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The last several years have witnessed exciting progress in the development of immunotherapy for the treatment
of cancer. This has been due in great part to the development of so-called checkpoint blockade. That is, antibodies
that block inhibitory receptors such as CTLA-4 and PD-1 and thus unleash antigen-specific immune responses
against tumors. It is clear that tumors evade the immune response by usurping pathways that play a role in neg-
atively regulating normal immune responses. In this regard, adenosine in the immunemicroenvironment leading
to the activation of the A2a receptor has been shown to represent one such negative feedback loop. Indeed, the
tumor microenvironment has relatively high concentrations of adenosine. To this end, blocking A2a receptor
activation has the potential to markedly enhance anti-tumor immunity in mouse models. This review will pres-
ent data demonstrating the ability of A2a receptor blockade to enhance tumor vaccines, checkpoint blockade and
adoptive T cell therapy. Also, as several recent studies have demonstrated that under certain conditions A2a re-
ceptor blockade can enhance tumor progression, we will also explore the complexities of adenosine signaling in
the immune response. Despite important nuances to the A2a receptor pathway that require further elucidation,
studies to date strongly support the development of A2a receptor antagonists (some of which have already been
tested in phase III clinical trials for ParkinsonDisease) as novelmodalities in the immunotherapy armamentarium.
© 2015 Leone et al. Published by Elsevier B.V. on behalf of the ResearchNetwork of Computational and Structural

Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The immune system has evolved an array of regulatory mechanisms
to protect against tissue damage from autoimmunity or during active
response to pathogen. Both central mechanisms (negative selection in
the thymus) and peripheral mechanisms (e.g., deletion, anergy, and
regulatory T cells (Tregs)) contribute to establishing self-tolerance.
Nonetheless, inherent in active immune responses against pathogens
are inhibitory and negative feedback pathwayswhich prevent collateral
damage. Included in these protective mechanisms are a broad array of
inhibitory receptors that are upregulated on lymphocytes during an
active immune response. These inhibitory receptors and their related
signaling networks, known as “immune checkpoint pathways,” provide
a negative feedback mechanism that is crucial for immunoregulation
and protection of tissues from an overexuberant inflammatory
response.

While the negative feedback loops created by checkpoint path-
ways are critical in modulating excessive inflammation, they are
also subject to dysregulation in the presence of cancer and provide
tumors with a means of immune evasion. Recently, clinical trials
have confirmed that blockade of immune checkpoint pathways me-
diated by the CTLA-4 and PD-1 receptors can unleash an endogenous
immune attack, leading to significant responses and long-term re-
missions in multiple solid tumor types [1–3]. In fact, antibody-
mediated blockade of CTLA-4 and PD-1, alone or in combination,
have led to unprecedented responses in refractory, metastatic mela-
noma, as well as in renal cell carcinoma and non-small cell lung can-
cer. The success of checkpoint blockade in these trials has been a
major step forward in the development of immunotherapy for the
treatment of cancer, confirming the clinical importance of tumor im-
mune evasion through usurping fundamental pathways of immune
regulation. With the success of CTLA-4 and PD-1 inhibition in clinical
trials, significant effort has focused on uncovering other targetable
checkpoint pathways active in the tumor microenvironment. In this
regard, adenosine signaling through the A2a receptor has been
found to function as one such promising negative feedback loop
[4–7]. As we shall discuss, while the effects of A2a receptor inhibition
in antitumor therapy can behave as a double-edged sword (depend-
ing on the degree and, likely, the duration of signaling blockade),
preclinical studies have confirmed that blockade of A2a receptor ac-
tivation has the ability to markedly enhance anti-tumor immunity.
As such, A2a receptor blockade represents the potential next gener-
ation of immune checkpoint inhibition in cancer immunotherapy.

2. CTLA-4 and PD-1 and the arrival of cancer immunotherapy

Immune checkpoint pathways such as those mediated by CTLA-4
and PD-1 receptors are critical aspects of normal physiologic function.
The hallmark of these pathways is the generation of a negative feedback
loop that preserves self-tolerance and prevents excessive tissue damage
in the setting of immune response. The pathways regulated by CTLA-4
and PD-1 receptors have somewhat distinct modes of action on the
immune response [5,8]. CTLA-4 is upregulated during initial activation
of effector T cells and is thought to counteract the activity of the co-
stimulatory receptor CD28 by two mechanisms. By out-competing the
lower affinity CD28 for engagement of shared, cognate ligands B7.1
and B7.2 on antigen presenting cells (APCs), as well as by providing a
direct inhibitory signal, the CTLA-4 receptor dampens the effector
T cell activation sequence [5,9–11]. CTLA-4 is also strongly expressed
on regulatory T cells and enhances immunosuppression through en-
hancing Treg activity and proliferation [12]. Like CTLA-4, PD-1 is induced
upon effector T cell activation and is also highly expressed on
Tregs [13–15]. Cognate ligands for PD-1 include PD-L1 and PD-L2.
These are constitutively expressed onAPCs and are induced in peripher-
al tissues during inflammatory responses or on the surface of tumor
cells [13,16,17]. Among other inflammatory cytokines, interferon-
gamma secreted during an immune response is a potent inducer of
PD-L1 expression [18–20]. In contrast to CTLA-4, PD-1 is expressed on
a broader range of immune cells (e.g., B lymphocytes and monocytes)
[5,20–22]. And while PD-1 signaling is initiated during T cell activation,
its primary effects of inducing CD8+ T cell anergy and, conversely, reg-
ulatory T cell activity and proliferation appear to be more pronounced
during effector function in the peripheral tissues [5]. The critical roles
of PD-1 and CTLA-4 in immune modulation were demonstrated in
early studies that showed severe autoimmune pathologies in PD-1
and CTLA-4 knockout strains [22–24].

Although crucial in moderating inflammatory responses and
preventing autoimmunity, checkpoint pathways can provide an im-
mune evasion mechanism for tumors, allowing unchecked growth and
progression. Preclinical studies have shown that PD-1 is expressed on
a broad range of tumor infiltrating lymphocytes and is especially prom-
inent on infiltrating Tregs and CD8 effector cells [25,26]. The PD-1
ligands, PDL1 and PDL2, are upregulated on a variety of tumor cells,
and are also expressed bymyeloid cells in the tumormicroenvironment
[27]. In studies by Dong et al., tumors expressing high levels of PD-L1
were found to promote apoptosis of tumor antigen-specific T cells
in vitro as well as in mouse tumor models [17]. Early studies of
antibody-mediated CTLA-4 blockade in a variety of transplantable
tumor models (e.g., colon carcinoma, fibrosarcoma, ovarian cancer,
and prostate cancer) demonstrated significant tumor response. An
especially important finding in these studies was that once mice had
experienced a response to CTLA-4 blockade, they were resistant to
tumor rechallenge. These results demonstrated that, in addition to pro-
moting regression of primary tumors, checkpoint inhibition facilitates
the generation of an immunologic memory response that is associated
with durable tumor remission [28,29].

These preclinical findings were validated in clinical trials of several
immune checkpoint inhibitor antibodies [20]. In two large initial
phase III trials, the anti-CTLA-4monoclonal antibody ipilimumab signif-
icantly prolonged survival and produced durable responses in patients
with advanced melanoma [1,30]. CTLA-4 blockade has also been
shown to be active in patients with renal cell carcinoma and in patients
with NSCLC [2,3]. Clinical studies of anti-PD-1 mAbs have also shown
improvement in overall survival with durable responses in a variety of
heavily pre-treated tumor types, including melanoma, NSCLC, and
renal cell carcinoma [31]. Anti-PD1mAbs have shown activity in hema-
tologic malignancies as well, demonstrating a 66% ORRwhen combined
with rituximab for follicular lymphoma [32], and a 51% ORR in patients
with diffuse large B-cell lymphoma (DLBCL) who have progressed after
autologous stem cell transplant [33]. Blockade of the PD-1 ligand PD-L1
has also shown activity in melanoma, renal cell cancer, and NSCLC, with
overall response rates of 10–17% [34]. Importantly, a recent phase I trial
demonstrated that the combination of PD-1 and CTLA-4 blockade
produces greater than additive response rates in melanoma patients,
with an ORR of 42% [35].
3. Adenosine-A2aR signaling: the emergence of a novel immune
checkpoint pathway

While the clinical importance of immune checkpoints mediated by
CTLA-4 and PD-1 has become clear, there are a number of other path-
ways active in the immune microenvironment that also appear to be
important contributors to tumor immune evasion. While several of
these pathways—like PD-1 and CTLA-4—are triggered by membrane-
bound ligands (most notably LAG-3 and TIM-3 pathways), there are
also soluble ligands found in the immune microenvironment that can
function as triggers for checkpoint pathways [5]. Such soluble check-
point ligands include tumor metabolites and cytokines such as IL-10
and TGF-beta [36]. Studies over the last two decades have also identified
extracellular adenosine as a critical element in immune regulation
[37–40].
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3.1. Adenosine signaling through A2aR protects against exuberant
immunologic response

Like CTLA-4 and PD-1, adenosine signaling in the inflammatory
setting serves to dampen immunologic response and protect tissues
from associated injury. While extracellular adenosine levels are typical-
ly very low, tissue breakdown and hypoxia (common to inflammatory
and tumor microenvironments) generate high levels of extracellular
adenosine [41,42]. Extracellular adenosine can signal through a set of
four G-protein-coupled receptors: A1, A2a, A2b, and A3 [43]. Adenosine
signaling through A2a and A2b receptors—expressed on a variety of im-
mune cell subsets and endothelial cells—has been established as having
an important role in protecting tissues during inflammatory responses
[44–46]. Because of its distribution and dynamic expression pattern on
a broader array of immune cells, most of this protective effect is thought
to be secondary to signaling through the high-affinity A2a adenosine re-
ceptor. In a set of seminal experiments, Sitkovsky et al. showed that
under physiologic conditions tissue injury is accompanied by A2aR-
mediated accumulation of intracellular cAMP in immune cells [40].
These studies also noted a concomitant decrease in the release of pro-
inflammatory cytokines (e.g., INF-gamma, TNF-alpha, IL-6). Genetic or
pharmacologic blockade of the A2aR had profound effects on tissue in-
flammation, allowing for uncontrolled inflammatory response and tis-
sue injury in mouse models of hepatitis and sepsis. A2aR-null mice
experienced extensive tissue injury and death in inflammatory models
that cause only minor, transient injury in wild type animals. Important-
ly, alternate inflammatory control mechanisms were unable to effec-
tively compensate for the tissue damage resulting from the absence of
A2aR signaling, thus establishing the adenosinergic pathway as a critical
and non-redundant negative feedback control mechanismof inflamma-
tory responses [40].

Subsequent experiments in our lab and others have confirmed the
critical role of A2aR signaling in modulating tissue inflammation. In a
mouse model of T cell mediated pneumonitis, A2aR signaling was
found to significantly reduce tissue inflammation and prolong survival
[7]. In these studies, a normally non-fatal pneumonitis caused by T cell
transfer targeted to antigen-expressing lung tissue was found to be
80% fatal if the transferred T cellswere fromA2aR-nullmice. Conversely,
the effects of a normally lethal dose of A2aR-competent T-cells were
almost completely abrogated by pharmacologic treatment with the
A2aR-specific agonist CGS-21680. Thus, A2aR engagement provides an
important tolerizing signal, which moderates tissue destruction and
prolongs survival in the setting of T-cell mediated inflammation. Other
studies have confirmed the non-redundant role for A2aR inflammatory
modulation in a variety of othermousemodels of inflammation, includ-
ing sepsis, inflammatory bowel disease, and rheumatoid arthritis
[38,47–49].

Through these and other studies a picture has emerged of
adenosinergic signaling through A2aR as a negative feedback loop that
regulates local and systemic inflammatory response. Under normal
physiologic conditions extracellular release of adenosine is balanced
by rapid cellular uptake that prevents a significant increase in extracel-
lular levels [50,51]. In contrast, inflammatory environments and tumors
produce high levels of extracellular ATP and adenosine [41,42,52]. As
tissues are subjected to immune attack, increased cellular turnover
and hypoxia trigger release of ATP and adenosine.While build-up of ex-
tracellular adenosine is partly a result of direct liberation of intracellular
adenosine formed from increased ATP metabolism during cellular
stress, levels are also increased by the catabolism of extracellular ATP
and ADP by the tandem activity of the ectonucleotidases CD39 and
CD73 (Fig. 1). In response to hypoxia-induced Hif1-alpha generation
in tumors and inflamed tissues, CD39 and CD73 are upregulated on en-
dothelial cells, stromal cells, some solid tumor cells and, importantly, on
several subsets of immune cells, including Tregs, CD8+ T cells, B cells,
and others [6,46,53,54]. Elevated levels of extracellular adenosine acti-
vate specific purinergic receptors such as A2a (high affinity) and A2b
(low affinity), which, as mentioned, have broad expression on immune
cells and endothelial cells—the A2a receptor being a particular focus of
attention given its higher affinity and wide distribution. A2a and A2b
are Gs protein linked and trigger the accumulation of intracellular
cAMP through stimulation of intracellular adenylyl cyclase [43,55,56].
The rise in intracellular cAMP—acting primarily through protein kinase
A—has a broad range of immunosuppressive effects [57], including in-
creased production of immunosuppressive cytokines (e.g., TGF-beta,
IL-10) [7,58], upregulation of alternate immune checkpoint pathway re-
ceptors (e.g., PD-1, LAG-3) [7,59], increased FOXP3 expression in CD4 T
cells driving a regulatory T cell phenotype, and induction of effector T
cell anergy [7]. As in CTLA-4 and PD-1 pathways, significant influence
of A2aR signaling on Tregs and effector T cells is likely the fundamental
driving force of its immunosuppressive effect (though A2aR signaling
on myeloid cells and NK cells likely also plays an important role).
Since Tregs express high levels of CD39 and CD73, as CD4+ T cells are
driven toward a Treg phenotype by A2aR-mediated FOXP3 expression,
an immunosuppressive amplification circuit generating increasing
amounts of adenosine is created andquickly dampens the inflammatory
response [60]. CD8+ effector cells, on the other hand, become less cyto-
toxic with decreased TCR signaling and increasingly anergic under the
influence of A2aR signaling [7].

Given the importance of adenosinergic signaling in mediating nega-
tive feedback loops of immune responses, the effect of A2aR blockade on
enhancing immunologic response has been investigated. In vivo studies
in our lab utilizingA2aR knockoutmice aswell as studies using pharma-
cologic A2aR blockade, consistently demonstrate increased proliferative
capacity and effector function of CD4+ and CD8+ T cells in response to
activating antigen [61]. In fact, transient pharmacologic A2aR blockade
in these studies was found to enhance immunologic memory, improv-
ing effector function several weeks after initial antigen challenge.
Notably, this is not the case in A2aR-nullmice, however,wherein persis-
tent A2aR blockade eventually leads to an exhausted phenotype and
disrupts transition to amemory phenotype (Waickman and Powell, un-
published findings). The difficulty in transitioning to a memory pheno-
type was also demonstrated in recent work by Cekic et al. [62]. In these
studies, absence of A2aR signaling on A2aR-null lymphocytes hinders
the accumulation of CD8+ effector-memory T cells in tumors in
mouse models of melanoma and bladder cancer. In an earlier study by
the same group, the absence of A2aR signaling was also shown to
disrupt the homeostatic maintenance of the naïve T cell compartment,
although it did not diminish the number of memory T cells in (non-
tumor bearing) mice [63]. In this regard, A2aR signaling appears to
attenuate the downregulation of the IL-7 receptor in response to TCR
signaling through the PI3K-AKT pathway. Such signaling is important
in both naïve T cell maintenance as well as transitioning to longer-
lived phenotypes after initial T cell activation. It is important to note
that these studies have examined the absence of A2aR signaling in
knockout models and in the setting of irreversible A2aR blockade. As
such, great care will be needed to optimize the dose and schedule of
A2aR blockade within immunotherapeutic regimens.

3.2. A2aR blockade for immunotherapy in cancer

Analogous to CTLA-4 and PD-1, the immunologic dampening trig-
gered by adenosine at sites of inflammation is mirrored by its effect in
the tumor microenvironment. Several pioneering studies by Blay et al.
allowed generalization of the idea of adenosine-mediated immunosup-
pression to the tumor microenvironment. In publications from the
1990s, this group theorized that supraphysiologic extracellular adeno-
sine levels—driven by high cell turnover and hypoxia—could be respon-
sible for observed immunosuppression in patients with solid tumors. In
studies using amicrodialysis probe itwas demonstrated that extracellu-
lar adenosine levels in solid tumors were 10–20 times higher than adja-
cent tissues and reached levels sufficient to disrupt function of activated
Cytotoxic T Lymphocytes (CTLs) [42]. During the same period,



Fig. 1. A2aR blockade in the tumor microenvironment. With increasing tumor cell breakdown in the setting of hypoxia, increased cellular stress, and chemotherapy, ATP, adenosine, and
tumor associated antigens (TAA) are released into the tumor microenvironment (TME). ATP is further catabolized to adenosine by the ectonucleotidases CD39 and CD73, which are up-
regulated on a number of cell types within the TME, including regulatory T cells (Tregs), stromal cells, and tumor cells. Adenosine in the TME has profound effects on all phases of immune
function. Pharmacologic blockade of A2a receptors on effector T cells, Tregs, NK cells, dendritic cells (DC), myeloid derived suppressor cells (MDSCs), and tumor-associated macrophages
(TAMs) may counteract the immunosuppressive cloud of adenosine in the TME and enhance multiple phases of the immune response, including T cell activation, expansion, and effector
function. Additive, and perhaps synergistic, effectsmay be possible by combiningA2aRblockadewith othermodalities of cancer therapy. Chemotherapy, by causing increased cell turnover
and breakdown,may allow exposure of hidden antigens and act as an in situ vaccine—an effect thatmay be enhanced by concomitant A2aR blockade to counteract associated elevations in
extracellular adenosine levels. A2aRblockadehas been shown to enhance the effect of tumor vaccines during T cell activation. A2aR inhibitionmay alsowork in concertwith other immune
checkpoint inhibitors, such as PD-1 or PD-L1 blockade, to further drive T cell function during the effector phase of immune response.
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pioneering studies by Sitkovsky et al., began to uncover the critical
interactions between extracellular ATP, adenosine and distinct subsets
of immune cells [64–66]. Since that time, it has been found that, in addi-
tion to hypoxia and increased cell turnover, many cells in the tumormi-
croenvironment (e.g., tumor cells, infiltrating immune cells, stromal
cells, and endothelial cells) undergo ectopic expression of CD39 and
CD73, further contributing to the buildup of extracellular adenosine
[67,68]. In addition to dampening the effect of CTLs, increased
extracellular adenosine has been found to down-modulate the activity
of a range of immune functions in the tumormicroenvironment, includ-
ing the activity ofmacrophages, NK cells, neutrophils, and dendritic cells
[69–73].

Given the similarities between adenosine-mediated immunemodu-
lation and established checkpoint pathways such as CTLA-4 and PD-1,
the application of A2aR blockade to tumor immunotherapy is particu-
larly exciting. In pioneering studies in 2006, Ohta et al. showed the com-
plete rejection of two distinct tumor lines, CL8-1 melanoma and RMA T
cell lymphoma, in a majority of A2aR null mice [4]. Notably, each of
these tumor lines was 100% fatal in wild type mice. Responses in these
models were dependent solely on CD8+ T cell activity. In another ex-
periment, pharmacologic blockade of A2aR significantly augmented
the tumor rejecting capacity of adoptively transferred, tumor-specific
CD8+ T cells in a sarcoma model in mice [4]. They also showed the
capacity for A2aR antagonism to strongly enhance CD8+ T cell-
mediated destruction of the poorly immunogenic LL-LCMV tumor line.
In studies by Beavis et al., A2aR antagonism was effective in reducing
metastasis in CD73-expressing tumors in mouse models [74]. Included
in these studies were investigations of the metastatic potential of the
CD73-expressing murine breast cancer line, 4T1.2, as well as the
melanoma line B16F10, which had been transduced to express CD73.
Notably, in these studies NK cells were found to play a dominant role
in limiting metastatic growth in these models.

Studies from our group have confirmed the increased capacity of
A2aR−/− mice to reject tumor cells in a variety of settings. In our initial
tumor studies, A2aR−/− mice showed significantly better tumor
rejection and survival in a subcutaneous tumor model using the EL4
lymphoma cell line [61]. Interestingly, subcutaneous inoculation with
a low-dose of EL4 lymphoma cells, which were readily rejected by
both A2aR−/− as well as wild type mice, allowed A2aR null mice to re-
ject a subsequent challenge (on day 60) with an otherwise lethal dose
of the same EL4 tumor line. Wild type mice in these experiments were
unable to reject this re-challenge with tumor cells. This enhanced re-
sponsiveness was also elicited by vaccination with a 1:1 mixture of
GMSF-secreting, irradiated melanoma cells (GVAX) and irradiated
OVA peptide producing EL4 cells. In this case, the population of OVA-
specific CD8 T cells in draining lymph nodes 7 days post inoculation
was significantly elevated in A2aR null mice over wild type mice. In an-
other experiment, GVAX inoculation was significantly more effective in
protecting A2aR null mice from forming pulmonary lesions following
subsequent (60 days after GVAX vaccine) tail vein injection of B16
melanoma cells.

An additional finding from our initial studies in A2aR null mice was
the ability of A2aR blockade to synergizewith inhibition of other check-
point pathways [61]. Again using a subcutaneous EL4 model, A2aR-null
mice exhibited longer tumor-free survival (TFS) and overall survival
(OS) when treated with a soluble B7-DC/Fc fusion protein starting on
thefirst day of tumor inoculation and continued for the length of the ex-
periment. (B7-DC/Fc fusion protein acts as a ligand that specifically



Table 1
A2aR blockade in murine models of cancer.

A2aR inhibitor Effect observed

SCH58261 Enhanced tumor immunotherapy in combination with
PD-1 inhibition in CD73 expressing tumors [74]
Suppression of metastases in CD73+ tumor models [81]
Prolonged survival and reduction of metastatic burden in
melanoma and breast cancer mouse models in combination
with anti-PD1 mAb [75]
Enhanced doxorubicin sensitivity in CD73 expressing 4T1.2
breast cancer tumors resulting in improved tumor control [78]

SYN115 Enhanced tumor immunotherapy in combination with
anti-PD-1 mAb in CD73 expressing tumors [81]

ZM241365 In combination with anti-CTLA4 mAb inhibited tumor
growth and enhanced anti-tumor immune responses in
B16F10 mouse melanoma model [76]

FSPTP (irreversible
inhibitor)

Intratumoral injection reduced frequency of tumor
infiltrating CD8+ T cells, but not CD4+ T cells or NK cells,
in MB49 bladder cancer model [62]
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targets the PD-1 receptor expressed on dendritic cells and triggers pro-
found T cell activation.) Improvement in TFS and OS were significant
when compared to both untreated A2aR null mice as well as wild type
mice with and without B7-DC/Fc. The increased effectiveness of A2aR
blockade and concomitant PD-1 inhibition over either treatment alone
was also seen in studies by Mittal et al., wherein metastases of CD73+
tumors was significantly decreased by combination therapy [75]. In
these studies, Mittal et al. also demonstrated that A2aR blockade in-
creases the activity of CTLA-4 and TIM-3 inhibition in controlling meta-
static growth of CD73+ melanoma. Again, this group demonstrated a
primary, though not exclusive, role for NK cells in metastatic control.
In other studies of combination strategies, Iannone et al. showed that
pharmacologic A2aR blockade can improve the efficacy of CTLA-4
therapy in mouse melanoma models. Of note, the efficacy of CTLA-4 in-
hibition in these studies was also enhanced by blockade of adenosine
production upstream to A2aR by pharmacologic inhibition of CD73
activity [76].

As discussed above, CD73 and CD39 are ectonucleotidases that work
in tandem to catabolize extracellular ATP to adenosine in the immune
microenvironment. Though a complete review is beyond the scope of
this article, investigations of CD73 blockade have shown significant
effect on tumor control in mouse models and have also been especially
effective in combinationwith both CTLA-4 inhibition and PD-1 blockade
[53,77]. In studies of human tissue, CD73 expression on tumor cells was
associated with chemotherapy resistance and poor overall prognosis in
patients with triple-negative breast cancer [78]. A similar association
has also been uncovered in several other types of cancer, including rec-
tal carcinoma, gastric cancer, colorectal cancer, gallbladder cancer,
chronic lymphoblastic leukemia, and prostate cancer [79]. These trans-
lational studies offer evidence of the importance of adenosine signaling
in the tumor microenvironment in tumor progression. This idea has
been bolstered by preclinical studies showing anti-CD73 mAb-induced
reduction of primary tumors and metastases in two mouse models
(4T1.2 and E0771) of breast cancer [80].

4. Translating A2aR blockade to tumor immunotherapy

With the clinical success of CTLA-4 and PD-1 checkpoint blockade in
producing long-term responses in several distinct tumor types, there
has been growing interest in understanding the specific determinants
of host response during immunotherapy. As such, the critical parame-
ters regarding immunologic response are being closely investigated,
and it is becoming clear that future study of immunotherapeutic
strategies will require assessment in a multitude of therapeutic and
immunologic contexts. A single pathway, such as that triggered by ex-
tracellular adenosine, typically has multiple receptors, intra- and extra-
cellular targets, and a range of distinct effects, all of which may depend
on the specific developmental stage of a given target cell. As a case in
point, a recent study found that A2a receptor blockade has distinct
effects on T cell activation vs. effector-memory cell generation in a
mouse melanoma model [62]. As mentioned, recent studies by Cekic,
et al. have elucidated the importance of intact A2aR signaling for both
maintenance of the naïve T cell compartment, as well as the transition
to memory cell phenotypes in tumor-bearing mice. In these studies it
was shown that persistent absence of A2aR signaling can actually stimu-
late tumor growth in somemodels [74,81]. Unpublished work from our
lab confirms that, while transient blockade of A2aR signaling early in the
immune response can drastically enhance the potency of a late recall re-
sponse, complete elimination of A2aR signaling in knockout models ap-
pears to hinder efficient transition of CD4+ and CD8+ T cells to a
memory phenotype. Further investigation of the importance of A2aR
signaling in establishing, maintaining, or ameliorating anergy, exhaus-
tion, and senescence of effector T cells will be informative avenues of
inquiry.

Though there is certainly much work to be done in understanding
the nuances of adenosinergic signaling on tumor immune response,
the findings outlined in this review have a number of implications for
clinical studies. Chief among these findings is the identification of
adenosine-A2aR signaling as a critical and non-redundant negative reg-
ulator of inflammatory response that can be co-opted by tumors and
function as ameans of immune evasion. Signaling through this pathway
has effects on activation, early expansion, and effector phases of T cell
response. Furthermore, several preclinical studies have demonstrated
the efficacy of A2a receptor inhibition in promoting tumor regression.
In a number of studies A2aRblockade has been combinedwith other ap-
proaches to immunotherapy to potentiate additive effects on tumor
control (Table 1).

As we move closer toward application of A2aR blockade in clinical
trials, it is important to note that several A2a receptor antagonists
have already gone through phase III trials for Parkinson Disease. These
agents have generally been very well tolerated, without severe
immune-related toxicities associatedwith CTLA-4 and PD-1 antagonism
[82]. Recently reviewed by Pinna, these agents include Istradefylline,
which has been approved for Parkinson Disease in Japan, as well as sev-
eral agents presently in clinical trials (PBS-509, ST1535, ST4206,
Tozadenant, V81444). Preladenant is an A2a receptor antagonist
which has been discontinued after demonstrating poor efficacy in
late phase clinical trials. Despite promising efficacy and a low incidence
of adverse events, another A2aR antagonist, Vipadenant, was also
discontinued after phase II studies [82].
4.1. Optimizing the immunotherapeutic effects of A2aR inhibition

While data from our lab and others show that A2aR blockade during
initial T cell activation can greatly enhance T cell expansion and gener-
ation of memory phenotypes, studies by Ohta et al. show that A2aR
blockade during adoptive T cell therapy in sarcoma models has a role
in enhancing T cell effector function as well [4]. In addition, recent
studies have shown that long-term A2aR blockade may interfere with
the generation of immunologic memory [62]. Integrating these findings
to achieve clinically effectiveA2aR inhibitionwill require careful consid-
eration of the timing of blockade, as well as combination schemes using
a range of other therapeutic approaches. In considering the importance
of dosing, scheduling, and combination therapy, it is instructive to note
that of the two initial CTLA-4 inhibitors, ipilimumab succeeded in phase
III trials and garnered FDA approval whereas tremelimumab failed. This
was despite the fact that these two agents showed equivalent intrinsic
activity and phase II response rates [5]. The failure of tremelimumab
in phase III studies is generally attributed to suboptimal dosing and
scheduling, as well as other trial design flaws [1,5,83].
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4.2. A2aR blockade during early immune response: combination therapy
with vaccines and chemotherapy

Adenosine signaling has significant effects on several distinct cell
types involved in the early stages of immune response. Specifically,
while A2aR signaling on effector T cells decreases early post-activation
proliferative capacity, A2aR signaling is also important in myeloid
cells, polarizing professional APCs toward a more tolerogenic or sup-
pressive phenotype and inhibiting the activation of effector cells
(Fig. 1) [84–86]. The ability of A2aR blockade to reproducibly enhance
vaccination strategies in a variety of tumor models confirms the robust
effect of this pathway on T cell activation and early expansion. As many
cancer vaccines have historically met with only limited success, adjunc-
tive therapy with A2aR blockade may offer an important potentiating
strategy (Table 2).

Largely through the work of Kroemer and Zitvogel, it has become
increasingly clear that there is an immunologic component associated
with the action of many cytotoxic chemotherapeutic agents [87–89]. In
this regard, several chemotherapeutic agents, including anthracyclines,
oxaliplatin, cyclophosphamide, gemcitabine, and bortezomib appear to
produce an in situ vaccination as a consequence of their initial cytotoxic
effect. In so doing, these agents appear to facilitate an immunogenic cell
death, which has several important attributes [87–91]. Immunogenic
cell death, as defined by Kroemer et al., is a process that stimulates an im-
mune response against dead cell antigens (tumor antigens) through the
timed release of solublemediators aswell as early changes on the surface
of cancer cells. Interestingly, the release of ATP has been identified as a
critical mediator in this process. While ATP acts as immunostimulant, fa-
cilitating the recruitment of dendritic cells into the tumor bed, it is even-
tually catabolized to adenosine by ectonucleotidases CD39 and CD73 that
are often highly expressed in the tumor microenvironment. As such, the
immunostimulatory effects of ATP give way to the immunosuppressive
effects of adenosine. This presents an excellent opportunity for concomi-
tant A2aR blockade. A2aR antagonism during chemotherapy may allow
the expansion of tumor-specific T cells, and simultaneously repress the
induction of tumor-specific regulatory T cells, thus helping to kindle the
immunologic response. To this end, the work of Zitvogel and Kroemer,
as well as the work by Stagg and others, have shown the effectiveness
of combining adenosinergic signaling blockade in the context of cytotoxic
chemotherapy [90,91]. Stagg et al. demonstrated the success of this ap-
proach by inhibiting adenosine production (upstream of A2aR) with
CD73 blockade in combination with doxorubicin chemotherapy in a
murine breast cancer model [78]. CD73 blockade in these experiments
enhanced antitumor immune response, especially when given in combi-
nation with doxorubicin, prolonging survival in mice with established
metastatic breast cancer comparedwith either agent given as monother-
apy. In this work, a similar effect was also observedwhen a specific A2aR
blocking agent, SCH58261, is used in combinationwith doxorubicin. Sim-
ilar studies examining pharmacologic blockade of A2aR in combination
with chemotherapy are ongoing in our lab.
Table 2
Potential therapeutic applications of A2a receptor blockade.

1. Tumor vaccines + A2aR
blockade

A2aR blockade during the peri-vaccination period
to enhance activation and subsequent expansion
of activated effector cells

2. Chemotherapy + A2aR
blockade

A2aR blockade during chemotherapy to enhance
in situ vaccination and counteract elevated
extracellular adenosine levels resulting for
increased cell turnover

3. PD-1/PD-L1/CTLA-4 +
A2aR blockade

A2aR blockade in combination with established
immune checkpoint inhibition to enhance
activation and effector function of cellular
immune components

4. Adoptive T cell therapy +
A2aR blockade

A2aR blockade during the effector phase to
enhance T cell function and extend the
duration of cytotoxic response
4.3. A2aR blockade in the context ofmultiple checkpoint pathway inhibition

The ability of A2aR pathway blockade to produce additive effects in
combination with targeting of other checkpoint pathways has
mechanistic as well as clinical implications. Mechanistically, studies
showing an additive response underline the independence of the
adenosinergic-A2aR pathway from established checkpoint pathways.
Clinically, the non-redundant nature of these pathways implies that
combination checkpoint pathway inhibition, including adenosinergic
blockade, can have potentially dramatic effects on response rates. To
that end, recent trials combining CTLA-4 and PD-1 blockade reported
initial findings of an overall response rate of 42%—significantly higher
than either agent used alone [35]. While CTLA-4 blockade appears to
be most effective in enhancing the activation phase of cellular immune
response, whereas PD-1 inhibition is most profound during the effector
phase [5], the addition of A2aR blockade has the potential to further
lower the threshold for each of these critical immune events (Table 1).
In this regard, it is possible that concomitant use of A2a receptor antag-
onism with CTLA-4 or PD-1 may allow for dose reductions of either
agent, thereby reducing the incidence and severity of immune related
toxicities.

4.4. A2aR blockade during effector phase of the immune response:
combination therapy with adoptive T cell therapy

The ability of A2aR blockade to enhance effector function is an im-
portant aspect of its mode of action. Adenosine signaling through
A2aR has suppressive effects on both CD4+ and CD8+ effector T cell
compartments, including: polarization of CD4+ cells away from the
Th1 phenotype; decreased production of IFN-gamma, IL-2, and TNF-
alpha; reduced cytoxicity of CTLs; reduced TCR signaling; and reduced
CTL activity leading to increased anergy [4,7,57,59,92]. This has been
confirmed in preclinical studies in which A2aR inhibition has demon-
strated the ability to enhance effector function during an immune
response (Fig. 1) [4,7,40]. Given these properties, we expect that the
combination of A2aR blockade with adoptive T cell therapy will gener-
ate enhanced T cell function and extended duration of cytotoxic re-
sponse (Table 2). As mentioned, early studies by Ohta et al. specifically
demonstrated the benefit of A2aR blockade in mouse tumor models
using adoptive T cell therapy [4].

4.5. A2aR blockade in combination with other targets in the adenosinergic
pathway

Lastly, while the A2a adenosine receptor is an attractive target for
tumor immunotherapy, inhibition of other targets in the adenosinergic
pathway has also yielded encouraging results. Of particular interest has
been the upstream ectonucleotidase CD73. Several groups have shown
that CD73 blockade can have dramatic effects on both primary tumor
response as well as metastatic processes [93–95]. As mentioned, the
level of CD73 in triple-negative breast cancer tissues was found to be
negatively correlated with prognosis and response to chemotherapy
[78]. Recently, CD73 expression in tumor tissue has also been correlated
with poor prognosis in rectal adenocarcinoma [96]. Several other stud-
ies have also found an association between CD73 expression in tumor
tissue andmore aggressive clinical behavior, including studies in gastric
cancer, colorectal cancer, gallbladder cancer, chronic lymphoblastic
leukemia, and prostate cancer [79]. Studies in mouse models using
CD73-null mice have shown increased tumor immunity in a variety of
tumor types, including MC38 colon cancer, EG7 lymphoma, AT-3 mam-
mary tumors, ID8 ovarian tumors, and B16F10 melanoma [77,94,97].
CD73 blockade with both small molecules and anti-CD73 mAb has
shown specific responses in mouse models of B16 melanoma and
4T1.2 breast cancer [77,97]. Also, inhibition of another adenosine recep-
tor, A2bR, has been shown to inhibit growth of prostate cancer cell lines
(though not through an immunologic mechanism) [98]. In this regard,
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Stagg et al.showed that A2bR activation promotedmetastatic cancer cell
phenotype in a 4T1.2 mouse model of breast cancer [80]. Furthermore,
Cekic et al. demonstrated enhanced activation of dendritic cells and im-
proved CXCR3-dependent T cell tumor infiltration in the setting of phar-
macologic A2bR blockade [99]. In these studies, specific A2bR blockade
with ATL801 slowed tumor growth in mouse models of bladder and
breast cancer. It remains to be seen if simultaneous inhibition of several
members of the adenosinergic pathway can produce non-redundant
effects on tumor response.
5. Conclusion

With the recent clinical success in applying CTLA-4 and PD-1 block-
ade to the treatment of a variety of tumors, thepromise of cancer immu-
notherapy has begun to be realized. In targeting the maladaptive
appropriation of immune checkpoints in the tumor microenvironment
and not the cancer directly, these treatments may represent a sea
change in the approach to treatment of many cancers. In addition to
providing significant response rates in patients with highly pretreated
and refractory tumors, the establishment of immunologic memory has
generated durable responses in many of these patients. Given the im-
pressive results of CTLA-4 and PD-1 inhibition in cancer patients,
other checkpoint pathways operating within the tumor environment
demand thorough investigation. Clearly, a challenge for the future will
be to determine the most effective integration of A2aR inhibitors in
terms of dosing and timingwithin various combination regimens. Addi-
tionally,while this reviewhasmostly focused on the role of A2aR signal-
ing on T cells, it is clear that A2aR blockade will also promote tumor
immunotherapy through its effect of NK cells, as well as myeloid de-
rived suppressor cells, and tumor-associated macrophages.
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