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Abstract

Background: Coronavirus disease 2019 (COVID-19) is an emerging infectious disease, which has caused numerous
deaths and health problems worldwide. This study aims to examine the effects of airborne particulate matter (PM)
pollution and population mobility on COVID-19 across China.

Methods: We obtained daily confirmed cases of COVID-19, air particulate matter (PM2.5, PM10), weather parameters
such as ambient temperature (AT) and absolute humidity (AH), and population mobility scale index (MSI) in 63
cities of China on a daily basis (excluding Wuhan) from January 01 to March 02, 2020. Then, the Generalized
additive models (GAM) with a quasi-Poisson distribution were fitted to estimate the effects of PM10, PM2.5 and MSI
on daily confirmed COVID-19 cases.

Results: We found each 1 unit increase in daily MSI was significantly positively associated with daily confirmed
cases of COVID-19 in all lag days and the strongest estimated RR (1.21, 95% CIs:1.14 ~ 1.28) was observed at lag 014.
In PM analysis, we found each 10 μg/m3 increase in the concentration of PM10 and PM2.5 was positively associated
with the confirmed cases of COVID-19, and the estimated strongest RRs (both at lag 7) were 1.05 (95% CIs: 1.04,
1.07) and 1.06 (95% CIs: 1.04, 1.07), respectively. A similar trend was also found in all cumulative lag periods (from
lag 01 to lag 014). The strongest effects for both PM10 and PM2.5 were at lag 014, and the RRs of each 10 μg/m3

increase were 1.18 (95% CIs:1.14, 1.22) and 1.23 (95% CIs:1.18, 1.29), respectively.

Conclusions: Population mobility and airborne particulate matter may be associated with an increased risk of
COVID-19 transmission.
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Background
Coronavirus disease 2019 (COVID-19) was confirmed as
a global pandemic by the World Health Organization on
March 11, 2020 [1]. COVID-19 is a highly infectious and
deadly disease with an estimated basic reproductive
number (R0) ranging from 2.20 to 3.58 [2–5]. As of Oc-
tober 04, 2020, there have been more than 34.80 million
confirmed cases and over 1.03 million deaths worldwide
[6]. The world is confronted with an extremely serious
public health challenge. China adopted a series of strict
prevention and control measures, which include but are
not limited to restrictions on crowd gatherings, delays in
the start of a new term and return to work, traffic re-
strictions, health quarantine, free testing services, and
treatments. These measures effectively delayed the
growth and reduced the size of the COVID-19 epidemic
in China [7, 8].
COVID-19 was first confirmed in winter, as the

weather with low temperature, mild diurnal
temperature range, and low humidity likely contrib-
utes to the transmission [9]. Dry and cold environ-
ment favors SARS-CoV-2 to survive and transmit in
droplets or in the form of aerosols [10]. Previous
studies showed that aerosol particles emitted from
coughing by influenza patients contain high levels of
influenza virus and are within the respirable size
range [11]. These virus-accumulating aerosols are easy
to transmit among individuals. It was reported that
aerosols from highly virulent pathogens like severe
acute respiratory syndrome-coronavirus (SARS-CoV)
could travel more than six feet [12]. Also, these aero-
sols are likely composed of airborne pollution parti-
cles and attached virus droplets, which promote the
spread of pathogens such as influenza viruses [13].
An ecologic analysis found that there were positive
relationships between PM2.5 concentrations and
influenza-like illness risk in Beijing [14]. A cohort
study indicated that particulate air pollution was sig-
nificantly associated with respiratory infections [15].
In particular, the concentrations of airborne ambient
particulate matter (PM) with aerodynamic diameter ≤
2.5 μm (PM2.5) were reported to be significantly asso-
ciated with daily human influenza cases [16, 17], and
respiratory syncytial virus infection [18, 19]. In
addition to influenza, the SARS outbreak in 2003 was
also found to be related to air pollution, as the levels
of PM with aerodynamic diameter ≤ 10 μm (PM10)
were positively associated with the SARS mortality
[20]. Like SARS-CoV and influenza viruses, SARS-
CoV-2 was detectable in aerosols for up to 3 h, in-
cluding in both liquid and solid aerosols [21]. A re-
cent study reported that SARS-CoV-2 RNA can be
present on outdoor PM, and suggested that, in condi-
tions of atmospheric stability and high concentrations

of PM, SARS-CoV-2 could create clusters with out-
door PM and – by reducing their diffusion coefficient
– enhance the persistence of the virus in the atmos-
phere [22]. Setti et al. has emphasized the airborne
route as a possible factor for interpreting the anomal-
ous COVID-19 outbreaks in northern Italy, which is
characterized by high PM concentrations [23]. There-
fore, COVID-19 transmission is likely affected by air-
borne PM.
Previous studies had found that the population mobil-

ity can affect the transmission of infectious diseases,
such as the spread of the severe acute respiratory syn-
drome (SARS) in 2003 [24], the outbreak of the influ-
enza A (H1N1) in 2009 [25], and the transmission of the
recurrent human immunodeficiency virus (HIV) [26].
More importantly, the outbreak of COVID-19 in China
occurred during the “Spring Festival travel rush”, in
which large-scale population mobility may have contrib-
uted to the outbreak. As of currently, few studies have
found that the size of Wuhan migrants was highly corre-
lated with the daily COVID-19 confirmed cases [27, 28].
One limitation of these studies was that they failed to
consider the risk of exposure between population mobil-
ity from other areas and Wuhan migrants.
In this study, we established the quasi-Poisson GAM

to examine the associations between airborne PM pollu-
tion (including PM10 and PM2.5), MSI and the daily
COVID-19 confirmed cases of 63 cities in China while
controlling the meteorological factors and other poten-
tial factors.

Methods
Data collection
Using R package “nCov2019” [29], we obtained the daily
COVID-19 confirmed cases of 63 cities in China, each of
which confirmed more than 50 cases from January 01 to
March 02, 2020. The data of ambient airborne PM, in-
cluding PM10 and PM2.5, were obtained from the Data
Center of the Ministry of Ecology and Environment of
the People’s Republic of China (http://datacenter.mee.
gov.cn/). At the same time, the data of ambient
temperature (AT) and relative humidity (RH) were col-
lected from the Shanghai Meteorological Bureau. The
mobility scale index (MSI) reflects the scale of the popu-
lation mobility in a city, which can be compared hori-
zontally among cities. We collected the daily MSI for
each city from January 01 to March 02. All of the popu-
lation mobility data were collected from Baidu Migration
Map (https://qianxi.baidu.com/). The data from the
Baidu Migration Map has been used in previous studies
[9, 25], which was considered accurate in estimate the
population mobility. Additionally, absolute humidity
(AH) was controlled in the models and was calculated
via the methods reported previously [30, 31].
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Statistical analysis
We fitted generalized additive models (GAM) with
a quasi-Poisson distribution to estimate the associations
between airborne PM pollution, MSI, and the daily
counts of confirmed cases in each city by controlling the
daily average AT, AH, and other potential factors. Due
to the overdispersion in COVID-19 transmission [32],
we chose quasi-Poisson models to allow for overdisper-
sion in the COVID-19 outbreak among city-days. The
models were fitted based on R software (version 3.6.0)
with the “mgcv” package (version 1.8–31). The model
framework is as follows:

Log E Ytj
� � ¼ α þ β1MSIþ ns AT; dfð Þ

þ ns AH; dfð Þ þ β2 log Yt‐1ð Þ
þ city j ð1Þ

Log E Ytj
� � ¼ αþ β1PM þ ns AT; dfð Þ

þ ns AH; dfð Þ þ β2MSI
þ β3 log Yt‐1ð Þ þ city j ð2Þ

In these model, t refers to the day of the observation; j
refers to the cities. Ytj is the observed daily confirmed
case counts in city j on day t; E (Ytj) is the expected daily
confirmed case counts in city j on day t; α is the inter-
cept; β represents the regression coefficient; MSI repre-
sents mobility scale index in city j on day t (model 1);
airborne PM, including PM10 and PM2.5, represents con-
centrations in city j on day t; log (Yt-1) indicates the log-
transformed COVID-19 counts on day t-1 in city j to
control the potential serial autocorrelation [33]. We used
a natural smooth function (ns) with 6 df for 3-day mov-
ing average AT and 3 df for 3-day moving average AH
to control potential nonlinear and lagged confounding
effects of weather conditions. Considering the collinear-
ity and latent period of COVID-19, 7-day moving aver-
age MSI was controlled in the models (2) when
exploring the effects of PM10 and PM2.5. The cityj indi-
cates city fixed effects to control for city-specific charac-
teristics such as population density [34].
Because the latent period of COVID-19 ranges from 1

to 14 days, mostly 3 to 7 days [35], we chose to estimate
the single-day lag effects (from lag 1 to lag 14) and cu-
mulative lag effects (from lag 01 to lag 014). The results
were expressed as the relative risk (RR) and 95% confi-
dence intervals (CIs) for each 10 μg/m3 increase in PM2.5

and PM10 concentrations or each 1 unit increase in MSI.
In order to intuitively observe the impact of airborne
PM and MSI on the daily COVID-19 confirmed cases,
we plotted the exposure-response curves based on GAM
model (1) and model (2) to analyze the relationship be-
tween changes of the PM2.5, PM10, and MSI in lag 07
and lag 014 days and the daily COVID-19 confirmed
cases.

Due to the stricter control measures implemented in
Hubei compared with those in other cities, we con-
ducted a subgroup analysis to present the effects in the
cities from Hubei province and the cities outside Hubei
separately. Previous studies used the GAM with a Gauss-
ian distribution to assess the association of air pollutants
and human mobility with daily COVID-19 confirmed
cases [36, 37], so we conducted a sensitivity analysis by
applied the GAM with a Gaussian distribution to assess
the association of airborne PM and MSI with daily
COVID-19 confirmed cases. Besides, we firstly used the
GAM with a quasi-Poisson distribution to estimate city-
specific effects of PM10, PM2.5, and MSI on daily con-
firmed COVID-19 cases. Then, the random effects
model of meta-analysis was used to pool the city-specific
effects (Supplementary Material Methods S1).
All statistical tests were two-sided, and p-values less

than 0.05 were considered as statistically significant.

Results
In these 63 cities, 37 cities confirmed more than 100 cases
(22,229, 92.56%) and 26 cities confirmed less than 100
cases (1787, 7.44%), among which the 12 Hubei cities (ex-
cluding Wuhan) confirmed the most cases (16,759,
69.78%). During the disease reporting period, the average
AT and AH ranges in each city were − 0.75 ~ 16.52 °C and
2.75 ~ 11.28 g/m3, respectively. The outbreak of COVID
19 in 63 cities began on January 23, peaked on February
03, then began to decline, and gradually approached 0
after February 28 (Fig. 1). The daily average concentration
of PM10 and PM2.5 exhibited a similar trend, in which
both declined significantly after January 23 (Fig. 1). From
January 01 to January 23, the MSI rose slowly with the
Spring Festival approaching, declined rapidly and stabi-
lized after January 23, but then began to rise slowly after
February 15 (Fig. 1). From January 24 to March 02, the
MSI of 63 cities decreased by an average of 64.78% per
day compared with those from January 01 to January 23.
As shown in Fig. 2 and Fig. 3a, there are significant

positive associations between the daily confirmed
COVID-19 cases and MSI. We found each 1 unit in-
crease in the daily MSI was positively and significantly
associated with the daily confirmed cases of COVID-19
in 63 cities at all lag days, while the estimated strongest
RR at lag 14 was 1.18 (95% CIs:1.13, 1.22). For cumula-
tive lag effects, the estimates of 63 cities were statistically
significant in all lag days, while the strongest RR at lag
014 was 1.21 (95% CIs:1.14, 1.28) (Fig. 2a). For the cities
in Hubei, the strongest single-day effects for MSI were
at lag 14, while the RR of each 1 unit increase was 1.24
(95% CIs:1.11, 1.39). The cumulative lag effects were the
strongest for MSI at lag 014, and the corresponding RR
was 1.29 (95% CIs:1.07, 1.57) (Fig. 2b). For the cities out-
side Hubei, the strongest effects of single-day effects for
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Fig. 1 Trends of daily PM levels, MSI, and confirmed COVID-19 cases in 63 cities of China from January 01 to March 02, 2020

Fig. 2 Associations between MSI and the COVID-19 confirmed cases in 63 cities of China from January 01 to March 02, 2020. Note: The results
were expressed as the relative risk (RR) and 95% confidence intervals (CIs) for each 1 unit increase in MSI
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MSI were at lag 14, and the RR was 1.14 (95% CIs:1.11,
1.18). The strongest effects of cumulative lag effects for
MSI were at lag 014, and the RR was 1.16 (95% CIs:1.12,
1.21) (Fig. 2c).
As shown in Fig. 4a, Fig. 5a, and Fig. 3b and c, there

were significant positive associations between the daily
confirmed COVID-19 cases and particulate matter pol-
lution in 63 cities. For PM10 and PM2.5, the strongest
single-day effects were at lag 7, and the corresponding
RRs were 1.05 (95% CIs: 1.04, 1.07) and 1.06 (95% CIs:
1.04, 1.07), respectively. For cumulative lag effects, the
estimates of 63 cities were all significant with the stron-
gest effects for both PM10 and PM2.5 appearing in lag
014, while the RRs of each 10 μg/m3 increase were 1.18

(95% CIs:1.14, 1.22) and 1.23 (95% CIs:1.18, 1.29), re-
spectively. Additionally, the overall effects were much
higher for PM2.5 than PM10.
Figures 4b and c and Fig. 5b and c showed the associa-

tions between airborne particulate matter pollution and
the confirmed cases stratified by the cities from Hubei
province and the cities outside Hubei, respectively. For
the cities in Hubei, the strongest single-day effects for
PM10 and PM2.5 were both at lag 7, and the RRs of each
10 μg/m3 increase were 1.09 (95% CIs:1.06, 1.13) and
1.11 (95% CIs:1.07, 1.15), respectively. The strongest cu-
mulative lag effects for PM10 and PM2.5 were both at lag
014, and the corresponding RRs of which were 1.33
(95% CIs:1.21, 1.47) and 1.41 (95% CIs: 1.25, 1.58),

Fig. 3 The exposure-response curves of MSI, PM10, PM2.5 and the daily COVID-19 confirmed cases in 63 cities of China from January 01 to March
02, 2020. Note: (a) MSI; (b) PM10; (c) PM2.5. The X-axis is the values of MSI, PM10, PM2.5 in lag 07 or lag 014 days, Y-axis is the predicted log relative
risk (RR), is shown by th color solid line, and the color dotted lines represent the 95% confidence interval (CI). The R2 represents the fitting effect,
and the closer R2 is to 1, the better the fitting effect of the model
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respectively. For the cities outside Hubei, the strongest
effects of single-day effects for both PM10 and PM2.5

were at lag 8, and the RRs were 1.02 (95% CIs:1.01, 1.03)
and 1.02 (95% CIs:1.01, 1.03). The strongest cumulative
lag effects for both PM10 and PM2.5 appeared in lag 014,
and the RRs of each 10 μg/m3 increase were 1.08 (95%
CIs:1.05, 1.12) and 1.13 (95% CIs:1.09, 1.27), respectively.
Furthermore, stronger associations between COVID-19
and airborne PM were found for cities inside Hubei than
outside Hubei
The effects estimated by the GAM with a Gaussian

distribution are similar to the GAM with a quasi-
Poisson distribution, but the GAM with a quasi-Pois-
son distribution has a better fitting effect (Supplemen-
tary Material Fig.S1 and Table S1). The pooled effects
from the city-specific result are the same as the model
(1) and model (2). The MSI, PM10 and PM2.5 at lag 014
have a greater effect on the daily confirmed COVID-19
case. But the model fitting effect of the city-specific is
poor (Supplementary Material Fig. S2 and Table S2).

Discussion
Aerosols have been recently confirmed as a potential
transmission route for SARS-CoV-2 [38], which may be
modified by the level of airborne PM pollution. Besides,

population mobility was also one important contributor
toward the transmission of COVID-19. In controlling
the population mobility, meteorological factors as well as
other potential factors, we found positive relationships
between PM2.5, PM10, and daily confirmed COVID-19
cases counts in China.
As infectious diseases, population mobility might lead

to wide transmissions among different regions. Our
current study has found that population mobility was
positively related to the daily confirmed COVID-19 case
counts. Meanwhile, because of the apparent influence of
meteorological factors in COVID-19 transmission [9,
39], we controlled meteorological factors and MSI in our
models to clarify the associations between COVID-19
case counts and airborne PM pollution. After controlling
these factors, we found both PM2.5 and PM10 were posi-
tively related to the COVID-19 confirmed cases, suggest-
ing that airborne PM pollution might affect COVID-19
transmission. This was similar to other studies focusing
on influenza and SARS. Specifically, a study conducted
in 47 Chinese cities has found that ambient PM2.5 con-
centrations may increase the risk of exposure to influ-
enza in China, especially during days with low
temperatures [40]. Croft et al. have found that short-
term increases in traffic and other combustion source-

Fig. 4 Associations between PM10 and the COVID-19 confirmed cases in 63 cities of China from January 01 to March 02, 2020. Note: The results
were expressed as the relative risk (RR) and 95% confidence intervals (CIs) for each 10 μg/m3 increase in PM10 concentrations
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related PM2.5 might contribute to the increased rates of
influenza hospitalizations [41]. Jaspers et al. reported
that diesel exhaust increased influenza virus attached to
respiratory epithelial cells within 2 h post-infection [42].
Furthermore, long-range transportation of influenza
virus A was found during dust storm days with higher
concentrations of ambient influenza A virus [43]. By
conducting an ecologic study, Cui et al. found that the
case fatality rate of SARS in 5 regions increased with the
increment of air pollution index (API); in particular,
those patients in regions with higher API suffered
greater risks of death [44]. In addition, Liu et al. have re-
ported the presence of SARS-CoV-2 on airborne parti-
cles inside Wuhan Hospitals and in the surroundings by
on-field studies [38]. And Santarpia et al. have also re-
ported the presence of SARS-CoV-2 on air samples col-
lected at the University of Nebraska Medical Center
[45]. Similar findings are reported in Bergamo of North-
ern Italy, where SARS-CoV-2 RNA was found on air
particulate matter [22]. Concerning particles’ role in the
viral diffusion process, there is a hypothesis that aerosol
droplets emitted by infected persons during sneezing,
coughing or simply talking are stabilized in the air
through the coalescence with PM at high concentrations
and under conditions of atmospheric stability [46].

Therefore, higher levels of airborne particulate matter
may increase the transmission of COVID-19.
Airborne PM pollution is a health hazard that could

be deposited deep in the lungs and impair immune func-
tion [47, 48]. Research studies reported that airborne
PM decreased the ability of pulmonary macrophages to
effectively mount a defense against infection, which
would last at least a week post-exposure via RelB activa-
tion [49]. Since pulmonary macrophages are very im-
portant in lung to phagocytize pathogens, the
suppression of that function would increase the invasive
ability of SARS-CoV-2. Also, airborne PM induces re-
spiratory inflammation and affects the health of the air-
way [50, 51]. In particular, these severe inflammation in
the lung after exposure to PM2.5 were found to be medi-
ated by angiotensin-converting enzyme 2 (ACE2), which
showed a significant increase in the lung after PM2.5 ex-
posure [52]. Interestingly, it is reported that the
receptor-binding domain of the SARS-CoV-2 could be
recognized by the extracellular peptidase domain of
ACE2, which is predominantly expressed in a transient
secretory cell type in subsegmental bronchial branches
[53, 54]. Thus, the airborne PM may increase the possi-
bility of SARS-CoV-2 lung invasion through the ACE2
pathway. Altogether, these evidence may explain the

Fig. 5 Associations between PM2.5 and the COVID-19 confirmed cases in 63 cities of China from January 01to March 02, 2020. Note: The results
were expressed as the relative risk (RR) and 95% confidence intervals (CIs) for each 10 μg/m3 increase in PM2.5 concentrations
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reason for the positive association between airborne PM
and COVID-19.
According to epidemiological investigations, the latent

period of COVID-19 is 1 ~ 14 days, most of which is 3 ~
7 days [35]. Therefore, the newly infected arrivals and
the second-generation infected persons were diagnosed
as COVID-19 cases with a time lag. Our results showed
that the MSI in single lag 14 days and cumulative lag 14
days had the greatest effect on the daily confirmed
COVID-19 cases. This shows that the time from the in-
fected people replicated second-generation infected ob-
jects to the second-generation infected objects were
diagnosed as COVID-19 cases are mostly 14 days. The
PM10 and PM2.5 in single lag 7 days and cumulative lag
14 days had the greatest effect on the daily confirmed
COVID-19 case in cities in Hubei. But the strongest ef-
fect of single-day effects for both PM10 and PM2.5 were
at lag 8 day in the cities outside Hubei. This indicates
that most people in cities in Hubei were confirmed on
the 7th day after infecting SARS-CoV-2, while cities out-
side Hubei were confirmed on the 8th day after infecting
SARS-CoV-2. This is related to the influence of testing
methods, testing ability and reporting procedures and
other factors. Generally, the cumulative lag effect is
greater than the single-day lag effect, and the effect in-
creases with the prolonging of the cumulative lag time.
Zhu et al. have also shown that air pollutants and popu-
lation mobility index at a long cumulative lag period
have a greater effect on the daily confirmed COVID-19
case [36, 37]. The outbreak of COVID-19 in China oc-
curred during the “Spring Festival travel rush, in which
large-scale population mobility may have contributed to
the outbreak. According to Yang et al. model, the gov-
ernment’s administrative actions effectively reduced the
size of the spread of COVID-19 [7], which was mainly
related to the decline in population mobility. The mea-
sures of limiting population mobility effectively delayed
the arrival time of the epidemic peak [8], and allowed
for a sufficient amount of time to respond to the out-
break for other provinces and cities.

Limitations
There are some potential limitations in this study. First,
some other factors may affect the incidence of COVID-
19, such as public health interventions, but we examined
the impact of air pollution after controlling the popula-
tion mobility and meteorological factors. Second, there
were modifications of COVID-19 case definitions at dif-
ferent stages of the epidemic, which may affect the con-
firmed counts. To reduce the bias as a result of the
altering definition, we included 63 cities with more than
50 confirmed cases in our analysis. In addition, since the
diagnosis of COVID-19 cases is largely influenced by
governmental screening standards, especially in Wuhan,

we unequivocally decided to exclude Wuhan in this
study. Finally, the study was only conducted in China al-
though the COVID-19 is recognized as an emergent
world pandemic. Therefore, our conclusions require fu-
ture evaluation with global data. Despite these limita-
tions, our study provided some evidence from multiple
cities across China and increased the scope of knowledge
in elucidating the effect of PM pollution and population
mobility on COVID-19. Further investigations that in-
clude more globally detailed data on public health inter-
ventions and individual-level characteristics would be
critical to study the associations between air pollution,
population mobility, and COVID-19.

Conclusion
Our findings indicate that population mobility and air-
borne particulate matter may be associated with an in-
creased risk of COVID-19 transmission. Thus,
population mobility need to be controlled in fighting
against COVID-19 epidemic. We suggest that it is neces-
sary to pay attention to the potential effect of PM on
COVID-19 transmission. However, ecological fallacy and
many uncontrolled confounding factors such as different
public health interventions may have biased our results.
Future studies are needed to real-time test the presence
of SARS-CoV-2 adsorbed on air PM and assess its vital-
ity and virulence in COVID-19 epidemic areas.
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