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Abstract: Micro/nanostructured spherical materials have been widely explored for electrochemical
energy storage due to their exceptional properties, which have also been summarized based on
electrode type and material composition. The increased complexity of spherical structures has
increased the feasibility of modulating their properties, thereby improving their performance
compared with simple spherical structures. This paper comprehensively reviews the synthesis and
electrochemical energy storage applications of micro/nanostructured spherical materials. After a brief
classification, the concepts and syntheses of micro/nanostructured spherical materials are described
in detail, which include hollow, core-shelled, yolk-shelled, double-shelled, and multi-shelled spheres.
We then introduce strategies classified into hard-, soft-, and self-templating methods for synthesis of
these spherical structures, and also include the concepts of synthetic methodologies. Thereafter, we
discuss their applications as electrode materials for lithium-ion batteries and supercapacitors, and
sulfur hosts for lithium–sulfur batteries. The superiority of multi-shelled hollow micro/nanospheres
for electrochemical energy storage applications is particularly summarized. Subsequently, we
conclude this review by presenting the challenges, development, highlights, and future directions of
the micro/nanostructured spherical materials for electrochemical energy storage.
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1. Introduction

As a unique family of functional materials, spherical structures offer structural stability, large
surface area, low density, and short charges transport lengths [1–4]. Spherical structures can be
classified based on their structural complexity into simple and intricate ones. On the one hand, simple
spherical structures, also known as solid spheres [5,6] and single-shelled hollow spheres. On the
other hand, intricate hollow structures have multiple layers and interior cores [7–9]; these structures
include core-shelled [10–13], yolk-shelled [14–17], double-shelled, and multi-shelled spheres. Spherical
structures exhibit tunable physical and chemical properties, which confer them with great structure
advantages for electrochemical applications, such as lithium-ion batteries (LIBs) [18–20], lithium–sulfur
batteries (LSBs) [21–24], supercapacitors (SCs) [25–28], sodium-ion batteries, Li–selenium batteries,
and fuel cells [29–34]. Hollow spherical micro/nanostructures with high complexity have attracted
much interest for theoretical studies [35–39] and practical applications [40,41]. Micro/nanostructured
spherical materials are expected to outperform other structures in terms of enhanced electrochemical
performance and structural stability [42–44].

LIBs are outstanding among electrochemical energy storage technologies in terms of high energy
density [45–48]. LIBs were first commercialized in 1991 by Sony Corporation [49–52]. Currently, LIBs
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provide a voltage of the order of 4 V, and energy density ranging from 100 to 150 Wh kg−1. LIBs
have three main application domains: portable electronics, electric vehicle, and stationary energy
storage [53–55]. So far, the first usage is the best developed and the largest in terms of the number of
units generated. The performance of LIBs significantly depends on the active anodes, which are used
to store and release Li-ions during charging and discharging. The most popular anode worldwide is
graphite anode due to its stable potential, low cost, and long cycle life. However, graphite anode has
a limited theoretical specific capacity of 372 mA h g−1 and poor rate capacity, which are insufficient
for the development of portable electronic devices and EVs [56,57]. LSBs hold tremendous potential
as energy storage devices due to their high theoretical specific capacity (1675 mA h g−1), and energy
density (2600 Wh kg−1) [58]. Since 2009, LSBs have received increasing attention and are considered
as one of the most promising candidates for next-generation rechargeable batteries. From the recent
improvements in the Li–S system, it seems that the practical application of LSBs is not far away.
However, Li–S cells have hindrances in their commercial application due to their limited conductivity,
volume expansion, and rapid capacity fading [59]. The earliest SCs patent was filed in 1957. However,
not until the 1990s did SCs technology begin to draw some attention, in the field of hybrid electric
vehicles [60–62]. It was found that the main function of SCs could be to boost the battery in a hybrid
electric vehicle providing the necessary power for acceleration, with an additional function being to
recuperate brake energy [63–66]. Further developments have led to the recognition that SCs can play
important roles in complementing batteries or fuel cells in their energy storage functions by providing
back-up power supplies to protect against power disruptions [67]. As a result, the US Department of
Energy has designated SCs to be as important as batteries for future energy storage systems [68]. Recent
years, major progress have been yielded in the theoretical and practical research and development of
SCs, as evinced by a large number of research articles and technical reports. With the development in
backup power sources, portable electronics devices, renewable energy power plants, and EVs, further
improvement in energy and power density for SCs is imperative. The key objective is to fabricate
outstanding electrode materials with large specific capacitance, high power delivery, and good cycling
stability [69,70].

In the specific field of electrochemical energy storage, spherical structures are playing a more
and more important role. More importantly, they hold great promise to break some of the current
bottlenecks in LIBs, LSBs, and SCs [8,32]. For example, the spherical structures offer structural stability,
and the cavity of intricate hollow spherical structures can effectively accommodate the volume change
of high-capacity LIBs anode materials and boost the cycling stability. In LSBs, such unique structures
can reserve a large amount of S, accommodate the volume variation of S during cycling, and avoid the
discharged products from dissolution through either physical confinement or chemical interactions.
Also, in SCs, spherical structures can generally increase the energy densities of energy-storage devices
due to their large surface area, low density, and high weight fraction of active species.

In this review, we mainly summarized the latest development on the micro/nanostructured
spherical materials including the typical structural types, and their applications for energy-related.
The examples we enumerated in this review are the typical representatives in terms of
the micro/nano-architectures related to the energy applications. Scheme 1 shows that these
micro/nanostructured spherical materials are categorized into hollow, core-shelled, yolk-shelled,
double-shelled, and multi-shelled micro/nanospheres. Their applications as the sulfur hosts for LSBs,
electrode materials for LIBs, and SCs conversion reactions are then discussed. Subsequently, the
challenges, development, highlights, and future directions of micro/nanostructured spherical materials
are concisely given.
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2.1. Hollow Spheres with Complex Architectures 

Hollow spheres are simple spherical structures with narrow size distribution and 
superior morphological uniformity, and usually obtained through template methods, such as 
hard- and soft-templating. The mechanism of formation process, transmission electron 
microscopy (TEM), and scanning electron microscopy (SEM) images of hollow spheres are 
illustrated in Figure 1. 

Hard-templating is the common method, and the hard template can be selectively 
removed through etching or annealing. Typically, the desired materials or their precursors 
are deposited on hard templates with functionalized surface, followed by the selective 
removal of the templates through etching or pyrolysis. A myriad of inorganic/organic 
colloidal spheres could be applied as ideal hard templates (SiO2, polystyrene (PS), and so on) 
owing to their facile preparation [71,72]. SiO2 spheres with controllable size can be easily 
prepared by the Stöber process on a large scale. Therefore, we select two typical examples of 
using SiO2 spheres as the hard templates. For instance, Lou et al. synthesized mesoporous 
TiO2 hollow spheres through SiO2 spheres as hard template, hexadecylamine (HDA) 
structure-directing agent, and titanium isopropoxide (TIP) as the TiO2 precursor, respectively 
[73]. The synthesis strategy for the growth of mesoporous TiO2 hollow spheres is illustrated 
in Figure 1a. After annealing and etching, the mesoporous TiO2 hollow spheres were obtained, 
as the shown in Figure 1b. From the TEM image (Figure 1c) of the single TiO2 hollow spheres, 
mesoporous structure and much tiny TiO2 nanocrystals are clearly found. Chueh et al. 
reported the synthesis of hierarchical NiCo2S4 hollow microspheres by using SiO2 spheres as 
hard template [74]. The SEM image indicates that the NiCo2S4 spheres has a hollow-structured 
interior (Figure 1d). The TEM image of the resulting hollow NiCo2S4 in Figure 1e reveals 
hollow spherical structures with thickness of ~60 nm. The magnified TEM image in Figure 1f 
shows flower-like microspheres comprising numerous intercrossed nanoflakes (~4 nm thick). 
And the TEM image reveals that the NiCo2S4 hollow spheres has a similar size and shape with 
the SEM image. 

For soft-templating methods, the involved template (emulsion droplets, micelles, 
vesicles, microemulsion, and gas bubbles) are generally in the form of fluid/gas with high 
deformability. Thus, the complicated template elimination process is generally not necessary 
[75,76]. Typically, Wang et al. successfully synthesized the α-Fe2O3 hollow nanospheres 
through a facile quasiemulsion-templating approach [77]. In this synthesis, the reaction 
temperature influences the morphology of the α-Fe2O3. By adjusting the temperature of the 
reaction, the α-Fe2O3 hollow spheres with distinct packing densities of the nanosheets can be 
obtained as shown in Figure 1g–i. Wan et al. synthesized hollow and mesoporous Nb2O5 
nanospheres (HM–Nb2O5) through a simple soft-templating method [78]. Urea play a 
bifunctional role in the synthesis. On the one hand, it acts as structural scaffold to form the 
nanospheric precursor. On the other hand, its gradual decomposition upon heating initiates 
the intraparticle transition of urea niobium oxalate into basic niobium oxalate. After water 

Scheme 1. The summary of structural types and electrochemical energy storage applications for
micro/nanostructured spherical materials.

2. Synthesis of Micro/nanostructured Spherical Materials

2.1. Hollow Spheres with Complex Architectures

Hollow spheres are simple spherical structures with narrow size distribution and superior
morphological uniformity, and usually obtained through template methods, such as hard- and
soft-templating. The mechanism of formation process, transmission electron microscopy (TEM), and
scanning electron microscopy (SEM) images of hollow spheres are illustrated in Figure 1.

Hard-templating is the common method, and the hard template can be selectively removed
through etching or annealing. Typically, the desired materials or their precursors are deposited on
hard templates with functionalized surface, followed by the selective removal of the templates through
etching or pyrolysis. A myriad of inorganic/organic colloidal spheres could be applied as ideal hard
templates (SiO2, polystyrene (PS), and so on) owing to their facile preparation [71,72]. SiO2 spheres
with controllable size can be easily prepared by the Stöber process on a large scale. Therefore, we select
two typical examples of using SiO2 spheres as the hard templates. For instance, Lou et al. synthesized
mesoporous TiO2 hollow spheres through SiO2 spheres as hard template, hexadecylamine (HDA)
structure-directing agent, and titanium isopropoxide (TIP) as the TiO2 precursor, respectively [73]. The
synthesis strategy for the growth of mesoporous TiO2 hollow spheres is illustrated in Figure 1a. After
annealing and etching, the mesoporous TiO2 hollow spheres were obtained, as the shown in Figure 1b.
From the TEM image (Figure 1c) of the single TiO2 hollow spheres, mesoporous structure and much
tiny TiO2 nanocrystals are clearly found. Chueh et al. reported the synthesis of hierarchical NiCo2S4

hollow microspheres by using SiO2 spheres as hard template [74]. The SEM image indicates that the
NiCo2S4 spheres has a hollow-structured interior (Figure 1d). The TEM image of the resulting hollow
NiCo2S4 in Figure 1e reveals hollow spherical structures with thickness of ~60 nm. The magnified
TEM image in Figure 1f shows flower-like microspheres comprising numerous intercrossed nanoflakes
(~4 nm thick). And the TEM image reveals that the NiCo2S4 hollow spheres has a similar size and
shape with the SEM image.

For soft-templating methods, the involved template (emulsion droplets, micelles, vesicles,
microemulsion, and gas bubbles) are generally in the form of fluid/gas with high deformability. Thus,
the complicated template elimination process is generally not necessary [75,76]. Typically, Wang et al.
successfully synthesized the α-Fe2O3 hollow nanospheres through a facile quasiemulsion-templating
approach [77]. In this synthesis, the reaction temperature influences the morphology of the α-Fe2O3. By
adjusting the temperature of the reaction, the α-Fe2O3 hollow spheres with distinct packing densities
of the nanosheets can be obtained as shown in Figure 1g–i. Wan et al. synthesized hollow and
mesoporous Nb2O5 nanospheres (HM–Nb2O5) through a simple soft-templating method [78]. Urea
play a bifunctional role in the synthesis. On the one hand, it acts as structural scaffold to form the
nanospheric precursor. On the other hand, its gradual decomposition upon heating initiates the
intraparticle transition of urea niobium oxalate into basic niobium oxalate. After water washing it
forms hollow basic niobium oxalate, and then transformed into HM–Nb2O5 after heating at 600 ◦C
(Figure 1j). Lee et al. synthesized the V2O5 microspheres (V2) by using the polyvinylpyrrolidone (PVP)
aggregation as the soft template in the presence of ethylene glycol (EG) [79]. Figure 1k shows the
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hollow microsphere structure of V2 with an outer diameter of 2.7 µm. As shown in the inset of Figure 1l,
the broken hollow sphere can confirm that these microspheres take a complete hollow structure.
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Figure 1. Schematic demonstration and graphical illustration of hollow spheres: (a) Schematic
illustration of the formation process of mesostructured titanium dioxide (TiO2) shells, (b) transmission
electron microscopy (TEM) image of TiO2 hollow nanospheres, and (c) magnified TEM image
shows an individual TiO2 hollow nanosphere. (d) scanning electron microscopy (SEM) image and
(e,f) high-magnification TEM images of the NiCo2S4 hollow spheres. (g) SEM, and (h,i) TEM images
of the α-Fe2O3 hollow spheres. (j) TEM image of the HM-Nb2O5 nanospheres. (k) SEM image and
(l) TEM image of V2O5 hollow microspheres. (m) TEM image of the NiCo2O4 hollow microspheres.
(n,o) TEM images of V2O3@C hollow spheres. Pictures (a), (b), and (c) were reprinted with permission
from Reference [73]. Copyright Science, 2018. Pictures (d), (e), and (f) were reprinted with permission
from Reference [74]. Copyright Wiley, 2018. Pictures (g), (h), and (i) were reprinted with permission
from Reference [77]. Copyright American Chemical Society, 2011. Picture (j) was reprinted with
permission from Reference [78]. Copyright American Chemical Society, 2011. Pictures (k) and (l) were
reprinted with permission from Reference [79]. Copyright Elsevier, 2017. Picture (m) was reprinted
with permission from Reference [80]. Copyright American Chemical Society, 2014. Pictures (n) and
(o) were reprinted with permission from Reference [81]. Copyright the Royal Society Chemistry, 2018.

Huang et al. synthesized the NiCo2O4 hollow microspheres through a simple template-free
solvothermal method [80]. As shown in Figure 1m, the diameter of the NiCo2O4 hollow microspheres
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is approximately 2–3 µm. Due to the effectiveness of template-free method, that could also be extended
to a one-pot process to compose several morphologies of the hollow spheres. For example, Wang et al.
successfully synthesized the V2O3@C hollow spheres through a facile one-step solvothermal route [81].
The TEM image in Figure 1n shows that these V2O3@C hollow spheres consist of uniform microspheres
with a diameter of approximately 1 µm, which is assembled with nanosheets. The hollow characteristic
of the V2O3@C microspheres is confirmed by the magnified TEM image shown in Figure 1o, showing a
shell thickness of approximately 85 nm.

For the synthetic methods of the hollow spheres, the hard template can be selectively etched,
whereas the complicated template elimination process of soft template is generally not necessary. With
this method, product uniformity is sometimes compromised. However, the possibility of producing
more complicated hierarchical structures is largely increased by refilling a hollow interior with
functional species or the in-situ encapsulation of guest molecules during shell formation. Therefore,
the soft template method is more suitable for the preparation of hollow spheres.

2.2. Core-shelled Spheres with Complex Architectures

Core–shell nanostructures often possess superb chemical and physical properties compared with
their single-component counterparts [82–84]. Hence, they are widely employed in optics, biomedicine,
energy conversion, storage, etc. [85,86]. Core–shell structures can be broadly defined as a combination
of a core (inner material) and a shell (outer layer material). Generally, many considerable efforts on
core–shell materials have been reported, such as a solid inner core coated with one or more layers
(shells) of different materials [87–89].

For the one solid inner core coated with one shell material, our group reported the preparation of
highly uniform and shape-controlled Ni-CeO2@PANI (polyaniline) nanospheres [90]. Figure 2a
illustrates the process for fabricating the core–shelled Ni-CeO2@PANI nanospheres (NCP1),
yolk–shelled Ni-CeO2@PANI nanospheres (NCP2), and PANI hollow nanospheres. First, PVP
aggregate is selected as capping agent and deposited on the surface of Ni-CeO2 nanospheres. The
PANI shell was coated on Ni-CeO2 surface through the chemical oxidative in situ polymerization of
aniline in hydrochloric acid (HCl) solution by using ammonium persulfate (APS) as oxidant. With
the increasing of the HCl content, different morphologies nanocomposites were obtained, such as
core–shelled Ni-CeO2 nanospheres, yolk–shelled Ni-CeO2 nanospheres, and PANI hollow spheres.
Based on the TEM images, compared with Ni-CeO2 (Figure 2b), the diameter of core–shelled Ni-CeO2

nanospheres (Figure 2c) increased from 100 nm to 180 nm. Xu et al. synthesized the core–shelled
TiO2@MoS2 microspheres through a hydrothermal method combined with annealing. Figure 2d shows
the process used to fabricate the core–shelled TiO2@MoS2 microspheres [91]. Figure 2e displays the
SEM image of the core–shelled TiO2@MoS2 microspheres after annealing. The MoS2 nanosheets grown
evenly on the TiO2 surface and the average diameter of TiO2@MoS2 is approximately 580–620 nm.
The TEM image displays the thickness of the MoS2 shells in the range of 130–170 nm (Figure 2f).
Zhang et al. produced three-dimensional superstructures made of core–shelled SnO2@C nanospheres
through a hydrothermal and sintering procedure [92]. The TEM image in Figure 2g reveals that the
average diameter of the core–shelled SnO2@C nanospheres is approximately 50–60 nm, and the carbon
thickness is approximately 10 nm. Shen et al. prepared the core–shelled SiO2@TiO2 microspheres by
using carboxyl-modified SiO2 spheres as a core and an ethanol/acetonitrile mixture as solvent [93].
In this case, acetonitrile promotes the solubility and stability of titanium tetrabutoxide (TBOT) and
restricts its hydrolysis, improving the control for the uniform deposition of TiO2 without the need of
capping agents or special precursors. Figure 2h–j show the TEM images where the shell thickness can
be facilely tuned from 12 nm to 100 nm by changing the TBOT concentration.
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nanaospheres were formed. Figure 3a shows the typical TEM image of core–shelled 
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Figure 2. Schematic demonstration and graphical illustration of core-shelled spheres: (a) Schematic
illustration of the synthesis of core-shelled NCP1, yolk-shelled NCP2, and PANI hollow nanosphere,
(b) transmission electron microscopy (TEM) image of Ni-CeO2 nanospheres, and (c) TEM image of
the core-shelled NCP1 nanospheres. (d) Schematic illustration of synthesis procedure of core-shelled
TiO2@MoS2 microspheres, (e) scanning electron microscopy (SEM) and (f) low-magnification TEM
images of the annealed core-shelled TiO2@MoS2 microspheres. (g) TEM image of the core-shelled
SnO2@C nanospheres. TEM images of core-shelled SiO2/TiO2 microspheres with titania shell thickness
of (h) 61 nm, (i) 73 nm, and (j) 100 nm. Pictures (a), (b), and (c) were reprinted with permission from
Reference [90]. Copyright Elsevier, 2018. Pictures (d), (e), and (f) were reprinted with permission from
Reference [91]. Copyright Elsevier, 2016. Picture (g) was reprinted with permission from Reference [92].
Copyright the Royal Society Chemistry, 2010. Pictures (h), (i), and (j) were reprinted with permission
from Reference [93]. Copyright Elsevier, 2011.

For the one solid inner core coated with two or more shells materials, Guo et al. reported the
synthesis of the core–shelled Fe3O4/PANI/MnO2 hybrids [94]. Fe3O4 spheres were chosen as the inner
core, follow coated by PANI and MnO2, respectively. Thereafter, core–shelled Fe3O4/PANI/MnO2

nanaospheres were formed. Figure 3a shows the typical TEM image of core–shelled Fe3O4/PANI/MnO2

composite, revealing uniform spherical nanostructures with a diameter of ~300 nm. The TEM
image in Figure 3b confirms the uniform core–shell structure. The thickness of MnO2 nanoflakes
is 5 nm, while that of the coating of MnO2 shells is approximately 50 nm. Our group reported
core–shelled Fe3O4@C@MnO2 microspheres that were fabricated using multi-step solution-phase
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interface deposition [95]. Fe3O4 nanoparticles were coated with SiO2 through the Stöber method
and further covered with resorcinol and formaldehyde (RF) resins. Fe3O4@C nanoparticles with
inter-lamellar void were obtained by carbonizing RF under N2 atmosphere and etching SiO2 with
NaOH. These nanoparticles served as a template, which were further coated with MnO2 shell to
prepare Fe3O4@C@MnO2 microspheres. The TEM image in Figure 3c shows that the resultant
composites have a typical core–shell structure with distinct magnetite core. The average diameter of
the Fe3O4@C@MnO2 microspheres is ∼410 nm with 10 nm inter-lamellar void, a 30 nm thick carbon
layer in the middle layer, and a 50 nm thick MnO2 shell in the outer layer. The SEM image of the
as-prepared Fe3O4@C@MnO2 microspheres is shown in Figure 3d. Uniform flower-like MnO2 shells
were formed and deposited onto the surface of the Fe3O4@C. The Fe3O4@C@MnO2 microspheres have
an average diameter of ∼410 nm, which is consistent with their corresponding TEM findings. Zhu et al.
reported core–shelled SiOx-TiO2@C nanocomposites synthesized through a scalable sol-gel method
combined with carbon-coating [96]. Figure 3e shows the field-emission SEM (FESEM) image of the
core–shelled SiOx–TiO2@C nanospheres with an average diameter of 100 nm. In Figure 3f, the TEM
image shows the presence of outer turbostratic carbon shell thickness of ~8 nm, in which the inner
cores SiOx–TiO2 were fully coated.
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Figure 3. Graphical illustration of core-shelled spheres: (a,b) transmission electron microscopy
(TEM) images of the core-shelled Fe3O4/PANI/MnO2 hybrids. (c) TEM and (d) scanning electron
microscopy (SEM) images of the core-shelled Fe3O4@C@MnO2 microspheres [95]. (e) field-emission
scanning electron microscopy (FESEM) image and (f) TEM image of the core-shelled SiOx-TiO2@C
nanospheres [96]. Pictures (a) and (b) were reprinted with permission from Reference [94]. Copyright the
Royal Society Chemistry, 2017. Pictures (c) and (d) were reprinted with permission from Reference [95].
Copyright Electrochemical Society, 2018. Pictures (e) and (f) were reprinted with permission from
Reference [96]. Copyright Wiley, 2018.

The main advantages of these core–shell structures include the following ability to: (1) protect
the core from the effect of environmental changes outside; (2) intensify or introduce new chemical or
physical capabilities; (3) limit volume expansion and maintain structural integrity; (4) protect the core
from aggregating into large particles; and (5) percolate ions or molecules onto the core selectively.

2.3. Yolk-shelled Spheres with Complex Architectures

Deviating from the core–shelled structure, a typical yolk–shelled spherical structure has a smooth
shell and core which can be also called yolk, and the shell with core has a void space, which provides
movable space for the inter yolk. Both their shells and yolks generally have variations, such as a single
shell with a single yolk [97], double shells with a single yolk (yolk–shells) [98,99], multi-shells with a
single yolk (yolk–shells) [100,101], and a single shell with multi-yolks (yolks–shell) [102]. Yolk–shelled
structure materials were first synthesized through silica template by Hyeon et al. Initial researches
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of yolk–shelled structures concentrated on spherical structures. For a better understanding of these
structures, we will review these materials based on different structure types, as shown in Figure 4
and Figure 5.

For the single shell with single yolk spherical structure, Pan et al. reported the synthesis of
yolk–shelled MoS2@C microspheres through a solvothermal method combined with annealing [103].
First, the MoS2 microspheres were synthesized through a solvothermal method in EG solution. The
obtained MoS2 microspheres were coated with polydopamine (PDA) to form core–shelled MoS2@PDA
microspheres, which were carbonized to yield core–shelled MoS2@C microspheres (MoS2@C-0) through
annealing. Subsequently, hydrogen peroxide (H2O2) solution was used to etch the MoS2 microspheres.
Different concentrations of H2O2 solution (0.2, 0.4, and 0.6 vol%) were used, resulting in the formation
of different sizes of the void space in the MoS2 yolk and the carbon shell, which were denoted as
MoS2@C-0.2%, MoS2@C-0.4%, and MoS2@C-0.6%, respectively (Figure 4a). MoS2@C-0.4% composed
of a 25 nm thick porous carbon layer, a 280 nm nanosized MoS2 yolk, and well-controlled internal
void in between (Figure 4b). Wen et al. reported the preparation of yolk–shelled SiO2@C nanospheres
through two steps [104]. First, the synthesis of SiO2 nanospheres through Stöber’s method. Second,
coating the RF polymer layer on SiO2 nanospheres surface and follow carbonization. The SiO2

nanospheres inside core–shelled SiO2@C were controllably etched through a hydrothermal method
that produces yolk–shelled SiO2@C nanospheres. During this progress, SiO2 is transformed into
Si(OH)4, which is dissolved under high presure and temperature [105]. Through this method, the
size of the void between the SiO2 yolk and carbon shell could be efficiently controled by adjusting
the etching time, temperature, and solution concentration. Typical TEM images of the yolk–shelled
SiO2@C (Figure 4c,d) reveal that the thickness of carbon shell is approximately 10 nm. Zhao et al.
synthesized the yolk–shelled Fe3O4@RF@void@mSiO2 nanospheres through the swelling–shrinkage of
RF upon soaking in or the removal of organic solvent [106], which has a Fe3O4@ RF core and a mSiO2

shell. In Figure 4e, TEM image shows that the obtained Fe3O4@RF@void@mSiO2 nanospheres possess
uniform and well-dispersed spherical morphology with a diameter of 472−638 nm. The magnified
TEM image in Figure 4f can be clearly found the inner RF-protected magnetic Fe3O4 core.

Recently, many novel yolk–shelled spheres have emerged. Different from the typical yolk–shelled
spheres with smooth surface of shell and yolk, their shell or yolk possesses various surface structures.
Below, we introduce two interesting works with coconut-like and flower-like yolk–shelled spheres,
respectively, using surfactant aggregation as templates. Coconut-like yolk–shelled PS@NiCo2S4

nanosphere (Figure 4g) was synthesized from interior to exterior by Zhu et al. [107]. SiO2 nanospheres
was used for the hard template and then removed during the hydrothermal process. Figure 4h
exhibits the nanosphere with a PS yolk and a numerous NiCo2S4 nanosheets around the shell. Our
group successfully synthesized the flower-like yolk–shelled SiO2 nanospheres (FYSSns) through a
facile one-pot strategy by using CTAB–PVP composite surfactant aggregation as soft template and
cyclohexane–ethanol–water as microemulsion [108]. When added TEOS, with the hydrolysis and
condensation of TEOS, SiO2 shells and flower–shaped yolks were formed in the hydrophilic region
of the composite templates, respectively. After calcination, microemulsion aggregations and vesicles
were removed and the FYSSns were obtained, as shown in Figure 4i. The TEM images in Figure 4j–l
show that these FYSSns were evenly dispersed with an average diameter ranging of 500–600 nm,
and a large space between the shells and the flower-shaped yolks were observed. The flower-shaped
yolks diameter ranged of 260–320 nm, the space of yolk and shell ranged of 100–120 nm, and the shell
thickness ranged of 20–30 nm.

Aside these surfactant aggregation templates, organic solvents could also generate the soft
templates in oil/water systems. For instance, Peng et al. successfully synthesized the yolk–shelled
CoS2 nanospheres with various interior composition through a facile solution-based route [109]. The
concentration of Carbon disulfide (CS2) oil droplets has an important effect on the morphology of the
product. When added 0.4 mL of CS2, the product shown in Figure 4m is yolk-shelled CoS2 nanospheres
with an average diameter of 800 nm. From an individual broken sphere, the interior yolk with a
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diameter of about 300 nm, a void between the yolk and the shell is about 100–200 nm, and both of the
yolk and shell are constructed by nanosheets (Figure 4n).Nanomaterials 2019, 9, x FOR PEER  9 of 37 
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Figure 4. Schematic demonstration and graphical illustration of the single shell with single yolk
spherical structure: (a) Schematic illustration of preparation of the yolk–shelled MoS2@C microspheres
with different H2O2 contents, (b) TEM image of MoS2@C-0.4% microspheres. (c,d) TEM images of
SiO2@C. (e,f) TEM images of the yolk–shelled Fe3O4@RF@void@mSiO2. FESEM image (g) and TEM
image (h) of the yolk-shelled PS@NiCo2S4 nanospheres. (i) Schematic illustration of the synthesis of
FYSSns, TEM images of FYSSns–1 (j), FYSSns–2 (k), and FYSSns–3 (l). TEM image (m) and scanning
electron microscopy (SEM) image (n) of the yolk-shelled CoS2 spheres. Pictures (a) and (b) were
reprinted with permission from Reference [103]. Copyright Wiley, 2017. Pictures (c) and (d) were
reprinted with permission from Reference [104]. Copyright American Chemical Society, 2017. Pictures
(e) and (f) were reprinted with permission from Reference [106]. Copyright American Chemical Society,
2017. Pictures (g) and (h) were reprinted with permission from Reference [107]. Copyright Elsevier,
2015. Pictures (i), (j), (k), and (l) were reprinted with permission from Reference [108]. Copyright
Elsevier, 2018. Pictures (m) and (n) were reprinted with permission from Reference [109]. Copyright
Wiley, 2013.
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Apart from a single shell with single yolk, yolk–shells, and yolks–shell structure were reported,
which are shown in Figure 5. For example, Figure 5a shows that double-shelled SnO2 yolk–shells
nanospheres was fabricated by Hong et al. through carbon calcination for three times [98]. In this
yolk–shelled structure design, carbon was used as the hard template. The carbon was formed inside
the SnO2 nanospheres by the polymerization and carbonization of sucrose, resulting in the precursor
of C–SnO2 nanospheres. The first combustion fabricated the core-shelled C–SnO2/SnO2 nanospheres.
The second step of combustion of the core-shelled C–SnO2/SnO2 nanospheres was supplied to form the
yolk-shelled C-SnO2@SnO2 nanospheres. Further heating the core-shelled C–SnO2@SnO2 nanospheres,
a yolk with double-shells structure SnO2@SnO2@SnO2 was generated. Leng et al. successfully used
PVP as the surfactant and template to synthesize the triple-shelled NiCo2O4 yolk–shells nanospheres
by spray pyrolysis [100]. Figure 5b shows that the triple-shelled NiCo2O4 yolk–shells nanospheres had
uniform sizes. TEM image in Figure 5c shows that the products prepared with PVP exhibits three shells
with one yolk. As shown in Figure 5e, the elemental mapping images further show that the Ni, Co, and
O are evenly distributed in the triple-shelled NiCo2O4 yolk–shells nanospheres. In addition to the single
yolk with multi-shells, a single shell with multi-yolks Sn4P3@C nanospheres were fabricated [102].
The TEM image (Figure 5d) shows that the chief yolk of the Sn4P3@C composite materials was
abounded with much tiny yolks. Our group reported a new method to prepare the multi-yolks with
single shell SiO2–TiO2 (pomegranate-like) microspheres through a three-step approach [110]. First,
SiO2–hydrophobic poly(methyl methacrylate) (PMMA)–hydrophilic poly(oligo(ethylene glycol)methyl
ethermethacrylate) (POEOMA) microspheres were fabricated through aqueous polymerization. After
coating the TiO2 shells on the modified SiO2 spheres surface and removing the PMMA–POEOMA
polymerlayer through calcination, the multiple yolks with single shell SiO2@TiO2 microspheres were
obtained. Figure 5f illustrates the process used to fabricate the multiple yolks with single shell
SiO2@TiO2 microspheres through the hydrolysis and condensation of TBT. Figure 5g shows the TEM
image of the multiple yolks with single shell SiO2@TiO2 microspheres after calcination. Yolks–shell
structured SiO2@TiO2 microspheres have a smooth surface with the diameter of approximately 55 nm.
The FESEM image (Figure 5h) reveals that each SiO2@TiO2 microsphere is composed of multiple SiO2

yolks and a single TiO2 shell. This structure shows the typical multiple yolks with single shell structure.
Typical spherical yolk–shelled structures are tuned with various numbers of shells and yolks.

The suitable void space between yolk and shell can accommodate the volume expansion of yolk and
avoid aggregation of electroactive cores during charging/discharging process. With the development
of different synthetic methods, yolk–shelled structures can be prepared into manifold types.
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Figure 5. Schematic demonstration and graphical illustration of the yolk–shells and yolks–shell
structure: (a) transmission electron microscopy (TEM) image of double shells with single yolk
SnO2 nanospheres. (b,c) TEM images and (e) element mapping images of triple shells with single
yolk NiCo2O4 nanospheres. (d) TEM image of single shell with multi-yolks Sn4P3@C nanospheres.
(f) Schematic of the preparation, (g) TEM image and (h) field-emission SEM (FESEM) image of the
single shell with multi-yolks SiO2–TiO2 nanospheres. Picture (a) was reprinted with permission from
Reference [98]. Copyright Elsevier, 2018. Pictures (b), (c), and (e) were reprinted with permission
from Reference [100]. Copyright the Royal Society Chemistry, 2017. Picture (d) was reprinted with
permission from Reference [102]. Copyright the Royal Society Chemistry, 2017. Pictures (f), (g), and
(h) were reprinted with permission from Reference [110]. Copyright Elsevier, 2015.

2.4. Double-shelled Spheres with Complex Architectures

Typically, double-shell micro/nanostructured spherical materials often possess double shells,
hollow core, and a gap or no gap between the double shells, which are shown in Figure 6. The
combination of layer-by-layer (LBL) coating with a selective etching procedure is often utilized to
prepare the double-shelled or multi-shelled hollow structures [111]. As a specific example, Li et al. first
reported the preparation of the anatase–rutile TiO2 double-shelled hollow spheres (DSHSs) through a
facile sol-gel method using SiO2 nanospheres as the hard template [112]. TiO2 and SiO2 shells grown
alternately on the inner SiO2 cores into onion-like SiO2@TiO2@SiO2@TiO2 nanospheres. The initial
SiO2 core and the SiO2 layer between the two TiO2 shells work as the hard template. After annealing
and etching, anatase–rutile TiO2 DSHSs were obtained (Figure 6a). The TEM image in Figure 6b clearly
shows that the diameter of the inner core is approximately 210 nm. The thicknesses of the TiO2 DSHSs
outer shell is approximately 30 nm, and the inner shell is approximately 35 nm. Theoretically, LBL is a
powerful method but time-consuming. In the same way, the preparation of the SnO2@C DSHSs have
been reported by Lou et al. [113]. In this synthesis, SiO2 nanospheres were used as the hard template
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and successively coated with SnO2 double-shells, and then coated with glucose-derived carbon-rich
polysaccharide (GCP) layers on these core-shelled SiO2@SnO2 nanospheres through hydrothermal
processes. After carbonization and SiO2 removal, the SnO2@C DSHSs were finally obtained. The
DSHSs structure of the SnO2@C can be clearly obtained in Figure 6c,d. At the same time, Yang et al.
successfully used a hard-templating method to prepare the SnO2@C DSHSs [114]. In this strategy, the
SnO2 LBL coating, GCP layer coating, and SiO2 inner core etching are avoided. Instead, the three
processes are achieved simultaneously. Lou et al. developed the double-shelled hollow carbon spheres
(DHCSs) through the hard templates method [115]. SnO2 hollow nanospheres synthesized through the
solvothermal method were selected as the hard templates for depositing the GCP layer on both inner
and outer surface. After annealing in H2/N2 atmosphere, the SnO2 core was then dissolved using an
acid to generate the DHCSs. In the magnified TEM image (Figure 6e), the double-shelled structure can
be easily recognized.

Our group reported the preparation of p–n heterostructured TiO2/NiO DSHSs nanomaterials [116].
SiO2 nanospheres (the diameter is ∼270 nm) were selected as hard template and further coated with
TiO2 layer through sol–gel method. After annealing and etching, the TiO2 hollow spheres were obtained.
Then, NiO layer was coated onto the TiO2 hollow spheres surface through the hydrothermal process.
The p–n heterostructured TiO2/NiO DSHS was obtained after the annealing process. Figure 6f–i shows
that the shell thickness of NiO increases with the weight of NiO. By using a similar coating method,
Qian et al. prepared N-doped DHCSs (N-DHCSs) by selecting Fe3O4 porous hollow nanospheres as
the hard templates [1]. Manthiram et al. fabricated the N-DHCSs by using TiO2 hollow nanospheres
as the hard templates and dopamine as the N-doping carbon precursor [117]. Recently, our group also
successfully synthesized CeO2@RF DSHSs through the polymerization of resorcinol and formaldehyde
on the surface of CeO2 hollow nanospheres [118]. After carbonizing, DSHSs mesoporous CeO2@C
were obtained. In Figure 6j, the TEM image of CeO2@C displays a typical DSHS structure with a
cavity diameter of approximately 60 nm. The CeO2 shell of the interior layer of the CeO2@C with a
thickness is approximately 20 nm, while that of the carbon shell of the outer layer with a thickness is
approximately 15 nm.

Aside from SiO2- and carbon-based materials, surfactant aggregate can also be used as the soft
template for the preparation of DSHSs structure with other materials complex such as TMOs. Wang et al.
synthesized the single-crystalline Cu2O DSHSs (Figure 6k) by using CTAB vesicle as the soft template
through adjustment the concentration of CTAB in aqueous solution [119]. Liu et al. developed a simple
template-free solvothermal route and subsequent heating treatment process for the synthesis of the
V2O5−SnO2 DSHSs [120]. Figure 6l and m show the TEM images of the typical V2O5−SnO2 DSHSs
structure. In Figure 6m, it can be clearly seen that the diameter of the inner cavity size is approximately
250 nm, and the thickness of the inner and outer shells is approximately 90 nm.

In addition, novel synthetic strategy has been reported for the synthesis of DSHSs, such as ion
exchange approach. Ion exchange include either cations exchange and anions exchange between a
solution and an insoluble solid. Recently, ion exchange approach has been developed as an effective
method for the preparation of the DSHSs. Lou et al. successfully extended the ion exchange approaches
for the synthesis of the NiCo2S4 DSHSs [121]. In this work, NiCo–glycerate spheres precursor were
synthesized through a facile solvothermal method, and then a solution sulfidation process was utilized
to convert the precursor into NiCo2S4 DSHSs. As shown in Figure 6n, the sulfidation progress mainly
included three stages. At stage I, the core–shelled NiCo-glycerate@NiCo2S4 nanospheres were obtained
from S2− ions reacting with NiCo–glycerate spheres precursor at a high temperature. At stage II, the
void gap between the NiCo-glycerate inner core and NiCo2S4 shell was produced due to the slow
inward diffused S2− ions and the fast outward diffused M2+, while the second shell of NiCo2S4 was
formed. After the reaction of the anion (S2−) ions exchange reaction, the NiCo2S4 DSHSs were obtained
at the end of stage III. Figure 6o,p show the NiCo2S4 DSHSs with rough surface and the diameter is
around 250 nm.
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Figure 6. Schematic demonstration and graphical illustration of double–shell structure: (a) Scheme of
fabrication of the titanium dioxide (TiO2) double-shelled hollow spheres (DSHSs), and (b) magnified
transmission electron microscopy (TEM) image of a single TiO2 DSHS. (c) field-emission SEM (FESEM)
image and (d) TEM image of the SnO2@C DSHSs. (e) TEM image of a single DHCS-S nanosphere.
(f–i) TEM images of the TiO2/NiO DSHSs with the different weight of NiO. (j) TEM image of CeO2@C
DSHSs. (k) TEM image of the Cu2O DSHSs. (l) Low-magnification TEM image and (m) HRTEM image
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of the V2O5−SnO2 DSHSs. (n) Schematic illustration of the fabrication of the NiCo2S4 DSHSs, (o,p) TEM
images of the NiCo2S4 DSHSs. Pictures (a) and (b) were reprinted with permission from Reference [112].
Copyright the Royal Society Chemistry, 2015. Pictures (c) and (d) were reprinted with permission from
Reference [113]. Copyright Wiley, 2009. Picture (e) was reprinted with permission from Reference [115].
Copyright Wiley, 2012. Copyright Wiley, 2009. Pictures (f), (g), (h), and (i) were reprinted with
permission from Reference [116]. Copyright Elsevier, 2018. Picture (j) was reprinted with permission
from Reference [118]. Copyright the Royal Society Chemistry, 2018. Picture (k) was reprinted with
permission from Reference [119]. Copyright Wiley, 2007. Pictures (l) and (m) were reprinted with
permission from Reference [120]. Copyright American Chemical Society, 2009. Pictures (n), (o), and (p)
were reprinted with permission from Reference [121]. Copyright Springer, 2015.

For the double-shell micro/nanostructured spherical materials, more synthetic methods such
as LBL growth, sol-gel method, hard template method, soft template method, and ion exchange
approaches have been reported. LBL growth and hard template method are simple, effective, and
straightforward in concept, whereas the soft template method generally be free from the complicated
template elimination process. A suitable void space in inner or between the double shells can
accommodate the volume expansion, increase the specific surface area of the material, and increase the
contact area between the material and the electrolyte. In order to further increase the specific surface
area of the material, the mesoporous features could be introduced to double-shell structures.

2.5. Multi-shelled Spheres with Complex Architectures

Multi-shelled hollow spheres (MSHSs) include multi-shells and a hollow chamber. Despite
the challenges brought by the high structural complexity of these MSHSs, similar to single-shelled
ones, they can also be synthesized based on well-controlled templating or self-templated methods.
In this section, the synthetic methodologies for MSHSs, including well-established hard-, soft-, and
self-templating methods, will be reviewed.

2.5.1. Hard-Templating Method

Hard-templating method is facile and straightforward theoretically, which is firstly used to prepare
MSHSs structures. In general, the hard-templating synthesis involves four major steps: i) template
preparation; ii) surface modification of the hard template, iii) target material coating/deposition; and
iv) template removal. The coating/deposition of the target material on a hard template is generally
considered as the most challenging step. Sometimes, the surface modification can be omitted if the
target material is compatible with the template. The most frequently employed hard templates include
monodisperse polymer, silica, carbon, metal, and metal oxide colloids.

LBL growth is a typical hard-templating method with the repetition of coating procedure
and selective etching to generate the formation of the MSHSs [122,123]. For example, Jang et al.
synthesized the TiO2 MSHSs through LBL methods [124]. TiO2 and SiO2 shells are alternately
grown on the surface of the inner SiO2 cores to form onion-like SiO2@TiO2@SiO2@TiO2@SiO2@TiO2

nanospheres. After annealing and etching, the TiO2 triple-shelled hollow spheres (TSHSs) can
be obtained. Carbonaceous microspheres (CMSs) were usually synthesized by glucose through
hydrothermal, and then dispersed into the 0.05–0.5 mol L−1 metal–salt solutions. After calcination,
the metal oxide MSHSs are obtained [125–128]. For example, the Co3O4 MSHSs were obtained by
using CMSs templates [129]. The morphology of the products was related to the different kinds of
solvent. When the solvent was water only, CMSs dispersed into 1.0 mol L−1 [Co(H2O)6]2+, only
Co3O4 single-shelled hollow spheres (SSHSs) (Figure 7a) were obtained after calcination. When the
solvent was the mixture of ethanol and water (v/v=1:1), after calcination, the Co3O4 DSHSs (Figure 7b)
were obtained. At a higher temperature, [Co(H2O)6−x]2+ can be easily adsorbed by CMSs, thus, the
Co3O4 TSHSs are generated (Figure 7c). Treatment of the CMSs with HCl results in the formation
of Co3O4 quadruple-shelled hollow spheres (QSHSs) (Figure 7d). Similarly, Cao et al. synthesized
the nanorod-assembled Co3O4 MSHSs through a novel strategy [66]. Firstly, Co2CO3(OH)2 nanorods
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are vertically grown on CMSs surface to form the core-shelled CS@Co2CO3(OH)2 spheres through a
low-temperature solution reaction. After annealing the CS@Co2CO3(OH)2 precursor in air, the Co3O4

MSHSs were unconventionally obtained. He et al. successfully synthesized the NiCo2O4 SSHSs,
DSHSs, and TSHSs by controlling the penetrated amount of Ni2+ and Co2+ as shown in Figure 7e [130].
The TEM images of the NiCo2O4 hollow microspheres demonstrate the relatively uniform spherical
morphologies with a diameter of ~200–300 nm. When the solvent was deionized water, the NiCo2O4

SSHSs (Figure 7f) were prepared with a heating ramp rate of 2 ◦C min−1. When the solvent was
changed to EG, NiCo2O4 DSHSs (Figure 7g) and TSHSs (Figure 7h) were obtained with a heating ramp
rate of 2 and 5 ◦C min−1, respectively. Xi et al. also prepared the WO3 QSHSs (Figure 7i) by using
CMSs as hard template [131]. Zhou et al. directly prepared the α-Fe2O3 QSHSs (Figure 7j) through
CMSs as hard template after calcinations [132].Nanomaterials 2019, 9, x FOR PEER  15 of 37 
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hard-templating method: transmission electron microscopy (TEM) images of cobalt oxide (Co3O4) (a)
single-shelled hollow spheres (SSHSs), (b) double-shelled hollow spheres (DSHSs), (c) triple-shelled
hollow spheres (TSHSs), and (d) quadruple-shelled hollow spheres (QSHSs). (e) Scheme of the
formation of NiCo2O4 hollow microspheres with tunable numbers and thickness of shell, TEM images
of NiCo2O4 (f) thin SSHSs, (g) thin DSHSs, and (h) thin TSHSs. (i) HRTEM image of the WO3

MSHSs [131]. (j) TEM image of α-Fe2O3 QSHSs [132]. Pictures (a), (b), (c), and (d) were reprinted
with permission from Reference [129]. Copyright Wiley, 2013. Pictures (e), (f), (g), and (h) were
reprinted with permission from Reference [130]. Copyright Elsevier, 2017. Picture (i) was reprinted
with permission from Reference [131]. Copyright Wiley, 2012. Picture (j) was reprinted with permission
from Reference [132]. Copyright the Royal Society Chemistry, 2013.

2.5.2. Soft-Templating Method

Soft-templating methods for the MSHSs structures usually use surfactant aggregates as a template
such as supramolecular micelles, composite surfactant aggregates, and polymer vesicles [76]. However,
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the MSHSs structure is easily influenced by pH, temperature, solvent, and ionic strength [39]. Therefore,
only a few successful examples are obtained, which are shown in Figure 8.

First, some successful examples are reported by the author to prove that we have a full
understanding of this synthesis method [133,134]. In 2007, the highly regular SiO2 MSHSs (vesicle-like)
were prepared by using P123 as surfactant and 1,3,5-triisopropylbenzene (TIPB) as hydrophobic
additive through the hydrolysis and condensation of TEOS [135]. Figure 8a,b show the HRTEM images
of the SiO2 MSHSs with the alternating concentric SiO2 shells and voids, and the shell thickness is
about 5 nm. Figure 8c shows the typical FESEM image of the SiO2 MSHSs with spherical structure and
rough surface. In 2012, the SiO2 MSHSs was successfully synthesized by utilizing the mixed surfactants
(cationic surfactant CTAB and anionic surfactant sodium dodecyl sulfate (SDS)) aggregates as the soft
template and TIPB as the micelle expander [136]. Figure 8d shows the interlamellar void between the
SiO2 shells is approximately 15–20 nm, and the shell thickness is approximately 5–15 nm. In 2014, the
SiO2 MSHSs was synthesized by using the didodecyldimethylammonium bromide (DDAB)/CTAB as
co-surfactant template through the hydrolysis, condensation of TEOS and annealing [137]. Figure 8e
shows the mechanism of the formation of multilayer vesicles. The molar ratio of DDAB and CTAB
plays a major role in inducing the numbers of layers of the SiO2 MSHSs. With an increased amount of
DDAB, the number of layers of the SiO2 MSHSs were effectively increased. Therefore, when the molar
ratio of CTAB and DDAB was performed at 1:0.832, the SiO2 hollow nanospheres with few shells was
formed. As the molar ratio of CTAB and DDAB continuously increased to 1:1.104, the SiO2 MSHSs
with 6–7 layers was formed. As shown in Figure 8f,g, the diameter of the SiO2 MSHSs is 80–90 nm, the
shell thicknesses is 2–6 nm, and the void gap is 2–3 nm. Moreover, this SiO2 MSHSs can be used as a
hard template to synthesize other multilamellar vesicular materials. In 2017, as a typical example, the
PANI MSHSs was firstly fabricated through a facile two-step method by using the SiO2 MSHSs as hard
templates [138]. The PANI@RGO MSHSs composites were prepared by self-assembling GO onto the
PANI MSHSs surface and followed by hydrothermal reduction process. The TEM image in Figure 8h
shows that the SiO2 MSHSs was successfully removed to obtain the PANI MSHSs.

Chen et al. successfully synthesized the CoFe2O4 MSHSs with a tunable number of 1–4 layers
through a facile one-step method by using cyclodextrin as a surfactant template, followed by
calcinations [139]. The shell number and porosity of the CoFe2O4 MSHSs can be controlled by
adjusting the synthesis parameters. Figure 8i shows the TEM image of the CoFe2O4 QSHSs. This is the
first report using cyclodextrin as template for accurate synthesis of shell-controllable CoFe2O4 QSHSs.
Wang et al. reported the preparation of the Cu2O MSHSs by using cationic surfactant CTAB as the
soft template [119]. By adjusting the concentration of CTAB from 0.10 mol L−1 to 0.15 mol L−1, the
structure of Cu2O can be tuned from SSHSs (Figure 8j), DSHSs (Figure 8k), TSHSs (Figure 8l), to QSHSs
(Figure 8m). Similarly, Liu et al. synthesized the mesoporous SiO2 MSHSs with a controllable shell
number of 1–4 layers [140]. Gu et al. also successfully synthesized the mesoporous carbon MSHSs
with a controllable shell number of 3–9 layers [141], further demonstrating the feasibility of producing
the MSHSs structures through soft-templating method.
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(c) field-emission SEM (FESEM) images of silica (SiO2) multi-shelled hollow spheres (MSHSs).
(d) transmission electron microscopy (TEM) image of the SiO2 MSHSs. (e) Schematic representation of
the proposed assembly mechanism for the preparation of the SiO2 MSHSs, (f and g) HRTEM images
of the SiO2 MSHSs. (h) TEM image of the PANI MSHSs. (i) TEM image of CoFe2O4 QSHSs. TEM
images of Cu2O (j) single-shelled hollow spheres (SSHSs), (k) double-shelled hollow spheres (DSHSs),
(l) triple-shelled hollow spheres (TSHSs), and (m) quadruple-shelled hollow spheres (QSHSs). Pictures
(a), (b), and (c) were reprinted with permission from Reference [135]. Copyright the Royal Society
Chemistry, 2007. Picture (d) was reprinted with permission from Reference [136]. Copyright Elsevier,
2012. Pictures (e), (f), and (g) were reprinted with permission from Reference [137]. Copyright the Royal
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2.5.3. Self-Templating Method

As an emerging approach, the self-templating method is different from the traditional
hard-/soft-templating methods. The precursors of self-templating method composites are not only
used as the self templates to form the MSHSs structures but also transformed into the fundamental
compositions of the ultimate products [142–144]. This strategy does not require the removal of template,
which simplifies the synthetic processes and decreases the production costs [145]. Several synthesis
mechanisms of MSHSs structures have been reported, such as Ostwald ripening approach [146,147],
Kirkendall growth [148,149], and galvanic exchange [150,151].

Several typical and related efforts on the preparation of the novel MSHSs structures have been
reported. For example, Tang et al. reported the preparation of the CeO2 TSHSs through a self-templating
method, which are composed of much tiny CeO2 nanoparticles [152]. Firstly, the carbon microspheres
were formed through glucose in aqueous solution. Subsequently, the Ce3+ ions are adsorbed onto
the carbon microspheres in an alkaline environment through electrostatic attractions. Finally, after
calcination in air, the TSHSs CeO2 were obtained. The TEM image demonstrates that CeO2 have a
relatively uniform spherical structures with a diameter of ~1–2 µm (Figure 9a), while the TEM image
shows that these CeO2 microspheres are exclusively characteristic TSHSs structures (Figure 9b). A
programmed temperature strategy was proposed by Xie et al. to synthesize the MSHSs from the
solid templates [151]. Solid particles initially changed to core–shell structures and then changed
to the completely SSHSs structures due to the Kirkendall effect. The second shell can be prepared
by decreasing the reaction temperature to inhibit the formation of the hollow structures and then
increasing the temperature again. By repeating the process for several times, the MSHSs structures are
expected to be achieved.Nanomaterials 2019, 9, x FOR PEER  18 of 37 

 

 

Figure 9. Graphical illustration of multi–shells structure synthesized by self-templating method: (a) 
scanning electron microscopy (SEM) and (b) transmission electron microscopy (TEM) images of the 
CeO2 triple-shelled hollow spheres (TSHSs). TEM images of the Cu2O (c) single-shelled hollow 
spheres (SSHSs), (d) double-shelled hollow spheres (DSHSs), (e) TSHSs, and (f) quadruple-shelled 
hollow spheres (QSHSs). Pictures (a), and (b) were reprinted with permission from Reference [152]. 
Copyright American Chemical Society, 2014. Pictures (c), (d), (e), and (f) were reprinted with 
permission from Reference [153]. Copyright American Chemical Society, 2011. 

Recently, the inside-out Ostwald ripening approach has been further demonstrated to be an 
efficient procedure in synthesizing the MSHSs structures. For instance, the Cu2O MSHSs were 
prepared by Zhang and Wang through a multistep Ostwald ripening processes [153]. From the first 
Ostwald ripening approach, the Cu2O SSHSs were obtained (Figure 9c). With the introduction of 
extra reactants into the reaction mixture, new Cu2O nanoparticles were produced and deposited on 
the surface of the first shell. When the second Ostwald ripening approach occurred, both the inner 
and the outer Cu2O shells would become thinner gradually, and as shown in Figure 9d, the Cu2O 
DSHSs were obtained. By repeating the process for three and four times, the Cu2O TSHSs (Figure 9e) 
and QSHSs (Figure 9f) can also be easily prepared, respectively. 

Table 1 generalizes some typical instances about the MSHSs structures, including their 
composition, morphology, and synthetic method. Notably, some novel preparation methods have 
been developed to synthesize the MSHSs structures, but these methods are not included in the above-
mentioned three types. For example, Zeng et al. reported an ion exchange approach to prepare the 
Cu2S SSHSs, DSHSs, TSHSs, and QSHSs [154]. Lu et al. designed periodic mesoporous organosilica 
MSHSs through the selective etching of “soft@hard” particles [155]. Lastly, González et al. developed 
multi-metal hollow nanoparticles with complex morphologies and composition, such as concentric 
double-shelled nanoboxes, through sequential galvanic exchange and Kirkendall effect [156]. 

Hard templates are monodisperse, easy size and shape controllable, ready availability in large 
amounts, and easy synthesis using well-known recipes. In spite of these advances, hard-templating 
methods still face quite a few challenges, such as the difficulty to achieve uniform coating due to 
compatibility issues between the templates and desired shell materials, and the tedious template 
removal processes. However, the MSHSs structure is easily influenced by pH, temperature, solvent, 
and ionic strength. Unlike conventional hard-/soft-templating approaches, self-templating synthesis 
enables good control over the particle uniformity without an auxiliary template removal process, 
which simplifies synthetic procedures, reduces production costs, and provides ease for scale up. 
Hence, modified templating strategies with an extra conversion step could transfer compatible 
precursor shells into target materials. Through these synthetic protocols, core and shell substances 
are elaborately selected to avoid potential compatibility problems. 

 

Figure 9. Graphical illustration of multi–shells structure synthesized by self-templating method:
(a) scanning electron microscopy (SEM) and (b) transmission electron microscopy (TEM) images of the
CeO2 triple-shelled hollow spheres (TSHSs). TEM images of the Cu2O (c) single-shelled hollow spheres
(SSHSs), (d) double-shelled hollow spheres (DSHSs), (e) TSHSs, and (f) quadruple-shelled hollow
spheres (QSHSs). Pictures (a), and (b) were reprinted with permission from Reference [152]. Copyright
American Chemical Society, 2014. Pictures (c), (d), (e), and (f) were reprinted with permission from
Reference [153]. Copyright American Chemical Society, 2011.

Recently, the inside-out Ostwald ripening approach has been further demonstrated to be an
efficient procedure in synthesizing the MSHSs structures. For instance, the Cu2O MSHSs were prepared
by Zhang and Wang through a multistep Ostwald ripening processes [153]. From the first Ostwald
ripening approach, the Cu2O SSHSs were obtained (Figure 9c). With the introduction of extra reactants
into the reaction mixture, new Cu2O nanoparticles were produced and deposited on the surface of the
first shell. When the second Ostwald ripening approach occurred, both the inner and the outer Cu2O
shells would become thinner gradually, and as shown in Figure 9d, the Cu2O DSHSs were obtained.
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By repeating the process for three and four times, the Cu2O TSHSs (Figure 9e) and QSHSs (Figure 9f)
can also be easily prepared, respectively.

Table 1 generalizes some typical instances about the MSHSs structures, including their composition,
morphology, and synthetic method. Notably, some novel preparation methods have been developed
to synthesize the MSHSs structures, but these methods are not included in the above-mentioned
three types. For example, Zeng et al. reported an ion exchange approach to prepare the Cu2S SSHSs,
DSHSs, TSHSs, and QSHSs [154]. Lu et al. designed periodic mesoporous organosilica MSHSs through
the selective etching of “soft@hard” particles [155]. Lastly, González et al. developed multi-metal
hollow nanoparticles with complex morphologies and composition, such as concentric double-shelled
nanoboxes, through sequential galvanic exchange and Kirkendall effect [156].

Table 1. Summary of typical multiple-shelled hollow spheres (MSHSs).

Year Composition Shell Numbers Methodology Refs.

2007 SiO2 6–10 Soft templating [135]
2007 Cu2O 1–4 Soft templating [140]
2009 SiO2 6–10 Soft templating [133]
2009 VOOH 1–3 Kirkendall effect [151]
2010 SiO2 1–4 Soft templating [141]
2010 Carbon 3–9 Soft templating [142]
2011 SiO2 6–10 Soft templating [134]
2011 Cu2O 1–4 Ostwald ripening [153]
2011 PdAuAg 1–3 Galvanic Exchange and Kirkendall [156]
2012 WO3 1–4 Hard templating [131]
2012 SiO2 6–10 Soft templating [136]
2012 Cu2S 1–4 Ion exchange [154]
2013 Co3O4 1–4 Hard templating [129]
2013 α-Fe2O3 1–4 Hard templating [132]
2014 SiO2 2–7 Soft templating [137]
2014 TiO2 1–3 Hard templating [123]
2014 CeO2 1–4 Ostwald ripening [152]
2015 PMO 1–3 Soft@hard [155]
2016 CoFe2O3 1–3 Soft templating [139]
2017 VPANI 6–7 Soft templating [138]
2017 NiCo2O4 1–3 Hard templating [130]

Hard templates are monodisperse, easy size and shape controllable, ready availability in large
amounts, and easy synthesis using well-known recipes. In spite of these advances, hard-templating
methods still face quite a few challenges, such as the difficulty to achieve uniform coating due to
compatibility issues between the templates and desired shell materials, and the tedious template
removal processes. However, the MSHSs structure is easily influenced by pH, temperature, solvent,
and ionic strength. Unlike conventional hard-/soft-templating approaches, self-templating synthesis
enables good control over the particle uniformity without an auxiliary template removal process,
which simplifies synthetic procedures, reduces production costs, and provides ease for scale up. Hence,
modified templating strategies with an extra conversion step could transfer compatible precursor
shells into target materials. Through these synthetic protocols, core and shell substances are elaborately
selected to avoid potential compatibility problems.

3. Applications of Micro/nanostructured Spherical Materials in Energy Storage

3.1. Lithium-Ion Batteries

LIBs have been widely used in various energy storage devices, portable electronic devices, static
storage media, EVs, and hybrid EVs due to their beneficial characteristics, such as high specific capacity
and energy density, and long cycle life [96,157,158]. The electrochemical performance of LIB is mainly
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determined by the electrode materials [159,160]. In order to seek for advanced anode materials, various
high-capacity candidates have been researched, such as transition metal oxides and sulfides [161–165].
Nevertheless, their application has been hampered by the rapid fade in specific capacity, which is
related with the large volume change of the electrode materials during Li+ intercalation/deintercalation
process and the poor rate capability due to the low diffusion rate of Li-ions.

The design and fabrication of electrode materials possessing specific nanostructures is
advantageous in solving the above problems. Motivated by the versatility of spherical structures,
various morphology of electrode materials with improved electrochemical performance, including
hollow, core-shelled, yolk-shelled, double-shelled, and multi-shelled spheres have been fabricated. For
example, Wang et al. reported the formation of porous V2O3@C hollow spheres composed of ultrathin
nanosheets (Figure 10a) [81]. Comparing with several vanadium based hollow materials, V2O3@C
hollow spheres exhibit high reversible capacities as well as superior rate performance when they were
used as anode materials for LIBs. Figure 10b shows the galvanostatic charge and discharge profiles of
the V2O3@C hollow spheres electrode material at the different current densities. As for the long cycling
performance of this electrode material, a discharge specific capacity of 583 mA h g−1 can be maintained
after 800 cycles at a high current density of 2 A g−1, and that can be clearly seen from Figure 10c, the
capacity retention of over 100%. The increased capacity might well be attributed to the hollow spheres
structure that could approve the penetration of electrolyte solution and also buffer volume change of
electrode material during the lithiation/delithiation processes [166]. Yang et al. reported the SnO2@C
DSHSs prepared by using SiO2 sphere as hard templates [114]. Figure 10d distinctly displays that
SnO2@C consists of peculiar nanostructure of the DSHSs. Figure 10e reveals the rate capability of the
SnO2@C DSHSs at the different current densities from 400 mA g−1 to 3000 mA g−1. Figure 10f shows
that the SnO2@C DSHSs exhibits a superior cycling stability, delivering a high reversible capacity of
838.2 mA h g−1 at the current density of 200 mA g−1 even after 500 cycles. In contrast, the SnO2 hollow
spheres (SnO2 HS) shows the poor cycling performance and fades drastically. It can be confirmed
that the double-shell structure has excellent structural stability. Our group reported a TiO2/C/MoS2

composite through solvent thermal method [5]. When used as the anode materials for LIBs, compared
with the pure TiO2 or MoS2, TiO2/C/MoS2 microspheres can significantly enhance the electrochemical
performance, showing a high initial discharge specific capacity of 1219 mA h g−1, and after 100 cycles,
621 mA h g−1 remained at 100 mA g−1. Our group also reported the mesoporous CeO2 DSHSs, and
their TEM image is shown in Figure 10g [118]. Figure 10h shows the charge and discharge voltage
profiles of the CeO2@C DSHSs at the current density of 100 mA g−1. In the first cycle, CeO2@C reveals a
high initial charge and discharge specific capacities of 781.6 and 1309.1 mA h g−1, respectively. In terms
of the cycling performance of the CeO2@C DSHSs, as shown in Figure 10i, a high discharge specific
capacity of 903.6 mA h g−1 remained at a current density of 100 mA g−1 even after 300 cycles. And the
Coulombic efficiency (CE) of CeO2@C DSHSs is approximately 98.7%, indicating that CeO2@C DSHSs
has a high specific capacity and a good cycle performance.

Although they possess above mentioned advances, simple hollow nanostructures can only provide
limited possibilities to modulate the properties of electrode materials. Therefore, further manipulation
of hollow structures in terms of geometric morphology, chemical composition, and shell architecture
for complex architectures is required to achieve improved electrochemical performance demanded
by the current emerging technologies. Lu et al. reported a novel design and preparation strategy for
the synthesis of void-controlled yolk–shelled MoS2@C-0.2% (Figure 11a), MoS2@C-0.4% (Figure 11b),
and MoS2@C-0.6% (Figure 11c) microspheres, respectively [103]. For the yolk–shelled MoS2@C-0.4%
microsphere anode, the initial discharge specific capacity reached 1813 mA h g−1, a high reversible
capacity of 1016 mA h g−1 after 200 cycles (Figure 11d), and superior rate capability. Choi and Kang
prepared the yolk-shelled NiO nanospheres through the continuous one-pot of spray pyrolysis [167].
The diameter of core and the thickness of shell were about 200 and 75 nm, respectively. When used as
the anode material, the yolk-shelled NiO delivered initial discharge capacity of 1200 mA h g−1 at the
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current density of 700 mA g−1. After 50 cycles, the discharge specific capacity of the yolk-shelled NiO
was as high as 824 mA h g−1 at a high current density of 1 A g−1.
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Figure 10. Transmission electron microscopy (TEM) images of hollow and double-shell spheres and
their lithium-ion batteries (LIBs) performance: (a) TEM image, (b) the corresponding charge-discharge
curves at different current densities, and (c) long-term cycling performance at a current density of
2 A g−1 of V2O3@C hollow sphere. (d) TEM image, (e) rate capabilities, and (f) cycling performance
of the SnO2@C double-shelled hollow spheres (DSHSs) at 200 mA g−1. (g) TEM image of CeO2@C
DSHS, (h) the different cycles discharge and charge profiles of CeO2@C DSHS electrodes at 100 mA g−1,
and (i) long cycle stability and CE for 300 cycles at 100 mA g−1 of CeO2 and CeO2@C electrodes.
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Copyright the Royal Society Chemistry, 2015. Pictures (g), (h), and (i) were reprinted with permission
from Reference [118]. Copyright the Royal Society Chemistry, 2018.

The MSHSs structure can extend the long cycle performance of electrode materials because of the
enhanced structural stability, and the shell numbers could affect the properties of Li storage [129,132].
In a related work, Wang et al. analyzed the effect of shell number on the performance of Li storage
in detail [129]. The initial capacities of Co3O4 SSHSs, DSHSs, TSHSs, and QSHSs are 1087.2, 1450.0,
2063.7, and 1626.2 mA h g−1, respectively, all of which are larger than the theoretical capacity of Co3O4

(890 mA h g−1). As shown in Figure 11e, the α-Fe2O3 QSHSs have been prepared through CMSs as
hard template after calcinations in air [132]. The resulting electrode material of α-Fe2O3 QSHSs shows
high discharge specific capacity, excellent long cycle performance, and superior rate capability. At a
current density of 50 mA g−1, α-Fe2O3 QSHSs deliver an initial discharge and charge specific capacities
of 1443 mA h g−1 and 1067 mA h g−1, respectively (Figure 11f). After 50 cycles, high and stable specific
capacities of ~1000 and 900 mA h g−1 can be obtained at the current densities of 400 and 1600 mA g−1,
respectively (Figure 11g). As shown in Figure 11h, when the current densities increase from 100 to
3200 mA g−1, the capacities decrease slightly from 1228 to 784 mA h g−1. With the current density
decreases to 200 mA g−1 again, the capacity recovers to 1176 mA h g−1, indicating the excellent rate
capability of the α-Fe2O3 QSHSs. Its capacity is stable and its cycle stability is obviously improved. This
is an effective strategy for promoting the electrochemical performance of LIBs. Yao et al. successfully
synthesized the Co3O4 MSHSs through a polyol process which can be employed as anode material for
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LIBs. The effect of shell numbers on Li storage performance was analyzed in this work [168]. They first
prepared the Co3O4 SSHSs, DSHSs, and TSHSs through a PVP-mediated solvothermal method. The
TEM image of the Co3O4 TSHSs is shown in Figure 11i. As shown in Figure 11j, the first cycle discharge
and charge curves of the samples show that the Co3O4 TSHSs have the highest discharge specific
capacity. After 50 cycles, the capacities of the Co3O4 SSHSs, DSHSs, and TSHSs remain at 680, 866,
and 611 mA h g−1, respectively (Figure 11k). Figure 11l shows the rate capability of the Co3O4 DSHSs,
a capacity of 500.8 mA h g−1 even at a high current density of 2 C, exhibiting a good rate capability.
Lou et al. further certificated the advantages of the MSHSs structures as anode electrode materials for
LIBs, including the CoMn2O4 MSHSs structures [169], the Fe2O3 multi-shelled microcages [170], and
so on.
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performance: TEM images of: (a) MoS2@C-0.2%, (b) MoS2@C-0.4 %, and (c) MoS2@C-0.6% microspheres,
(d) cycling stability of MoS2@C-0, MoS2@C-0.2 %, MoS2@C-0.4 %, and MoS2@C-0.6% at 200 mA g−1,
and CE of MoS2@C-0.4 %. (e) TEM image of α-Fe2O3 multiple-shelled hollow spheres (MSHSs),
(f) galvanostatic charge and discharge profiles at 400 mA g−1, (g) cycling performance at 400 and
1600 mA g−1, and (h) rate performance of α-Fe2O3 MSHSs. (i) TEM image of the Co3O4 triple-shelled
hollow spheres (TSHSs), (j) the first cycle charge and discharge curves of the Co3O4 single-shelled
hollow spheres (SSHSs), double-shelled hollow spheres (DSHSs), and TSHSs, (k) cycling performance
and CE of the three as-prepared samples at a current density of 0.2 C, and (l) charge and discharge
profiles of the Co3O4 DSHSs at different current densities. Pictures (a), (b), (c), and (d) were reprinted
with permission from Reference [103]. Copyright Wiley, 2017. Pictures (e), (f), (g), and (h) were
reprinted with permission from Reference [132]. Copyright the Royal Society Chemistry, 2013. Pictures
(i), (j), (k), and (l) were reprinted with permission from Reference [168]. Copyright Wiley, 2010.

Improved lithium storage performance has been realized by simultaneously manipulating the
morphology of hollow particles and their compositions. Rational incorporation of multi-compositions
in the shells of hollow nanostructures might combine the advantages of different materials, and the
synergistic effect arising from their interaction promises improvement for lithium storage performance.
The multi-shelled hollow structures can improve the volumetric energy density of electrodes by
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increasing the weight fraction of the active species, and also extend the cycle life due to the enhanced
structural stability.

3.2. Lithium–Sulfur Batteries

Recently, LSBs have been regarded as prospective candidate of the energy storage device due
to their high theoretical specific capacity and energy density, abundance of sulfur, low cost, and
environmental friendliness [171–173]. However, the intrinsic challenges of LSBs have limited their
practical applications: the poor electrical conductivity of S and Li2S results in low sulfur utilization,
the volume expansion from S to Li2S during the lithiation/delithiation processes, and the “shuttle
effect” induced by the diffusion of polysulfide intermediates (Li2Sn, 3≤n≤8) [174–178]. Therefore, the
preparation of the suitable S hosts which can promote the charge transport and limit the produce of
polysulfides is essential for boosting the performance of LSBs [179–183].

To suppress the dissolution of polysulfides and maintain a high S utilization of LSBs, Li et al.
successfully synthesized the SiO2@TiO2 DSHSs with radial meso-channels [184]. As shown in
Figure 12a, the DSHSs hollow structures can also be clearly identified, and the thickness of the TiO2

shell is around 10 nm. From the HRTEM image in Figure 12b, the meso-channels throughout the outer
TiO2 layers can be observed, suggesting that even the core part of the composite material can readily
contact with the electrolyte. Due to the unique structures and compositional advantages, a better
capacity retention is achieved to 65.5% over 500 cycles at 0.5 C (Figure 12c). In comparison, a high S
of up to 80 wt% is achieved with about 33% capacity retentions over 1000 cycles at 1 C, as exhibited
in Figure 12d. Lou et al. developed the DHCSs by using SnO2 hollow sphere as hard templates [71].
The double-shelled structure can be easily recognized from TEM image in Figure 12e. Figure 12f,g
show the discharge–charge cycling performance at 0.8 C and the rate capability after 100 cycles of the
DHCS–S composite, respectively. Manthiram et al. developed a flexible S-based cathode by loading S
in N-doped DHCSs followed by graphene oxide wrapping [1]. The free-standing nanostructured sulfur
cathode electrode without any binder enables a high discharge specific capacity of 1360 mA h g−1 at a
current density of 0.2 C, an excellent rate capability of 600 mA h g−1 at a high current density of 2 C,
and a long-cycling stability.

Different from the hollow structure, the yolk–shelled structure can provide an improved
electrochemical performance because of their unique buffering space, and short diffusion distance [185].
Wang et al. successfully designed the mesoporous N-doped yolk-shelled carbon (NYSC) nanospheres
as novel S hosts [186]. From the TEM image, the yolk-shelled structure and a void gap between the
exterior shell and the interior yolk can be clearly seen in Figure 13a. The shell thickness is approximately
140 nm, and the average diameter of the interior spherical yolk is approximately 410 nm. Figure 13b
shows the typical charge and discharge curves of the NYSC@S electrode at a current density of 0.2 C
in the 300th cycle, and the capacity is stable at 961 mA h g−1. The long-cycling performance and CE
of the NYSC@S electrode at 0.2 C is shown in Figure 13c. The initial discharge specific capacity of
NYSC@S electrode is 1329 mA h g−1. Even after 500 cycles, the capacity of NYSC@S is 909 mA h g−1

maintained. Wang et al. prepared the multi-shelled hollow carbon spheres (MHCS) and encapsulated
a high percentage of S (86 wt%) loading through an in situ sulfur impregnation [187]. In the TEM
image of the MHCS-S composites in Figure 13d, the diameter is approximately 150 nm, while the inset
image in Figure 13d exhibits a shell thickness of 20 nm. Figure 13e shows that the MHCS-S composite
possessed high discharge specific capacities of 1350 and 1003 mA h g−1 at the current densities of 0.1
and 1 C, respectively. Even after 200 cycles, the discharge specific capacities of the MHCS-S are 1250
and 846 mA h g−1 at the current densities of 0.1 and 1 C (Figure 13f), respectively. The high discharge
specific capacity, good rate performance, and good capacity retention ensure the utilization of the
MHCS structures in S hosting for LSBs. This strategy provides new ideas for the development of LSBs
and even other MSHSs materials of electrode material optimization.
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Figure 12. Transmission electron microscopy (TEM) images of hollow and double-shell spheres and
their LSBs performance: (a) TEM and (b) HRTEM images of the SiO2@TiO2 double-shelled hollow
spheres (DSHSs), (c) cycling performance and Coulombic efficiency (CE) of S composites electrodes at
0.5 C, and (d) long cycle stability and CE of S/SiO2@TiO2 composites at high current density of 1 C.
(e) TEM image, (f) cycling performance after 100 cycles at a 0.8 C, and (g) rate capability of the SnO2

DSHSs. Pictures (a), (b), (c), and (d) were reprinted with permission from Reference [184]. Copyright
Elsevier, 2017. Pictures (e), (f), and (g) were reprinted with permission from Reference [71]. Copyright
Wiley, 2009.

Carbon materials, especially those with simple configurations, provide insufficient confinement to
immobilize polar polysulfides during the operation process. Compared with the hollow carbon sphere,
the yolk–shelled and multi-shelled carbon structures are of special interest because of their improved
confinement ability, large contact area with sulfur, and short transport length for Li+. Therefore, the
introduction of suitable hosts which can facilitate the charge transport and confine the polysulfides
plays a pivotal role in boosting the performance of LSBs.
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Figure 13. Transmission electron microscopy (TEM) images of yolk-shell and multi-shell spheres and
their LSBs performance: (a) TEM image of the N-doped yolk-shelled carbon (NYSC), (b) galvanostatic
charge and discharge profiles for 300th cycle, and (c) long cycling performance and Coulombic efficiency
(CE) of the NYSC@S, NCSC@S electrodes at 0.2 C. (d) TEM image, (e) rate capability, and (f) cycling
performance of multi-shelled hollow carbon spheres (MHCS) composites. Pictures (a), (b), and (c) were
reprinted with permission from Reference [186]. Copyright Elsevier, 2018. Pictures (d), (e), and (f) were
reprinted with permission from Reference [187]. Copyright the Royal Society Chemistry, 2014.

3.3. Supercapacitors

SCs are widely used as the electrochemical energy storage devices because of their long cycle
life and high power density [188–191]. Based on energy storage mechanism, SCs can be divided
into the following categories: EDLC caused by the charge accumulation in the electrode/electrolyte
interface [192–196], pseudocapacitor based on the fast and reversible redox reactions at electrochemically
active sites [197–201], and hybrid capacitors combining the electric double layer or pseudocapacitive
active material with the battery active material [202–207]

Tremendous research efforts have been devoted to the design of nanostructured electrodes,
especially hollow nanostructured electrodes with shortened diffusion lengths for ion transport and
robust architectures for extended cycling capability. Several related studies are shown in Figure 14 and
Figure 15. The NiCo2S4 hollow microspheres (Figure 1f) were synthesized through a hydrothermal
method and were used as the SCs cathode material [74]. Figure 14a illustrates the progress of
synthesizing the NiCo2S4 hollow nanospheres and rGO/Fe2O3. Then, NiCo2S4 was used as cathode
material, and rGO/Fe2O3 was used as anode material. NiCo2S4 microspheres exhibit good rate
capability from the galvanostatic charge and discharge (GCD) profiles in Figure 14b and excellent
long-cycling performance with 91.5% retention of the initial capacitance after 1000 cycles (Figure 14c).
The hollow structure enhances the structural stability, thereby causing excellent electrochemistry
performance. Yan et al. reported the synthesis of the CoS2 solid spheres, yolk-shelled spheres, and
SSHSs structures [109]. When evaluated as an electrode material for SCs, the CoS2 SSHSs delivered
substantially improved capacitance and cycling performance over their solid and yolk-shelled spheres.

Recently, our group reported the synthesis of core–shelled Ni-CeO2@PANI nanospheres
(Figure 14d) with controlled amount of HCl [90]. Figure 2b shows that the Ni-CeO2@PANI nanospheres
are composed of Ni-CeO2 core and PANI shell. As an electrode material, this material exhibits high
specific capacitance of 866 F g−1 at a current density of 1 A g−1 (Figure 14e) and excellent cycling
performance of 85.6% of the remaining content after 10,000 cycles (Figure 14f). Lou et al. demonstrated
an asymmetric supercapacitor (ASC) device by using the NiCo2S4 DSHSs (Figs. 6o and p) as electrode
material [121]. As shown in Figure 14g, in this system, the NiCo2S4 DSHSs was used as cathode
material, graphene/C spheres (G/CSs) was used as anode material, and cellulose film was used as the
separator in the KOH electrolyte (Figure 14g). Figure 14h shows that this cathode material of the ASC
exhibits excellent cycling stability with only 20% loss of the initial specific capacitance over 10000



Nanomaterials 2019, 9, 1207 26 of 38

cycles. Moreover, this ASC displays an energy density of 22.9 Wh kg−1 even at a high power density of
10208 W kg−1 (Figure 14i), which is superior to many other ASCs that are previously reported.
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Figure 14. Schematic demonstration of hollow, core-shell, and double-shell spheres and their
supercapacitors (SCs) performance: (a) Schematic illustration of the synthesis of NiCo2S4 hollow
spheres, (b) galvanostatic charge and discharge (GCD) curves of the NiCo2S4//rGO/Fe2O3 device at
various current densities, and (c) cycling performance of NiCo2S4//rGO/Fe2O3 device at the current
density of 2.0 A g−1. (d) Schematic illustration of the synthesis of core–shelled Ni-CeO2@PANI
nanospheres (NCP1), yolk–shelled Ni-CeO2@PANI nanospheres (NCP2), and polyaniline (PANI), (e)
GCD curves of the Ni-CeO2, core-shelled NCP1, yolk-shelled NCP2, and PANI hollow nanospheres
at a current density of 1 A g−1, and (f) cycle stability of core-shelled NCP1 nanospheres at a high
current density of 10 A g−1, inset shows the last 10 cycles of GCD curves. (g) Schematic illustration
of the asymmetric supercapacitor (ASC) device based on the NiCo2S4 double-shelled hollow spheres
(DSHSs), (h) cycling stability at a current density of 5 A g−1 and (i) the corresponding Ragone plot of
the NiCo2S4 DSHSs ASC. Pictures (a), (b), and (c) were reprinted with permission from Reference [74].
Copyright Wiley, 2018. Pictures (d), (e), and (f) were reprinted with permission from Reference [90].
Copyright Elsevier, 2018. Pictures (g), (h), and (i) were reprinted with permission from Reference [121].
Copyright Springer, 2015.

Interestingly enough, researchers are constantly trying to come up with new strategies to help SCs
better fit into real-life applications. The recent advances in the synthesis of complex hollow structures
have provided opportunities to further optimize the performance of SCs. Here, we highlight three
works with innovation and development potential. For example, Wang et al. synthesized the thin
NiCo2O4 SSHSs, DSHSs, and TSHSs by controlling the penetrated amount of Ni2+ and Co2+ [130].
The TEM image (Figure 15a) demonstrates that the diameter of NiCo2O4 TSHSs is ~200–300 nm and
has an average thickness of approximately 24 nm. The specific capacitance (Figure 15b) of the thin
NiCo2O4 TSHSs reached 68 F g−1 at a high current density of 1 A g−1, which is maintained 41 F g−1

even at a high current density of 10 A g−1, demonstrating its excellent rate performance. Furthermore,
Figure 15c shows the cycling performance of the ASCs with 77% capacitance retention after 1700 cycles
at a 5 A g−1. Li et al. reported the fabrication of uniform the CoFe2O4 SSHSs, DSHSs, TSHSs, and
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QSHSs, which were evaluated as electrodes for SCs [139]. Figure 15d shows the TEM image of the
CoFe2O4 TSHSs. Figure 15e shows the rate capability for these hollow electrodes at different current
densities. The initial capacitances of the CoFe2O4 SSHSs, DSHSs, TSHSs, and QSHSs are 406.8, 552.8,
1450.0, and 1211.0 F g−1, respectively. Moreover, the CoFe2O4 TSHSs shows that promising cycle
stability was approximately 98% retention after 500 cycles at a sweep scan rate of 50 mV s−1, indicating
an excellent electrochemical performance (Figure 15f). Cao et al. reported a novel strategy for the
controlled synthesis of the Co3O4 MSHSs [66]. The TEM image in Figure 15g demonstrates the MSHSs
structures. MSHSs structures, including an exterior shell and two interior shells, are clearly detected
with diameters of approximately 1.8, 1.0, and 0.5 µm, respectively. Moreover, the large void between
the exterior shell and two interior shells is clearly exhibited. When evaluated for the SCs performance,
the Co3O4 MSHSs exhibit high specific capacitances of 394.4 and 360 F g−1 at current densities of 2 and
10 A g−1 (Figure 15h), respectively. Figure 15i shows the long cycling stability of the Co3O4 MSHSs
electrode was 92% retention of its original specific capacitance after 500 cycles even at the high current
density of 2 A g−1.
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Figure 15. Transmission electron microscopy (TEM) images of triple-shell and multi-shell spheres
and their supercapacitors (SCs) performance: (a) TEM image of the NiCo2O4 triple-shelled hollow
spheres (TSHSs), (b) galvanostatic charge and discharge (GCD) curves and (c) cycling performance of
the NiCo2O4//RGO@Fe3O4 ACSs. (d) TEM image, (e) rate-capability test at various current densities
(1–20 A g−1), and (f) cycling performance at a sweep rate of 50 mV s−1 of the CoFe2O4 triple-shelled
hollow spheres (TSHSs). (g) TEM image, (h) GCD curves at different discharge currents, and (i) cycling
performance at 2 A g−1 of the Co3O4 multiple-shelled hollow spheres (MSHSs). Pictures (a), (b), and
(c) were reprinted with permission from Reference [130]. Pictures (d), (e), and (f) were reprinted with
permission from Reference [139]. Copyright Springer, 2016. Pictures (g), (h), and (i) were reprinted
with permission from Reference [66]. Copyright Elsevier, 2014.
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Compared with the simple hollow sphere structures, complex hollow structures with more
electroactive sites are expected to deliver higher electrochemical activity. The unique double-shelled
structures may confine electrolyte between shells, providing a large driving force for electrochemical
reactions. Furthermore, multi-shelled structures are believed to offer exceptional structural robustness
for enhanced electrochemical stability. Hence, complex hollow structures are expected to be the next
generation of the most promising SCs electrode materials.

4. Conclusions

Here, we have summarized the synthetic approaches and examples of energy storage related
applications of micro/nanostructured spherical materials. The advances in the synthesis of these
micro/nanostructured spherical materials have promoted their energy-related applications and
highlighted their promising applications in LIBs, LSBs, and SCs. Compared with the simple
spherical structures, the complexity of the material structures possess increased opportunities to
adjust their performance, thereby contributing to improve the electrochemistry performance of the
electrode materials. For the sulfur hosts for LSBs, and electrode materials for LIBs and SCs, these
micro/nanostructured spherical materials show excellent electrochemical performance with high
discharge specific capacity or capacitance and long life span cycling stability due to their high
structural stability.

In spite of these progresses, precise control and manipulation of these intricate hollow structures
materials still need further investigating. From the synthetic viewpoint, the spherical structure
materials with controllable dimension, morphology, complex structures, shell numbers, and desired
compositions are hardly obtained through simple and convenience methods. The formation mechanism
of some intricate hollow structures remains elusive.

For future research in the synthesis of intricate hollow structures, we believe that it should
concentrate on the following aspects: (1) further expanding and modifying the existing templating and
template-free methods for complex hollow structures; (2) the combination of different methods will be
a prevalent trend for synthesis of some special complex hollow structures, where multiple hollowing
strategies can be involved; and (3) understanding of the synthesis mechanism of the MSHSs structures
is conducive to its development and expansion of its application.

Lastly, it should be emphasized that the syntheses and energy applications of complex hollow
structures are still in their infancy. There is still a long way to go for the commercial-scale production
and practical application of such intriguing materials. We are confident that other versatile and
powerful synthetic methodologies for hollow structures will be developed soon.
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