two models to predict mortality. The first model as-
sumes we only know the base features of a patient whereas the second
model includes variables that indicate if the patient has been hospita-
lized or not, has pneumonia, or has needed an ICU or ventilator. The
reason to consider the first model is to have a classifier which identifies
which patients are the most vulnerable prior to hospitalization, while
the second model predicts the mortality of an individual in the hospital
by using information on how the disease is progressing. In order to have
a more balanced dataset and to detect better the deceased class, we ran
this model only on the observations of patients who have been hospi-
talized and have been tested positive or are waiting for their test result.

For the model which considers the case that only uses the base
features of a patient (prior to attending a healthcare facility), we are
able to predict with 79 % accuracy and with an AUC equal to 0.63 the
mortality of a patient. Moreover, when we include more information
about the hospitalization, pneumonia, ICU, and ventilation, the classi-
fication task achieves a similar accuracy but a higher detection rate of
0.701 (an increase of ∼12 % in detection).

Both interpretable models, LR and SVM, suggest that the variables
that are critical for predicting mortality are the patient’s age, gender,
immunosuppression (OR=1.68), chronic renal insufficiency
(OR=1.46), obesity (OR=1.4) and diabetes (OR=1.32). For the
model that has more features, as expected, information about the need
for ventilator and ICU are highly relevant when predicting mortality.

4.3. ICU need

Similar to the mortality case, we train two classification models to
predict the need for an ICU. The first model predicts the need for an ICU
bed using the base features and assumes that we don’t know if the

patient will or will not develop pneumonia. This might serve for
planning purposes, as it will help us predict which individuals are more
likely to need an ICU in case they contract SARS-CoV-2. This model
achieves an accuracy of 89 % with an AUC of 0.55 (XGBoost).
Additionally, when we include information about the development of
pneumonia, the AUC of the model increases by about 10 % to 0.64,
highlighting the importance of using the most recent information of a
patient while predicting its outcome.

In these cases, SVM and LR suggest that information on: age, de-
velopment of pneumonia (OR=4.13), if available, diabetes
(OR=1.23), obesity and hypertension are among the most important
variables to predict the need for an ICU.

4.4. Ventilator need

In the same way as in the mortality and ICU models, we develop two
models to predict the need for a mechanical ventilator given that a
patient is either a confirmed or suspected COVID-19 case. The first
model evaluates the situation prior to knowing if patient has developed
pneumonia or needs an ICU. The accuracy reached by this model is
higher than both the mortality and the ICU models, achieving an ac-
curacy of 90 % and an AUC of 0.58. In addition to this model, the
second instance uses information about the development pneumonia
and the admission to an ICU. As expected, this additional information is
relevant for predicting ventilation need. It increases its accuracy to 92
% and the AUC to 0.86.

Moreover, both models classifying the need for a ventilator show
that information on ICU (OR=15.5) and pneumonia (OR=9.1), if
available, age, gender, chronic renal insufficiency (OR=1.5), obesity
(OR=1.4), hypertension (OR=1.16) and diabetes (OR=1.12) are
the most relevant features for predicting the need for a mechanical
ventilator.

To summarize and provide interpretability we report in Table 2 the
performance metrics for all the models and in Table 3 the odds ratio for
each model variables using LR. We observe that the coefficients of both
interpretable models (SVM and LR) are consistent and have an accuracy
comparable, or higher than RF and XGBoost.

5. Discussion

Overall, the models we develop range from moderately to sig-
nificantly accurate. Predicting hospitalizations appears harder just
based on the basic variables at our disposal, particularly considering all
patients who have a positive test or with a test pending. Potential ad-
ditional features are at play including state of health (measured through
detailed lab results) and the viral load they were exposed to.
Furthermore, a number of hospitalizations are driven by socioeconomic
factors, e.g., the living arrangements of a patient and whether he/she
can pose infection risk for many others. Still, an AUC of 0.75 is sig-
nificantly better than random and the results could help tighten esti-
mates on the number of hospitalizations expected.

From an actionable and planning perspective, predicting ICU
treatment and ventilator need are quite useful. These models can be
accurate, achieving accuracies of 89 % and 90 %, respectively, when
information on how the disease is progressing is taken into account
(e.g., development of pneumonia). Similarly, the mortality model can

Table 2
Summary of results of all models using LR.

Hospitalization Mortality Mortality (advanced) ICU ICU (advanced) Ventilator Ventilator (advanced)

Discriminant Threshold 0.424 0.36 0.32 0.22 0.22 0.23 0.35
Accuracy 0.718 0.793 0.794 0.894 0.894 0.899 0.917
F1w 0.7 0.716 0.75 0.844 0.844 0.851 0.911
AUC 0.749 0.634 0.701 0.534 0.636 0.578 0.859
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achieve an accuracy of 76 %.
An interesting observation is that interpretable models (such as LR

and SVM), when used in conjunction with robustness/regularization
approaches and elaborate feature selection procedures, can lead to
performance that is comparable, if not better than more complex and
expensive classifiers. The significant advantage of the former models is
that they are interpretable and provide information on which variables
drive the predictions.

This study has some limitations. It is important to emphasize that
the dataset used in this work lacks critical information (such as lab
results, vital signs, among others) to be able to provide a clinical un-
derstanding of COVID-19. Rather, the focus of this work is to help in-
form decisions on how to best allocate limited medical resources, and to
help design targeted policies for vulnerable subgroups which might not
have access to clinical and lab assessments. Interesting patterns can be
observed in our results, motivating further research directions in re-
source allocation during a pandemic. For example, our results suggest
that pregnancy is an important variable for predicting hospitalization
but not mortality, ICU or ventilation, potentially indicating a bias to-
wards being more conservative and hospitalizing pregnant women
when they may not need it. Readers should also be aware that, due to
the insufficient testing resources in Mexico, the dataset might be biased
toward overestimating deaths. While the dataset may reflect all deaths,
it does not include mild-moderate COVID-19 cases as these are never
tested. Another limiting factor is that the dataset does not include
specific dates at which hospitals discharge patients, which is of high
importance to assess the utilization of medical equipment. Finally, to
the extent that these risk models can be used to prioritize the use of
resources, we understand that medical risk is not the only factor in
making such decisions. Nevertheless, in order to quantify medical risk
one can leverage the models presented in this work.

6. Conclusions

We develop models to identify the medical risk of a patient with (or
suspected for) COVID-19. We hope this work can help hospitals and
policymakers to distribute more effectively their limited resources in-
cluding tests, ICU beds and ventilators, as well as, to motivate countries
and healthcare systems to standardize and share data with the medical
informatics community. Moreover, we hope this research spreads the
knowledge of the existence of this public dataset and motivates re-
searchers to work with these data. Finally, we hope that risk models are
taken into account to fine-tune social distancing advisories, moving

from “blanket” to risk-based, as well as prioritizing vaccine distribution
to the more vulnerable and to those who need to interact with the more
vulnerable. For the sake of reproducibility and to facilitate the analysis
for further research we have made our models and results available on a
Github repository [23].
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Summary Table

What was already known

• Due to the fast spread of COVID-19, a lot of attention has been
devoted to measuring and predicting the spread. There have
also been anecdotal reports on certain prior conditions that
appear to lead to more severe disease.
• Most research related to COVID-19 has been done in countries
and communities where the virus hit first. These include
China, Italy, Spain, US.
• Most research related to COVID-19 that employs Machine
Learning techniques has been focused on learning from
complex data sources such as chest scans [24–28].

What this study added to the knowledge

• This work is among the first to use data to develop explicit
models predicting hospitalization, ICU treatment, ventilator
use, and mortality for individual patients.
• Our research focuses on the Mexican population, which has
particular characteristics of interest to Latin American
countries with similar socio-economic conditions and health
care systems that may become more congested due to
COVID-19.
• We focus on a basic set of preconditions that are known for the
vast majority of the population without the need to attend a
medical facility. Hence, the risk metrics we develop can be
computed for anyone susceptible to COVID-19, helping to
prioritize testing, care, and post-surge social distancing and
vaccination policies.

Table 3
Odds ratios for all models, considering LR-l1.

Hospitalization Mortality Mortality (advanced) ICU ICU (advanced) Ventilator Ventilator (advanced)

Age-80−100 3.180 2.361 3.212 1.000 1.000 1.000 1.002
Pregnant 2.321 1.000 1.245 1.000 1.000 1.000 1.000
Diabetes 2.291 1.324 1.309 1.230 1.197 1.120 1.082
Chronic Renal Insufficiency 2.268 1.458 1.468 0.631 0.627 1.000 1.513
Immunosuppression 2.088 1.684 1.699 0.922 0.958 0.589 1.000
Age-65−80 2.073 1.461 1.744 1.204 1.298 1.294 1.133
COPD 1.536 1.266 1.000 0.963 0.913 0.911 0.641
Other 1.411 1.363 1.317 1.000 1.025 0.729 0.562
Obesity 1.323 1.399 1.232 1.330 1.247 1.441 1.313
Hypertension 1.157 1.315 1.179 1.169 1.151 1.162 1.092
Age-50−65 1.000 1.000 1.000 1.019 1.102 1.116 1.000
Tobacco Use 0.965 0.852 0.871 0.720 0.701 0.872 1.115
Cardiovascular Disease 0.962 1.048 1.200 1.003 1.010 1.000 1.000
Asthma 0.773 1.420 1.737 1.037 1.040 0.748 0.625
Gender (Female) 0.549 0.687 0.705 0.780 0.806 0.732 0.806
Age-30−50 0.457 0.618 0.665 0.903 0.979 0.701 0.597
Age-0−30 0.259 0.271 0.269 0.638 0.731 0.733 0.789
Ventilator 4.341
ICU 1.297 15.534
Pneumonia 1.276 4.125 9.098
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