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ABSTRACT: Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy
barrier of the reaction. Reaction product yield depends on the interplay between elementary processes: adsorption, activation,
desorption, and reaction. These processes, in turn, depend on the inlet gas composition, temperature, and pressure. At a steady state,
the active surface sites may be inaccessible due to adsorbed reagents. Periodic regime may thus improve the yield, but the
appropriate period and waveform are not known in advance. Dynamic control should account for surface and atmospheric
modifications and adjust reaction parameters according to the current state of the system and its history. In this work, we applied a
reinforcement learning algorithm to control CO oxidation on a palladium catalyst. The policy gradient algorithm was trained in the
theoretical environment, parametrized from experimental data. The algorithm learned to maximize the CO2 formation rate based on
CO and O2 partial pressures for several successive time steps. Within a unified approach, we found optimal stationary, periodic, and
nonperiodic regimes for different problem formulations and gained insight into why the dynamic regime can be preferential. In
general, this work contributes to the task of popularizing the reinforcement learning approach in the field of catalytic science.

1. INTRODUCTION
Noble metal nanoparticles are widely known as efficient
catalysts for many oxidation and reduction reactions.1−3 Many
attempts are made to improve their performance, for example,
by doping with transition metals3 or using bimetallic
compounds.4 However, even these advanced catalysts can
suffer from deactivation and aging,5,6 forcing researchers to
search for optimal conditions for the reaction,7,8 which can be
very far from conventional ones used for model catalysts.
Switching between different reaction conditions can increase

the turnover frequency in the catalytic reactions and lead to the
benefit of transient state kinetics over steady state.9 Such a
regime has attracted attention in chemical engineering.10−13

Transient reaction modulation can be reached by a periodical
change in the flows of reactants,13−16 pressure,15,17 temper-
ature,18−21 or light irradiation.22 The rate enhancement can be
explained by several processes on the catalyst surface:
structural reorganization, cleaning from nondesired products,
and overcoming activation barriers of intermediates by an
external force. Some reactions may exhibit an oscillatory

behavior23 even under steady external conditions due to
coupled processes in the multicomponent system. For
example, the reversible formation of palladium carbide24,25

explains the kinetic oscillations upon CO oxidation26 or
ethylene hydrogenation.27 Transient oxidation of carbon
monoxide on the surface of noble metal nanocatalysts is an
object of particular interest: this reaction is a model case for
fundamental studies in heterogeneous catalysis28−32 and is
widely used nowadays in automotive converters of vehicles.
The three-way catalysts are periodically subjected to oxidative
(air reactor) and reductive (fuel reactor) conditions, and such
cycling drastically increases the efficiency of CO and NO
conversion.33−35
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Machine learning (ML),36,37 particularly reinforcement
learning (RL), is promising for predicting the best reaction
conditions in static and dynamic regimes. RL differs from
supervised machine learning in terms of the approach to how
the training set is compiled. The algorithm itself performs
actions in the environment and collects optimal trajectories to
enhance the future manipulation of a dynamical system.38−40

Nowadays, RL finds its application in different fields41 such as
neurobiology,42 robotics,43−45 communications and network-
ing,46 health control,47 personalized news recommendation,48

and material science.49 Neumann and Palkovits50 proved the
concept of using RL for optimizing hydrogen production yield
in the reaction of partial oxidation of methane. For this aim,
they trained Q-learning (QL)51,52 and deep deterministic
policy gradient (DDPG) agents53 to maximize H2 production
by adjusting temperature, pressure, flow velocity, and substrate
composition in the simulated plug flow reactor. Alhazmi et al.54

applied RL in combination with economic model predictive
control for ethylene oxide production. This framework allowed
online continuous control, making autonomous reactor
operation more attainable. The RL agent can effectively act,
even in environments that are different from those applied for
training. Zhou et al. optimized several chemical reactions using
deep RL.55 This approach outperformed a state-of-the-art
black box optimization algorithm using fewer steps and was
effectively applied to four real microdroplet reactions to find
the optimal experimental conditions within 30 min and
accelerated reaction rates.
However, aforementioned works50,55 demonstrate only

steady-state solutions discovered by RL algorithms. The
problem of finding steady-state optimum refers to the task of
multivariate optimization and for low number of variables can
be solved by classical methods.56,57 Meanwhile, the true power
of RL is to find complex, nonstationary behavior in challenging
environments. In this work, we demonstrate the application of
RL to optimize inlet gas feeds for achieving the highest product
yield in a catalytic system over a specified interval of time. The
algorithm was not constrained to a specified form of functional
dependency and discovered stationary, periodic, and non-
periodic solutions for the tasks of optimal pressure control and
optimal response to varying external conditions. The processes
of adsorption, desorption, and reaction of CO and O2 on the
metal surface were described by the system of ODEs and
model parameters were refined from experimental data. We
choose the palladium (111) surface as a model for its high
activity and wide range of industrial applications.58,59 This
numerical model was used as an environment for the
algorithm, whose goal was the maximization of the mean
reaction rate by varying the pressures of reactant gases. We
have explored how the parameters of the model influence the
algorithm’s behavior and found the ranges where the algorithm
preferred nonstationary control. We also proposed a non-
deterministic task for the algorithm, including random
perturbations in the feed of one of the reactants, and the
algorithm was able to adapt.

2. METHODS
The reinforcement learning methodology implies that an
algorithm learns from the data generated by the algorithm itself
during interactions with an external environment. It requires
many trial steps for training. The trials are selected and
performed successively by the algorithm in order to find the
optimal behavior in a potentially huge space of all possible

behaviors. Such an approach is different from supervised
machine learning, where the whole set of trials is provided
once by the user.
2.1. Model Description. We use a mathematical model of

the CO oxidation reaction on Pd(111) to create a simulation
of the chemical process, which the algorithm would be able to
control and learn from.

CO oxidation on Pd nanoparticles can be split into five
elementary steps (illustrated with Figure 1) following the
Langmuir−Hinshelwood mechanism:60,61
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where sad refers to a free adsorption site and ki is the rate
constant of step i = 1, ···, 5. We consider that adsorption/
desorption has no effect on the inlet gas feed (differential
reactor model) and each gas species inhibits the adsorption of
another. The evolution of surface coverages is then represented
by coupled differential equations
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where θCO and θO are carbon monoxide and oxygen coverages,
respectively, and “+” denotes the ramp function. For
convenience of notation, we introduce normalized pressures

Figure 1. Simplified elementary steps of CO oxidation on a stable Pd
surface.
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pCO and pOd2
varying between 0 and 1, respectively, where 1

corresponds to the value of 10−4 Pa for the set of kinetic
parameters #1. The carbon dioxide formation rate is then
determined by

=r kCO 5 CO O2 (8)

These equations were largely reproduced from experimental
work of Libuda et al.,62 where well-defined Pd(111) nano-
particles interacted with reaction gases in the transient regime
(see also S1, Tables S1 and S2 for details). Generally, we
treated k1, ···, k5, CO,CO, and CCO, O as numerical parameters of
our system and varied throughout the research. Different
values of these parameters can correspond to different reaction
conditions, like temperature, catalyst composition, or catalyst
morphology. We do not focus on physical phenomena that
lead to such variations in rate constants and inhibition
coefficients but rather discuss the influence of these changes
on the behavior of the agent. However the starting values of
the parameters in our model are chosen in a way to reproduce
well-defined experimental data (see Set 1 in Table 1 and Figure
S1 for further details).

2.2. Reinforcement Learning Methodology. The key
components of the reinforcement learning approach are an
environment and an agent interacting with each other. The
environment has a state describing it at a given time step. The
agent receives the state of the environment as input and
produces an action in response. The environment changes its
state after the agent’s action, and then provides it to the agent
along with a reward. This cycle repeats over and over during
the training. The goal of the agent is to learn those actions in
each state maximizing a long-term cumulative reward (i.e., sum
or weighted sum of rewards). In this work, we used the Vanilla
Policy Gradient (VPG) algorithm,63 which is an on-policy
algorithm in the form of the REINFORCE algorithm.64 The
agent in the VPG (its policy) is an artificial neural network
(ANN) that receives a state from the environment and
generates an action based on it. The following equations define
the algorithm65

= + ·+ J( )k k1 k k (9)

Table 1. Combinations of parameters for Equations (1)-(8) Applied for RL training (Set 1 is Reproduced from Ref 62). The
Sets 1-3 differ by the rate of CO desorption (k2), O2 adsorption (k3), CO and O reaction rate on the surface (k5) and influence
of adsorbed oxygen on the CO adsorption (CO,CO)

set k1 k2 k3 k4 k5 CO,CO CCO,O Figures

1 0.149 0.0716 0.0659 0 5.897 0.3 1 5
2 0.149 0.1 0.0659 0 0.1 0.3 1 6 and 7
3 0.149 0.0716 0.264 0 5.897 1 1 8

Figure 2. Two problem statements for optimization by RL algorithm. (a) Global optimization of the reaction yield by optimizing both reagents CO
and O2 to maximize reaction yield. (b) Response to external conditions by adjusting O2 pressure on varying CO partial pressure to maximize
reaction yield. (c) Input gas pressures are controlled by the algorithm. The time intervals between the pressure switches (actions) are highlighted
with arrows.
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Equations 9 and 10 define how the weights θ of a neural
network are updated each training step k via gradient ascent.
J(πθ) = Eτ∼π [R(τ)] is an expected return of an episode if the
actions are taken in accordance with the policy πθ. πθ (at|st)
denotes a probability (or likelihood) of the agent’s action at
taken after receiving the state st at time step t. Gt is a value that
estimates the total reward received after action at is
accepted.66,67 This value may be a future return R(τ) (this
work), state-action value Qπθ(s, a) or an advantage Aπθ(at,
st)

66,67 (see also S2 for details). Equation 10 defines the
gradient vector and contains the expectation operator, which is
further approximated by eq 11
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In practice, the algorithm runs the batch of episodes D of size |
D|. Each episode generates a trajectory τ: a sequence of triples
(st, at, rt) at each time step t, with st being a state, at the action,
and rt the reward at time step t. The gradient vectors are
computed at each time step and then summed along the
trajectory. The neural network’s weights and, as a result, the
behavior of the algorithm are adjusted iteratively during many
cycles of training with the mean gradient vector for all of the
trajectories in the batch.
We used VPG agent implemented in Python RL library

Tensorforce based on Tensorflow.63 The batch size was equal
to 16. The ANN configuration was chosen by a default
procedure in the algorithm and contained two hidden layers,
and the learning rate (α from eq 11) was equal to 1 e−3.

3. RESULTS AND DISCUSSION
We applied the reinforcement learning approach in two
practical tasks. The first one was the problem of finding the
optimal control over CO and O2 gas pressures, maximizing the
mean reaction rate. This task was solved for different values of
rate constants k1, ···, k5 (eqs 6 and 7) to demonstrate diverse
control regimes, particularly stationary and nonstationary. The
second task was related to optimal control of the reactor under
varying external conditions. For this purpose, we allowed the
algorithm to adjust the O2 gas feed to random CO pressure
variations in a way that maximizes the mean reaction rate. Both
problem statements are illustrated in Figure 2. The figure
highlights the similarities and differences between training
strategies: (1) the reinforcement learning agent updates both
O2 and CO pressures in (a) or only O2 pressure in (b); (2) the
environment receives new values for gas pressures; (3) the
numerical model behind environment evaluates dynamics of
the system during specified interval of time (one time step in
terms of RL cycle), calculates the current reaction rate for CO2
and a reward, and updates the state; and (4) the new state and
the reward return to the agent.
3.1. Global Optimization of the Reaction Yield. First,

we allowed the algorithm to control the reaction by
manipulating CO and O2 partial pressures. The algorithm set
arbitrary partial pressures of both gases within the normalized
range from 0 to 1 at each time step. The time step duration
was selected as 5 s based on model kinetics to represent an
interval fof substantial changes in the surface coverages. The

goal for the agent was to maximize the mean reaction rate over
30 s episode. Figure 3 demonstrates a typical agent’s

performance evolution during the training procedure. Accord-
ing to the plot, the agent’s performance increased non-
monothonically for the first 8000 episodes until it reached its
maximum. Roughly 10,000 episodes, which is equivalent to
about 83 h of the real experiment, were required for the agent
to learn it is policy. For different rate constants (eqs 6 and 7),
the training curve stabilized before 11,000 episodes in 50% of
tests and before 24,000 episodes in 75% of tests.
We observed a significant influence of the physical model on

the algorithm’s behavior. To simulate different sticking
probabilities and reaction rates, we varied the rate constants
ki between 10−2 and 101. For each set of parameters, the
training was performed from scratch resulting either in
stationary solution or dynamical.62 To verify the solutions
found by the reinforcement learning algorithm, we employed
in parallel the Nelder−Mead method56 for optimal CO2
production rates. Figure 4 summarizes the results of the
calculations and shows a ratio of the mean reaction rate

Figure 3. Typical successful learning curve of the algorithm. Each
episode lasts for 30 s, the algorithm can switch gas flows every 5 s, and
the reaction rate is supplied as a reward on each step.

Figure 4. Ratio of the mean reaction rates in solutions obtained by
reinforcement learning (steady state or dynamic) and Nelder−Mead
(steady state), depending on rate constants k2 and k5. The RL
solutions from cells 1 and 2 are obtained for parameter Sets 1 and 2
(Table 1) and are visualized further in Figures 5 and 6
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achieved by reinforcement learning to the mean reaction rate
obtained by Nelder−Mead (raw numbers for the figure can be
found in Tables S3 and S4). In some cases, the RL-obtained
regime was slightly less effective than corresponding Nelder−
Mead’s regime (ratios 0.95...1.0). In other calculations, the
reinforcement learning approach showed a significant advant-
age over Nelder−Mead, outperforming steady-state optimum
(ratios 1.0 ...1.39). Optimal stationary regimes discovered by
RL and Nelder−Mead were similar (Figure 5). Higher ratios in
Figure 4 (>1.05 )mostly correspond to the dynamic regimes
(see Figure 6a,b).
Figure 5a,b shows a steady RL regime compared to the

Nelder−Mead stationary regime. Interestingly, the algorithm

reaches the optimal values of O2 and CO pressures after several
trial steps, starting from any initial conditions, and the input
gas pressures stabilize within the first 20 s. RL algorithm was
able to vary gas pressures every 5 s, but the ratio of CO/O2
remained constant after the first 20 s, thus keeping the balance
between available adsorption sites and concentration of
activated intermediates.
Figure 6 demonstrates an example of the nonstationary

regime obtained by the RL algorithm with Set 2 of kinetic
constants. In this case, the policy of the agent supplied pure O2

to oxidize the surface and then added CO later. Such a
behavior allowed the agent to achieve high coverages of both
oxygen and carbon monoxide on the surface, thus maximizing
the reaction rate of CO2 production. Figure 6a,b shows also
another interesting observation. The agent was trained on
episodes with 30 s duration, i.e., it maximized the mean
reaction rate for this period. As clear from Figure 6b, at longer
delays, the algorithm’s policy provides worse results than the
optimal steady regime (compare green solid and dotted lines).
The reason is that the algorithm found itself in a situation it
had never been in before; thus, it was unable to extrapolate its
policy beyond the training period (first 30 s of operation).
Therefore, we repeated the training with longer episode (240
s) to account for slower surface changes due to the low
reaction rate constant. The improved agent performance is
shown in Figure 6c,d.
Dynamic control accounts for the preferential accumulation

of one of the species on the metal surfaceand outperforms the
stationary solution by ca. 8% (Figure 7c). We further explore
the fundamental origin of such a behavior. Under stationary
conditions, coverages vary in a domain visualized by the
dashed lines in Figure 7a. The coverages in the upper right
corner of the figure are not accessible. At the same time, these
coverages are accessible in the transient regime (solid blue
line). Dynamic regime consists of two phases. During the first
phase, oxygen accumulates on the surface, and θO and θCO
coverages fall into the shadowed region of accessible steady-
state coverages. In the second phase, the concentration of CO
in the atmosphere rapidly increases. The CO coverage
increases while desorption of oxygen is retarded from the
surface since the oxygen molecule is atomically split on Pd.
The resulting surface coverages thus fall outside the steady-
state region of coverages. During the time spent outside the
domain of stationary solutions, the agent manages to reach a
high reaction rate that compensates for the accumulation phase
when the reaction rate is lower than the stationary optimum.
The transient regime provides an elevated CO2 production

rate when surface coverages for two gases are populated with
different rates, and the reaction rate is slower than adsorption/
desorption rates. θCO changes faster than θO in the case of
palladium since oxygen needs an activation step, and carbon
monoxide can occupy the lattice sites accessible for O2
adsorption and activation. On the contrary, the desorption of
oxygen atoms after O2 activation is almost negligible. Figures 6
and 7 show a transient regime when the CO2 production rate is
smaller compared to the adsorption rate (Set 2, Table 1);
under such conditions agent policy can accumulate oxygen on
the surface in the first step. In the second step, the algorithm
dramatically increases the pressure of CO and creates
conditions when both coverages become higher, providing a
higher reaction rate.
3.2. Response to Varying External Conditions. In the

previous section, we applied reinforcement learning to
establish optimal control over gas composition in the system.
In this section, RL is applied to adjust system parameters under
an external perturbation. We consider the case of non-
deterministic CO feed and the agent adjusting the O2 partial
pressure. Upon training, the CO partial pressure varied
arbitrarily 3 times in each episode with 10 s delays, and the
agent step remained 5 s long. The goal of the agent was
maximizing the mean reaction rate over an episode. The key
difference from the previous optimization problem is the
randomness embedded into the environment, meaning that the

Figure 5. Temporal variations for CO (orange) and O2 (blue) partial
pressures (a), coverages, and reaction rate (b) found by the RL
algorithm. The rate constants were taken from set 1 (see Table 1 and
Figure 4). The algorithm was allowed to vary gas pressures every 5 s
and the episode length for training was 30 s. Green line corresponds
to the CO2 formation rate. Dashed lines denote the Nelder−Mead
steady optimal regimes.
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agent must account for the uncertainty of the future states in
order to achieve good performance. Solving such a task
requires modifications in the mathematical procedure. When
the algorithm controls both gas pressures, we qualify its

performance as the mean reaction rate over an episode.
However, with randomly changing the CO feed, the mean
reaction rate between different episodes cannot be compared
anymore, since now it depends not only on the agent’s

Figure 6. Two different dynamic regimes discovered by the algorithm with a 30 s episode for training (a, b) and 240 s (c, d) (Set 2, Table 1 and
Figure 4). The longer episode length allowed the algorithm to find the periodic solution and prevent asymptotic decay of the reaction yield.

Figure 7. (a) Region of accessible coverages in the steady-state regime (dashed) with the red point indicating conditions for the highest steady
reaction rate. The blue line shows the trajectory of coverages in the optimal dynamic regime discovered by RL. (b) CO and oxygen coverages in
dynamic regime (solid lines) compared to the ones in optimal steady state in the panel (a) (dashed lines). (c) Advantage of the periodic regime is
highlighted by the integral CO2 output.
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behavior but also on varying the CO feed. To overcome this
issue, the performance of the algorithm was evaluated on the
set of predefined temporal CO dependencies. During the
training the CO feed regime was sampled from the
aforementioned pool forcing the agent to focus on the less
probable but important edge cases, such as stationary CO
regimes close to 0 and 1.
If the model parameters were chosen from Set 1 or Set 2

(Table 1), the solution proposed by the agent was stationary;
namely, the agent sets the O2 partial pressure to its maximum
value. Set 3 provided dynamic agent’s solution. Examples of
the agent’s policy for different CO feeds are demonstrated in
Figure 8. The demostrated temporal variation of CO was not
seen by the agent during the training, and the duration of the
runs was increased to 100 s compared to 30 s length of training
episode. The agent learned to increase or decrease O2 pressure
along with the variation of the CO pressure. However, the
agent’s policy was not a synchronous repetition of the CO
regime but rather a gradual adaptation to current CO pressure
with a time delay of about one agent step (5 s). Interestingly,
the agent escaped poisoning and achieved a high reaction rate
for the CO feed previously unseen during the training (for
instance, time evolution in the triangle shape). Its policy also
worked well at time delays longer than training (100s vs 30 s).
3.3. Discussion. The advantage of the dynamic regime for

CO oxidation was previously demonstrated by different
authors, both experimentally and theoretically. Safonova et
al. have found an increase in CO2 production in the gas cutoff
experiments and studied the dynamic response of the catalyst
via X-ray absorption spectroscopy.68,69 Machado et al. have
studied CO2 production rate in the ZGB Monte Carlo

environment with periodic variation of CO pressure.70 They
observed a phase transition like the one observed in the Ising
model and found that catalytic activity increased if the rate of
decontamination was different from the rate of contamination.
Parameterization of the periodic perturbation is a common
approach to finding advantageous nonstationary regimes.
Lopez et al.71 investigated the response of the kinetic Monte
Carlo model to periodic variations of inlet gas feed varying
both the amplitude of oscillations and the mean value of CO
concentration. By reducing the amplitude of oscillations, the
authors concluded that the regime with high oscillation
amplitude was preferential over the regime with zero
amplitude; however, they did not report the value of the
global maximum of conversion in the steady-state regime;
therefore, it was not clear if their strategy could outperform the
optimal stationary regime with respect to an oscillatory one or
not. Ardagh et al.72 studied the effect of dynamical changes in
the support on catalytical activity. Their numeric model
showed that periodic variations in the surface binding energy
lead to the catalyst turnover frequency increase by more than
1000 times above the Sabatier maximum. The authors limited
their choice of perturbation to square, sinusoidal, sawtooth,
and triangular waveforms. The need to choose the para-
metrization for the periodic regime is a limitation for classical
optimization algorithms that can be overcome by the
reinforcement learning approach.
The pretrained RL algorithm has been demonstrated to be

preferential over gradient descent approaches when applied to
a similar environment where it was trained.55 The main
advantage was the fewer number of steps needed to converge
to the optimal solution. Along with that, several authors

Figure 8. RL agent policy examined against two CO feed regimes of random (a, b) and triangle (c, d) forms. The top panels (a, c) show the
algorithm’s policy, and the bottom panels (b, d) show corresponding reaction rates and coverage dynamics. The agent adjusted the O2 pressure to
the supplied CO pressure variations. Model parameters were set according to Set 3 (Table 1).
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applied RL for optimizing steady reaction conditions such as
Neumann et al., who maximized H2 production by partial
oxidation of methane in a simulated plug flow reactor. To
address the dynamic control, Alhazmi et al. have combined
economic model predictive control framework and RL, and
their framework allowed control, optimization, and model
correction to be performed online and continuously.54

In our work, we rely solely on the reinforcement learning
methodology and obtained stationary and nonstationary
control regimes. We also applied RL to the problem of
adaptation of the dynamic control regime to the external
variations and showed that the agent was able to solve this
problem successfully. However, the main drawback of the
methodology is the large number of trial steps required for
training (e.g., 10,000 episodes as shown in Figure 2, each 30 s
long). Therefore, the practical application of the algorithm
relies on the combination of a theoretical environment and
experimental setup. In the first step, the theoretical model is
suggested for the studied system (see e.g., eqs 1−8). The
sample is then exposed experimentally to a broad range of
reaction conditions (temperature, gas flows), and its catalytical
properties are registered. Parameters of the theoretical model
are fitted to experimental data, and the algorithm is trained on
the basis of such an experimentally verified model. In the
second step, the algorithm may be retrained with experimental
setup only. Such a procedure requires a smaller number of
steps for tuning, while the second step may help to account for
the parameters of the experimental system beyond the
theoretical model behind it.
In Figure 9, we show that discussion about higher reaction

rates in the dynamic regime extend also to more complicated
models. We use a kinetic Monte Carlo approach (see Section

S3 for details) to overcome mean-field approximation imposed
by ODE’s model and demonstrate increase in CO2 formation
upon replacing the reducing atmosphere with an oxidative one.
The demonstrated RL methodology could be easily applied

to any catalytic or, more generally, chemical process, as long as
the latter could be described by the numerical model. A few
straightforward changes would be required: update the model
via a new set of kinetic parameters; extended differential
equations or reparametrized KMC model; specify a set of
variables monitored by algorithm; and specify a target for
optimization.

4. CONCLUSIONS
A reinforcement learning algorithm was applied to find the
optimal dynamic regime for the CO oxidation reaction on the
Pd surface. The benefit of such a methodology is the absence
of any approximation on the analytical form of the optimal
solution and its periodicity. The two problem statements were
considered. In the first one, the algorithm varied both CO and
O2 partial pressures. Each time step the Vanilla Policy Gradient
agent received the CO and O2 pressures and CO2 formation
rate for the current and previous time steps and set the CO and
O2 pressures for the next step. We demonstrate a series of
optimal solutions ranging from stationary to quasi-periodic
depending on the rate constants of the numerical model of the
reaction. The dynamic regime was preferable for the low
reaction rate when alternating cycles of surface deactivation
and recovery could significantly enhance the CO2 integrated
output. Under another problem statement, the algorithm could
control only O2, while CO feed was supplied from external
source randomly. For such task the reward was reformulated
and the trained algorithm was able to adjust the O2 pressure

Figure 9. Validation of the dynamic regime in the kinetic Monte Carlo model. Upon replacing the CO atmosphere with O2 atm (panel (a)), the
reaction rate can increases and becomes higher than under optimal steady-state conditions (panel (b)). (c) CO and oxygen occupation of the
surface sites at selected times of high (t = 30 s) and low (t = 55 s) conversions.
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regime to the CO regimes of various forms, even on time
intervals longer than those of the algorithm was trained on.
The main bottleneck of the described RL approach is the time
required for neural net training. In the current example, the
training was completed during 3 ca. 0,000 episodes each 30 s
long. Therefore, the practical scheme should include training
on the theoretical model derived from the series of catalytic
tests. Subsequently, the model can be tuned in a fewer number
of steps within experimental setup. We foresee that such a
methodology can be applied to the relevant industrial
reactions.
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