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Infants are capable of mounting adaptive immune responses, but their ability to develop
long-lasting immunity is limited. Understanding the particularities of the neonatal adaptive
immune system is therefore critical to guide the design of immune-based interventions,
including vaccines, in early life. In this review, we present a thorough summary of T cell, B
cell, and humoral immunity in early life and discuss infant adaptive immune responses to
pathogens and vaccines. We focus on the differences between T and B cell responses in
early life and adulthood, which hinder the generation of long-lasting adaptive immune
responses in infancy. We discuss how knowledge of early life adaptive immunity can be
applied when developing vaccine strategies for this unique period of immune
development. In particular, we emphasize the use of novel vaccine adjuvants and
optimization of infant vaccine schedules. We also propose integrating maternal and
infant immunization strategies to ensure optimal neonatal protection through passive
maternal antibody transfer while avoiding hindering infant vaccine responses. Our review
highlights that the infant adaptive immune system is functionally distinct and uniquely
regulated compared to later life and that these particularities should be considered when
designing interventions to promote pediatric health.

Keywords: infant immunity, adaptive immunity, pediatric infectious diseases, neonatal T cells, vaccines, neonatal B
cells, adjuvants, maternal antibody transfer
INTRODUCTION

Despite tremendous progress in recent decades, infectious diseases remain a leading cause of
morbidity and mortality in pediatric populations worldwide (1–3). Infectious diseases cause nearly
25% of deaths in the neonatal period (from birth to one month of age) and up to one third of deaths
in children under 5 years of age (1–3). Vaccines are one of the most cost-effective interventions to
address the global burden of pediatric infectious diseases, and the implementation of early life
immunizations has reduced deaths in neonates and children across the world (4). Due to differences
in the early life and adult immune systems, it is increasingly appreciated that an in-depth
org January 2021 | Volume 11 | Article 5952971
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understanding of early life immunity is crucial for the
development of effective pediatric vaccines and for optimizing
pediatric vaccine schedules.

While recent reviews have outlined differences between the
infant and adult immune system, they focus on innate immunity
given its key role in defense in early life [reviewed in (5–7)].
Because vaccine-induced protection largely depends on acquired
immunity, we have instead focused this review on early life
adaptive immunity. Herein, we present a detailed overview of T
and B cell development as well as the unique factors regulating
early life adaptive immunity. We review T cell and humoral
responses to pathogens and vaccines in early life, which reveal
that adaptive immune responses can be generated in infancy but
that these are generally attenuated compared to later in life. We
also discuss how passive maternal antibody transfer impacts early
life adaptive immunity and may be harnessed to protect neonates.
Our review focuses on human studies of early life adaptive
immunity, yet we have also integrated evidence from animal
models where appropriate (see Box 1). Our goal is that this
review can inform the rational design of vaccines and other
immune-based interventions to combat pediatric infectious
diseases. Understanding early life immunity is particularly
critical for vaccine development since vaccines and adjuvants
traditionally have not been tailored to engage the neonatal or
infant adaptive immune response. Therefore, applying knowledge
of early life adaptive immunity in vaccine development can
substantially improve the efficacy and impact of pediatric vaccines.
T CELLS IN EARLY LIFE

T Cell Development and the Neonatal
T Cell Compartment
Early Life T Cell Development and
Immunophenotypes
The T cell compartment in early life is uniquely positioned to
respond to diverse immunological demands, such as balancing
immunotolerance in utero and during microbial colonization
with defense against pathogens (12). These divergent demands
result in highly stimulus dependent T cell responses in early life
(Figure 1). Human T cell development begins in utero, as the
thymus starts producing T cells at 12–14 weeks of gestation, and
the neonatal T cell receptor (TCR) repertoire is diversified by 26
weeks of gestation (16–19). Distinct waves of human T cell
development occur in utero, yet the T cell compartment
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continues to evolve dynamically after birth. In contrast to
other immune cell compartments (e.g., B, natural killer, and
dendritic cells) that converge with adult immunophenotypes by 3
months of age, infant and adult T cell compartments remain
phenotypically distinct at least for the first 2 years of life (13, 20).

Infants have high inter-individual variability in CD4+ and
CD8+ subsets [i.e., proportion of naïve, central memory (TCM),
effector memory (TEM), and tissue-resident effector memory T
cells (TEMRA)], yet overall the neonatal T cell compartment is
dominated by naïve T cells (13). The majority of these naïve T
cells are recent thymic emigrants (RTEs), which harbor unique
effector functions (18, 21–23). RTEs are biased towards innate-
like immune signaling and preferentially differentiate into
induced regulatory T cells (iTregs), which limits their role in
adaptive T cell responses (22, 24). Despite the predominance of
naïve T cells, TEM are present in cord blood even in the absence
of intrauterine infection, suggesting that T cell memory is
generated during normal fetal development (25, 26).

T cells from pediatric organ donors (2 months to 2 years of
age) are also more likely to be naïve and RTEs compared to T
cells from adults (20). This increased proportion of naïve T cells
and RTEs has been observed across T cell compartments in
blood, lymphoid tissue, lung, and the intestine (20). In general,
infants have fewer TEM cells compared to adults except in the
lung and small intestine where proportions are comparable (20).
Given the high burden of respiratory and diarrheal diseases in
infants, it is interesting to note that effector T cell memory may
be relatively enhanced in the lung and small intestine in early life
compared to other tissues; however, the functional capabilities of
these TEM populations are largely unknown. Moreover, the
increased ratio of Tregs : TEM cells in these tissues may hinder
the ability to mount an effector-memory response (20). Thus,
while TEM responses are generated in utero and present in
mucosal tissues (i.e., lung and small intestine) in early life, it is
unclear how effective they are in mounting adaptive responses.
Overall, the relative enrichment of antigenically naïve T cells and
RTEs compared to memory and effector T cells likely contributes
to blunted adaptive T cell responses in infancy.

Innate-Like Functions of T Cells in Early Life
In addition to phenotypic differences, adult and infant T cells have
distinct functional responses. Notably, cord and neonatal peripheral
blood contain fewer IFN-g and IL-17A producing but significantly
more CXCL-8 producing T cells compared to adult blood (23, 27,
28). CXCL-8 is an innate immune effector, and CXCL-8 producing T
cells can co-express complement receptors (CR), which also function
in innate immune cell signaling (23). These CXCL-8 producing T
cells are enriched in the neonatal T cell compartment, more likely to
be RTEs, andmay act as innate-like precursors to the classic adaptive
proinflammatory IFN-g producing T cells (22).

Over the first 3 months of life, CXCL-8 plasma concentrations
decrease whereas IL-17A concentrations increase, reflecting a shift
from innate-like to canonical adaptive cytokine production (13).
However, T cells from older children (aged 5–16 years) still show
decreased proinflammatory cytokine secretion (e.g., IFN-g and IL-
17A) compared to adults following ex vivo stimulation (29). These
differences in early life cytokine production highlight the
BOX 1 | Key considerations for studies of early life immunity. Many studies of
early life immunity use neonatal mice or human umbilical cord blood, yet these
model systems have important caveats: 1) murine and human immune cell
ontogeny differ substantially, especially regarding T cell development [(8, 9)
reviewed in (10–12)], 2) immune responses measured in umbilical cord blood
are distinct from those detected during prenatal and postnatal life (13), and 3)
the milieu of cytokines, corticosteroids, and metabolites generated during labor
can significantly modulate immune responses detected in cord blood [reviewed
in (14, 15)]. While the use of model systems is critical to complement human
studies, it is important to consider possible limitations when interpreting different
studies of early life immunity.
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importance of CXCL-8 and suggest that neonatal T cells respond
preferentially with innate rather than adaptive responses favored in
adulthood (Figure 1). This skewing of the early life T cell
compartment towards innate-like responses may need to be
overcome in order to elicit durable adaptive T cell responses
in infancy.

Mechanisms Regulating T Cells in Early Life
Cell-intrinsic (i.e., transcriptional, epigenetic) and cell-extrinsic
(i.e., cytokines, cell-to-cell communication) mechanisms that
regulate T cell responses are distinct in early life compared to
adulthood. For instance, fetal and neonatal T cells have a
transcriptional landscape that favors tolerogenic and innate-like
Frontiers in Immunology | www.frontiersin.org 3
cytokine production over proinflammatory T cell responses (30).
Moreover, when comparing transcriptional pathways in preterm,
term, and 3 month old infants, younger neonates exhibit a
downregulation of IFN-g production and T cell proliferation, and
upregulation of IL-10 and CXCL-8 biosynthesis (13). These results
suggest that neonatal T cells are biased towards innate immune
signaling and immunosuppression, as IL-10 promotes Treg
differentiation and suppresses T cell activation. Transcriptional
differences between naïve CD8+ T cells from cord and adult
blood further supports the hypothesis that T cells in early life
harbor a gene expression program favoring innate over adaptive T
cell functions (i.e., antigen recognition) (31). Naïve CD8+ T cells
from cord blood upregulate innate immune genes in toll-like
FIGURE 1 | Summary of the T cell compartment in early life. This overview of the infant T cell compartment summarizes evidence from human studies unless
otherwise stated. Infants rely on “innate-like” CD4+ and CD8+ T cells, which are more likely to be RTEs and to signal through innate immune pathways such as
complement receptor and TLR signaling, promote inflammation, and respond with antimicrobial peptides rather than classic antigen-specific adaptive immune
responses. T helper type 1 (Th1) cells are generated in response to certain pathogens and vaccines in early life; however, epigenetic regulation of cytokine loci may
limit these responses. T helper type 2 (Th2) cells are generated in response to allergens and common environmental antigens encountered in early life and only rarely
in response to pathogens or vaccines. Regulatory T cells (Tregs) maintain fetal immunotolerance in utero and are present in higher numbers and proportions in early
life blood and peripheral tissues, which may aid in promoting tolerance to microbial colonization but may impair mucosal and systemic T cell activation and adaptive
immune responses. T follicular helper cell (TFH) responses are impaired in neonatal murine models but have not been studied extensively in human neonates. The
restricted function of TFH cells in early life may be due to immaturity in co-activation signals required for B and T cell crosstalk and may impair generation of germinal
center responses. *data shown in mice. RTEs, recent thymic emigrants; CMV, cytomegalovirus; RSV, respiratory syncytial virus; P. falciparum, plasmodium
falciparum; T. cruzi, Trypanosoma cruzi.
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receptor (TLR) signaling, inflammation, and antimicrobial peptides
whereas those fromadults highly express cell cytotoxicity andTCR-
signaling genes (31). Mechanistic work in mouse models further
supports the notion that early life T cells employ transcriptional
programs topromote rapid innate immune responses over antigen-
specific memory responses (32, 33).

Neonatal T cells also have a distinct epigenetic landscape
compared to adult T cells, as reflected by differences in DNA
methylation, chromatin, histone modifications, and micro RNA
(miRNA) expression [reviewed in (12)]. In fetal CD4+ T cells, IL-2
and IFN-g production is blunted by expression of the transcription
factor Helios (34). Moreover, in cord blood, the IFN-g promoter of
naïve CD4+ T cells is heavily methylated, which correlates with
lower levels of IFN-g secretion (35). Chromatin accessibility at
other cytokine loci (e.g., IL-12 and IL-13) in neonatal T and
dendritic cells differs from adults, suggesting that chromatin
remodeling occurs during the transition from neonatal to adult
T cell phenotypes (36, 37). Epigenetic differences in chromatin,
histone modifications, andmiRNA expression in cord versus adult
T cells likely drive differences in gene expression and function
[(31, 38–40), reviewed in (12)]. Most of these findings are from
cord blood and mouse studies, thus additional studies are needed
to understand the transcriptional and epigenetic mechanisms
governing T cells postnatally. Such work may reveal novel
therapeutic targets for modulating infant T cells to promote
long-lasting adaptive responses.

Immunotolerance and Regulatory T Cells (Tregs) in
Early Life
Mounting evidence suggests that a strong bias towards Treg
development in early life tempers adaptive immune responses.
Fetal immunotolerance in utero is essential and is maintained by
immunosuppressive Tregs, which hamper proinflammatory T cell
activity and promote tolerance to the maternal host [reviewed in
(41, 42)]. Tregs are enriched in fetal lymphoid tissues and they
suppress non-Treg T cell proliferation, activation, and IFN-g
production (30, 43). Moreover, expression of Helios in fetal
naïve CD4+ T cells contributes to an epigenetic predisposition
to Treg differentiation (34). Both fetal, and to a lesser extent,
neonatal CD4+ T cells are poised to differentiate into Tregs upon
TCR engagement (30, 40, 44).

Treg persistence postnatally and their role in modulating
adaptive immune responses in infancy is unclear. During fetal
development, the proportion of Tregs declines with gestational age
from 15–20% in the second trimester to ~5% of total CD4+ T cells
in cord blood, which is comparable to adult blood (44, 45).
However, recent work has demonstrated that Tregs are a highly
enriched and compartmentalized T cell subset in early postnatal
life (20). When comparing T cell compartments from pediatric (2
months to 2 years of age) to adult organ donors, Thome et al.
found that Tregs accounted for 10-20% of total CD4+ T cells in
pediatric blood, lung, intestine, and lymphoid tissues versus only
~5% in adult donor tissues (20). This predominance of Tregs was
directly correlated with age, as highlighted by decreasing
proportions of Tregs over time. The importance of Tregs in
modulating infant immune responses across diverse sites (e.g.,
blood, lymphoid, and mucosal tissues) has been underexplored.
Frontiers in Immunology | www.frontiersin.org 4
Tregs likely regulate appropriate local mucosal immune responses
during microbial colonization, as Tregs may protect against
necrotizing enterocolitis in preterm infants by promoting
tolerance during newborn gut microbial colonization (46).
Because the immunosuppressive effects of these Tregs may
increase infectious disease susceptibility and could dampen
vaccine responsiveness in infancy, further research is crucial to
gain a deeper understanding of their abundance and function in
early life.

T Helper (Th) Cell Responses in Early Life
It is generally believed thatCD4+Tcells are biased towardsThelper
type 2 (Th2) differentiation in early life [reviewed in (11, 47, 48)].
This tendency towards Th2 differentiation was first observed in
neonatal mice, but the evidence for Th2 bias in human neonates is
less clear. Naïve CD4+ T cells can differentiate into Th subsets
including Th1, Th2, and Th17 cells, which produce IFN-g, IL-4/
IL-5/IL-13, and IL-17/IL-22, respectively. Th1 cells are
proinflammatory and defend against intracellular pathogens (e.g.,
viruses), whereas Th2 cells protect against parasitic infections and
have been implicated in atopic diseases (e.g., allergy and asthma),
and Th17 cells protect against extracellular pathogens (Figure 1).
While neonatal innate immune cells produce more Th2 than Th1-
polarizing cytokines (49, 50), Th responses in early life appear to be
highly stimulus dependent.

Recently, a population of naïve CD4+ T cells has been
identified in cord blood and infant adenoids that highly
express IL-4 when stimulated under multiple conditions (e.g.,
anti-CD3/anti-CD28, PMA/Ionomycin, TGF-b). However,
IFN-g is also expressed by these T cells under some conditions
(e.g., PMA/Ionomycin, IL-1b, IL-12), indicating that these cells
generate both Th1 and Th2 type responses (51). Additional
evidence that the stimuli and cytokine milieu strongly dictate
early life Th differentiation is apparent from studies of neonatal T
cell responses to allergen. T cells isolated from cord blood
produce Th2 type cytokines when stimulated by environmental
allergens ex vivo (52). Similarly, T cells from infants (<2 years of
age) stimulated with allergens favor Th2 over Th1 responses
(53). Infants (<3 months of age) infected with RSV also generate
high levels of IL-4 and no detectable IFN-g, suggesting a Th2
biased response (54). RSV also elicits a Th2 type response in
neonatal mice, and early life RSV infections in humans have been
implicated in the development of atopy and asthma [(55)
reviewed in (56)]. Thus, Th2 responses to RSV infection may
be pathogen-specific and reflective of a complex interplay with
Th2-mediated disease risk. Overall, it is clear that infants mount
Th2 responses against allergens and RSV in early life but less
apparent whether this represents a global Th2 bias.

Infants (<3 months of age) infected with influenza or
parainfluenza virus generate IFN-g and IL-4/IL-5, suggesting they
mount both Th1 and Th2 responses (54). Moreover, a prospective
analysis ofTh1andTh2cytokine levels innewborns followeduntil 3
months of age did not show Th2 skewing (57). T cells from lymph
nodes of pediatric organ donors (<2 years of age) also do not
demonstrate a Th2 bias after stimulation (20). Importantly, it is
unclear if Th responses studied ex vivo recapitulate in vivo function.
However, both in vivo and ex vivo evidence suggests that the
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stimulation (e.g., allergen, pathogen,TCR/co-stimulation,mitogen)
and cytokinemilieu (e.g., strongly Th-polarizing, proinflammatory,
anti-inflammatory) largely dictate Th responses in early life
(Figure 1).

T Cell Responses to Pathogens
and Vaccines in Early Life
Early Life T Cell Responses to Pathogens
Studies of fetal and neonatal immune responses to infections have
greatly advanced our understanding of the functional capabilities of
T cells in early life [reviewed in (58)]. Fetuses mount pathogen-
specific CD8+ and CD4+ T cell responses against human
immunodeficiency virus (HIV), cytomegalovirus (CMV),
Trypanosoma cruzi, and Plasmodium falciparum [(59–63)
reviewed in (64–66)]. Fetuses exposed to P. falciparum and T.
cruzi generate CD4+ T cell responses that release proinflammatory
cytokines when re-stimulated, highlighting that adaptive T cell
memory is elicited in utero (62, 67).Moreover, infants exposed toP.
falciparum in utero produce antigen-specific CD4+ and CD8+ T
cell responses that undergo memory differentiation (63). These P.
falciparum specific CD4+ T cell responses in cord blood correlate
with protection against malaria infection in the first 2 years of life,
suggesting that primingof pathogen-specificCD4+Tcell responses
in utero may confer protection later in life (63).

Infectious exposures can impact the developing T cell
compartment broadly in addition to eliciting pathogen-specific
T cell responses. Congenital CMV infection causes widespread
immune activation and differentiation of the developing T cell
compartment [(68, 69), reviewed in (65)]. Moreover, infants
exposed to pathogens in utero but not infected (e.g., born to
mothers infected with P. falciparum, T. cruzi, HIV, or hepatitis C
virus) have global changes in their T cell immunophenotypes
and altered T cell responses to stimulation [(70), reviewed in
(71)]. These exposed yet uninfected infants can have reduced T
cell responses to vaccines and increased susceptibility to
homologous and heterologous infections, perhaps due to
inappropriate tolerogenic T cell responses generated in utero
(71). Thus, prenatal exposure to pathogens can broadly shape the
neonatal T cell compartment with long-term consequences for
adaptive immune responses, which should be considered when
designing vaccine strategies.

Although capable of generating antigen-specific T cell memory,
infant T cell responses are limited compared to adults. Infants have
impaired CD4+ T cell responses to P. vivax (72), HIV (73), and
CMV (74), which may contribute to poor pathogen control.
Furthermore, neonates with viral respiratory tract infections (e.g.,
RSV, influenza, and coronaviruses) preferentially generate TEM

rather than tissue-resident memory T cells (TRM), which may
impair the development of long-lasting memory (75). Given the
ongoing outbreak of SARS-CoV-2, a newly emergent coronavirus
and ongoing infectious threat to pediatric health, it is important to
consider how T cell responses may be age-dependent with distinct
implications for disease pathogenesis and vaccine interventions
[reviewed in (76)]. These studies suggest that antigen-specific T cell
responses are generated in response to certain pathogens, yet
effector T cell responses may be favored over memory T cell
responses during early life.
Frontiers in Immunology | www.frontiersin.org 5
Early Life T Cell Responses to Vaccines
InfantTcell responses tovaccineshave alsodemonstrated that theT
cell compartment is equipped tomount pathogen-specific adaptive
responses in early life, but suggests that these are usually diminished
compared to adulthood. Infants generate T cell responses following
measles vaccination, yet immunization before 6 months of age
produce less IFN-g than adults (77, 78).Moreover, infants receiving
the hepatitis B (HepB) vaccine have impaired T cell cytokine
production and differentiation compared adults (79). Although
theTcell responses to themeasles andHepBvaccines are attenuated
in infancy compared toadulthood, there is also evidence that infants
can mount more adult-like responses to some vaccines.

Infants receiving the Bacillus Calmette–Guérin (BCG)
vaccine against Mycobacterium tuberculosis have more robust
Th1 and pathogen-specific CD8+ T cell responses than adults
(80–82). Moreover, priming infants with the BCG vaccine in
infancy appears to boost T cell responses to heterologous
vaccines, including HepB and oral poliovirus later in life [(83),
reviewed in (84)]. Bordetella pertussis vaccination also induces a
potent Th1 response in young infants and can enhance overall T
cell activation (85). Thus, infants can mount vigorous T cell
responses following some vaccines despite inherent maturational
differences in the early life T cell compartment. Therefore,
targeted intervention strategies that account for the distinct
nature of the neonatal T cell compartment should be employed
to effectively engage T cells in adaptive responses.
B CELLS AND ANTIBODY RESPONSES
IN EARLY LIFE

B Cell Development and the Neonatal
B Cell Compartment
Development of Antibody Responses and B Cell
Receptor (BCR) Diversity in Early Life
Immunoglobulins (Ig) i.e., antibodies, encoded by the B cell
receptor (BCR) genes, are the key mediators of adaptive humoral
immunity and are composed of different isotypes with distinct
functions (e.g., IgM, IgG, IgA, and IgE).While fetal IgMproduction
begins in utero and increases substantially postnatally, endogenous
IgG and IgA production, which requires B cell class-switching,
remains limited until 6 months of age (86). In order to respond to
pathogens, the mammalian adaptive immune system has evolved
multiple mechanisms to recognize diverse antigens. BCR
combinatorial diversity is achieved when different genes segments
in V(D)J loci are recombined to form the V region and junctional
diversity is formed when the enzyme terminal deoxynucleotidyl
transferase (TdT) adds randomN nucleotides at the joints between
V(D)J gene segments during DNA recombination. These two
sources of diversity can generate, approximately 1011 different
receptors in the naïve BCR repertoire (87), and more diversity is
addedwhen different heavy- and light-chainV regions pair to form
the antigen-binding site.OnceaBCRrecognizes its cognate antigen,
somatic hypermutation (SHM) occurs in germinal centers and
mutations are introduced to the antibody V regions to improve
binding to antigens. Although fetalmature B cells can bedetected as
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early as 9 weeks of gestation, the formation of germinal centers and
adaptive humoral responses is greatly attenuated until after
birth (10).

By detecting the products of V(D)J DNA recombination
generated during B cell development, Rechavi et al. showed
that BCR combinatorial diversity begins around 12 weeks of
gestation (19). At birth, infants have low levels of SHM, but over
time, SHM rates increase. By 2 years of age, SHM rates in non-
class-switched IgM and IgD-expressing B cells reach adult levels.
However, by 3 years of age, class-switched IgG and IgA-
producing B cells only achieve 60 to 75% of adult SHM levels
and only reach adult levels at 6 years of age (88, 89). The lower
rates of SHM in infants can lead to reduced antibody binding to
the antigen. Less differentiated CD27dull memory B cells (which
are mostly IgM-expressing) predominate in the infant B cell
compartment; the more differentiated CD27bright memory B cells
are absent until 3–4 years of age (90). In fact, these CD27dull

memory B cells seem to be the progenitor of CD27bright memory
B cells, and thus are relatively enriched in early life compared to
later in life (90). Functionally, CD27bright memory B cell
populations have higher SHM rates, contain more class-
switched memory B cells, and generate more potent response
to antigens. Differences between adult and infant B cells have also
been reported in the Ig complementarity-determining region 3
(CDR3), which is critical for antigen binding. The Ig heavy chain
CDR3 (HCDR3) is significantly shorter in fetuses due to fewer N
nucleotides at the VDJ junctions compared to term infants,
which could be due to lower TdT expression in fetal life (19).
HCDR3 maturation is initiated in the third trimester of
pregnancy, but HCDR3 lengths do not reach adult levels until
5 months of age (91). Overall, the composition of the memory B
cell compartment, limited SHM rates, and shorter HCDR3
Frontiers in Immunology | www.frontiersin.org 6
lengths during B cell development highlight why infants often
have less potent humoral responses to antigens.

T Cell-Dependent and T Cell-Independent Humoral
Responses to Antigens in Early Life
Overall, early life B cell responses to T cell-dependent (TD) and
T cell-independent (TI) antigens are weaker than in adulthood
except for a few pathogens and vaccines discussed later (86). As
summarized in Figure 2, multiple factors contribute to the
diminished antibody response in infancy, including cell-
intrinsic and cell-extrinsic factors. The gene expression profile
of neonatal B cells is distinct from adult B cells, which limits the
activation signals neonatal B cells receive from CD4+ T cells
upon exposure to TD antigens. Specifically, human neonatal B
cells express lower levels of the co-stimulatory receptors CD40,
CD80, and CD84, resulting in dampened responses to CD40
ligand (CD40L) expressed by T cells (86).

To elicit a potent and durable antibody response, three key
structures are involved (Figure 2) including: 1) the follicular
dendritic cell (FDC) network, 2) germinal centers, and 3) the
bone marrow. FDCs capture and retain antigens in immune
complexes with complement or antibodies (92). By presenting
native antigens to B cells, FDCs play an important role in the
nucleation of germinal centers. However, in neonatal mice, FDC
precursors fail to differentiate into mature FDCs following B cell-
mediated signaling, leading to the absence of effective germinal
center responses in neonatal mice until 3 weeks of age (93).
Despite no direct evidence in humans, the lack of mature
germinal centers in mouse models suggests that immature
interactions between FDC and B cells may contribute to the
attenuated B cell and humoral responses in early life (94).
Another mechanism that may limit early life humoral
FIGURE 2 | Summary of the B cell compartment and antibody responses in early life. Dampened germinal center reaction is generally observed in infants, and
differentiation of activated B cells is skewed toward short-lived memory B cells over plasma cells. Bone marrow in early life is unable to provide an optimal niche for
the differentiation of long-lasting plasma cells. Transplacental maternal antibodies influence the neonatal B cell-mediated response by the illustrated mechanisms.
*data shown in mice. FDC, follicular dendritic cell.
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responses could be the lower expression levels of CD73 in
neonatal naïve B cells, as CD73 converts adenosine mono-
phosphate into adenosine, an essential immunoregulatory
molecule (95). Lower CD73 expression in B cells has also been
observed in patients with common variable immunodeficiency,
which have limited antibody production, suggesting that
decreased CD73 expression in infant B cells may limit humoral
responses (96).

Infants generally have lower magnitude and limited
persistence of antibody responses following natural infection
and vaccination (97, 98), which may result from the inability of
early-life bone marrow to establish a pool of long-lived plasma
cells. In adults, plasmablasts migrate to the bone marrow after
exiting germinal centers, and, with survival signaling from the
stromal cells, then differentiate into long-lived plasma cells.
However, due to insufficient signals from immature stromal
cells, plasmablasts in neonatal mice fail to differentiate into
long-lived plasma cells in the bone marrow (98, 99).
Furthermore, upon antigen exposure, both human and mouse
neonatal B cells show preferential differentiation toward memory
B cells instead of long-lived plasma cells (86), possibly due to
lower expression of CD40 and CD21 in infant B cells (100, 101).

TI antigens include repetitive, highly valent structures such as
polysaccharides, thus B cell responses to TI antigens are key for
host defense against encapsulated bacteria. Humans do not
develop humoral responses to TI polysaccharides until 1–2
years of age, which is further supported by mouse studies
showing that mice (<3 weeks of age) do not respond to
immunization with pure pneumococcal polysaccharides (102–
104). Due to this impaired TI humoral response, neonates are
more susceptible to infections with encapsulated bacteria such as
Haemophilus influenzae type b (Hib) and Streptoccoccus
pneumoniae. Neonatal hyporesponsiveness to TI antigens may
be due to immaturity of marginal zone B cells and lower numbers
of CD27+ memory B cells in early life, as splenic marginal zone B
cells are the major subpopulation responding to TI antigens
(105). Lower B cell expression of the C3 complement receptor 2
(CR2 or CD21) and decreased levels of C3 complement may
further impair humoral responses to TI antigens in early life
(105–108). CD21 aids B cell signaling by ligating C3 fragments
that opsonize bacterial polysaccharide capsules, so reduced C3
and CD21 levels may render neonatal B cells less sensitive to TI
antigens (109). To overcome this limitation of the early life
immune system, pediatric vaccines against encapsulated
pathogens are conjugated to proteins to recruit T cell help and
improve humoral vaccine responses (110–112). Therefore,
factors limiting humoral responses to both TD and TI antigens
in early life and the nature of the antigen must be considered
when designing pediatric vaccines.

Unique Factors Influencing Early Life Humoral
Responses
Early life antibody responses can be substantially shaped by
pathogens, maternal antibodies, and microbial colonization (88,
113–115). The factors most unique to early life that shape humoral
responses include maternally transferred antibodies and
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colonization of the newborn gut microbiota. Due to the
limitations to generating antibody responses in early life, neonates
rely heavily on passive maternal antibody transfer for protection
against infections [reviewed in (116)]. Transplacental IgG transfer,
mediated by the neonatal Fc receptor (FcRn), begins during the
second trimester and increases throughout gestation (117).
Maternal IgG persists in infant circulation for months postnatally,
and the importance ofmaternal antibodies inprotectingneonates is
underscoredbydiseases inwhich transplacental antibody transfer is
disrupted. For instance, maternal HIV infection can impair
transplacental antibody transfer [reviewed in (118)], which may
increase the susceptibility of HIV-exposed yet uninfected infants to
heterologous infections (119–122). Passive maternal antibody
transfer of mostly secretory IgA (sIgA) and some IgG postnatally
through breastmilk also provides protection of the neonate
particularly at mucosal surfaces.

Despite the important protection conferred by maternal
antibodies, the presence of maternal antibodies can also dampen
B cell responses to vaccines in human neonates [reviewed in (123)].
Mechanistic studies onmaternal antibody-mediated interference in
humans have been lacking, yet these mechanisms have been
explored in rodent models [reviewed in (123, 124)]. Proposed
mechanisms of interference include: 1) live viral vaccine
neutralization, 2) epitope masking, 3) clearance of immune
complex through Fc-dependent phagocytosis, 4) binding of
inhibitory Fc receptor FcgRIIB, 5) inhibition of the differentiation
of plasma cell and memory B cell differentiation (114, 125–127)
(Figure 2).Maternal antibodies can neutralize live vaccines such as
the measles and polio vaccines, which may contribute to the low
antibody responses observed in human neonates (124). Maternal
antibodies may also inhibit the activation of B cell clones by
blocking immunodominant epitopes, which could explain the
attenuated neonatal antibody response to vaccines that do not
involve live virus (e.g., inactivated and subunit vaccines) (124).
Moreover, opsonization by maternal antibodies may facilitate the
clearance of vaccine antigen, limiting its availability for infant B cell
recognition. Kim et al. also demonstrated in cotton rats that
vaccine-specific maternal antibodies may inhibit neonatal B cell
activation by crosslinking inhibitory FcgRIIB receptors on B cells
(127). Vono et al. demonstrated that high titers of antigen-specific
maternal antibodies inhibited the antibody response to autologous
immunization in the offspring of vaccinated dams by preventing
germinal center B cells from differentiating into plasma and
memory B cells, though the formation of germinal centers was
not affected (114). Another study of neonatal mice also
demonstrated that high but not low or moderate antigen-specific
maternal antibody levels hindered pup antibody responses to
pneumococcal immunization (128). Thus, maternal antibodies
may impact neonatal B cell immunity in many complex ways,
perhaps more profoundly than previously appreciated.
Understanding the mechanisms regulating maternal antibody
transfer and interference with neonatal humoral responses is key
for the development of vaccines leveraging passive maternal
immunization and for designing pediatric vaccine schedules.

The newborn gut microbiome is primarily colonized shortly
after birth, yet a stable, adult-like community is not established
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until around 3 years of age (129). The microbiome can
substantially modulate the host antibody repertoire and
responses to infections and vaccines in early life [reviewed in
(113)]. Germ-free mice have limited sIgA production, as
evidence by smaller Peyer’s patches, lower numbers of CD4+ T
cells and IgA-producing plasma cells (130), and elevated levels of
serum IgE and anaphylaxis (129). Notably, this phenotype can be
reversed by introducing commensal microbes before two weeks
of age but not after, implying that microbial colonization must be
achieved within a narrow perinatal period known as the “window
of opportunity” (129–132). However, more studies into how the
gut microbiome influences human neonatal humoral responses
are needed. Due to differences in microbial colonization, infants
and adults can mount distinct antibody response to pathogens. A
bias towards HIV envelope (i.e., gp41) specific antibodies that
cross react with commensal bacteria has been observed in HIV
infected and uninfected adults, but gp41 dominant antibody
responses are not observed during pediatric HIV infection (133,
134). This highlights how immune imprinting by the
microbiome can modulate antibody specificities and that
targeting the microbiome could be a novel strategy for
engineering humoral responses to vaccination in early life.
Antibody Responses to Pathogens
and Vaccines in Early Life
Early Life Humoral Responses to Pathogens
Despite the attenuated humoral responses in early life to
encapsulated bacteria such as Hib and Streptococcus pneumoniae,
infants and young children are able mount robust antibody
responses to some pathogens. For instance, infants generate
antibodies that neutralize diverse HIV strains by targeting
conserved epitopes (known as broadly neutralizing antibodies,
bnAbs). BnAbs develop in a small proportion (10–25%) of HIV-
infected adults after years of infection, yet studies have revealed that
bnAbs can be detected within 1 year of infection in HIV-infected
infants (135, 136). Unlike in HIV-infected adults where plasma
neutralizationbreadth is usuallymediatedbyantibodies against one
or two specificities, a high portion of children (63%) develop
polyclonal broadly neutralizing antibody responses against HIV
(137). Adult bnAbs often have unusual characteristics such as high
SHM rates, which may contribute to their delayed development in
adults (133). Strikingly, high levels of SHM seem to be less
important in pediatric bnAbs as two bnAbs, BF520.1 and AIIMS-
P01, isolated fromHIV-infected children demonstrate neutralizing
potency comparable to adult bnAbs but have much lower SHM
rates (6.6 and 7% versus 15.8 to 23.1%) (138, 139). Wiehe et al.
compared the number of rare i.e., improbable mutations required
for different antibody lineages to acquire heterologous virus
neutralization capacity and showed that BF520.1 had fewer
improbable mutations than adult bnAbs; however, an improbable
mutation, N52A, was essential for neutralization potency,
highlighting that such mutation events may be important for
generating bnAbs in HIV-infected infants (140). These studies on
HIVbnAbshighlight that thedevelopmental pathways for bnAbs in
infants may differ from adults and young children may even be
better at generating bnAbs (136).
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Potently neutralizing antibodies with limited rates of SHM
have been observed in RSV infections in early life as well.
Goodwin et al. analyzed antibodies isolated from memory B
cells of infants (<3 months of age) hospitalized for RSV infection
and observed that the majority of the RSV-specific antibodies did
not have detectable SHM. Yet, antibodies from each of the
infants demonstrated neutralizing activity against RSV and 4
out of 5 had highly potent neutralizing activity (141). Although
the authors did not test whether these antibodies prevented RSV
reinfection, this study demonstrated that, even with limited levels
of SHM, antibodies generated in early life may still have
substantial anti-pathogenic i.e., neutralizing capabilities.

Humoral Responses to Vaccines in Early Life
Due to immaturity, fewer co-stimulatory receptors, lower SHM
rates, limited class-switching, and maternal antibody interference,
infant humoral responses to vaccination are often attenuated
compared to adulthood. Neonatal immunizations often result in
low-titer responses, reduced durability, and poor seroconversion
rates. An ideal neonatal vaccine should induce a robust and durable
immune response with a single dose at birth, thereby minimizing
vulnerability to infections. Yet, only 50% of infants generate a weak
neutralizing antibody titer following one dose of the oral polio
vaccine, and infants have limited responses to one dose of the
diphtheria, pertussis, tetanus (DTaP) andHib vaccines [reviewed in
(124)]. Overall, vaccine-induced antibodies wane to low or
undetectable levels 6 to 9 months after the first dose in most
infants, Thus, except for the BCG and HepB vaccines, most
pediatric vaccines are administered after 2 months of age in a
series of booster doses including: the rotavirus vaccine (2 and 4
months), DTaP vaccine (2, 4, 6, and 15–18months), Hib conjugate
vaccine (2, 4, 6, 12–15 months), pneumococcal conjugate vaccine
(2, 4, 6, 12–15months), polio vaccine (2, 4, 6–18months), seasonal
influenza vaccine (>6 months), measles, mumps, and rubella
vaccine (12 months), varicella vaccine (12 months), and hepatitis
A vaccine (12–18 months) [reviewed in (142)].

Notably, newborns can mount adult-like antibody responses
following HepB vaccination (79). This highlights that certain
stimuli may be better able to induce a protective immune
response via vaccination in early life. In fact, when comparing
adult and infant responses to HIV vaccines, we observed that
children immunized with an oil-in-water emulsion adjuvant
(MF59) developed higher antibody titers than adults immunized
with the same vaccine, yet no difference was observed between
adults and infants when immunized with an Alum-adjuvanted
vaccine (143). These results suggest that the choice of the vaccine
adjuvant can significantly improve antibody responses early in life,
as discussed below.
LEVERAGING KNOWLEDGE OF EARLY
LIFE ADAPTIVE IMMUNITY

Vaccination Strategies to Engage Infant
Adaptive Immunity
Given the particularities of early life adaptive immunity,
vaccination strategies must be specifically tailored to this stage
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of immune development [reviewed in (144–146)]. As discussed,
early life T cell responses are limited due to differences favoring
innate and effector over adaptive memory responses,
immunotolerance, and an enrichment of RTEs and Tregs.
Moreover, the ability to generate long-lived plasma B cells and
antibody responses in early life is limited due to immaturity,
maternal antibody interference, poor germinal center formation,
and reduced T and B cell crosstalk. Work in mouse models
suggests that T follicular helper cell (TFH) interactions with
germinal center B cells are impaired in neonatal immunization
[(147–149) reviewed in (145)]; however, studies on early life
germinal center responses and TFH cells in humans are lacking
[reviewed in (146)].

A promising approach to improve adaptive immune responses
to vaccines in early life is through the informed choice of vaccine
adjuvants and novel adjuvant combinations, which can stimulate
both adaptive immune cells and recruit innate antigen-presenting
cells [reviewed in (150)]. For instance, the vaccine adjuvant MF59
elicited robust antigen-specific T cell responses and prevented
disease acquisition in infants vaccinated against influenza (151,
152). Studies in neonatal mice suggest that MF59 may improve
effecter CD4+ T cell but not TFH responses, though MF59 may
enhance germinal center responses compared to Alum (153, 154).
Moreover, adjuvants targeting TLRs in early life have been shown
to boost early life adaptive immunity in humans and animal
models. Adjuvants combining Alum with TLR4 (GLA-squalene
emulsion (SE)] or TLR9 (CpG-1826 and IC31) were able to induce
TFH responses in neonatal mice (149, 155). Indeed, a TLR7/8
agonist adjuvant 3M-052 overcame the hyporesponsiveness to the
pneumococcal conjugate vaccine at birth (156). The TLR4 agonist,
monophosphoryl lipid A (MPL), combined with Quillaja
saponaria (QS-21), an adjuvant called AS01, also enhanced
polyfunctional T cell responses in a recent malaria vaccine trial
in young infants (157, 158). Furthermore, infant rhesus macaques
immunized against HIV with adjuvants such as MF59, AS01, and
3M-052/SE had higher magnitude and avidity antibody responses
compared to those immunized with Alum (159). Infant rhesus
macaques immunized with the 3M-052/SE TLR activating
adjuvant also had higher HIV-specific B cell responses, showing
that these adjuvants can elicit strong B cell and humoral responses
in early life (159). Moreover, a novel C-type lectin agonist
(CAF01) and other pathogen-derived adjuvants (LT-K63 and
mmCT) were able to enhance germinal center responses in
neonatal mice (154, 155, 160). These studies highlight that
newer adjuvants can greatly improve adaptive T cell and
humoral immune responses in early life.

Induction of long-lasting vaccine-elicited immunity in early
life must also involve optimization of the infant immunization
schedule. We have demonstrated in infant rhesus macaques that
extending the interval between HIV immunizations from 3 to 6
weeks increased the durability of antibody responses and
promoted the generation of high avidity HIV-specific
antibodies (159). Increasing the time between immunizations
may allow for improved long-lived plasma cell and antigen-
specific memory B cell development. However, human studies
comparing different immunization intervals for eliciting antigen-
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specific T cell and humoral responses in early life are lacking,
highlighting the need for more research as to the most efficacious
interval between booster doses. Moreover, the timing of certain
vaccines and coordination of vaccine regimens must be
considered given that certain early life immunizations (e.g.,
BCG and pertussis) may also improve subsequent vaccine
responses by boosting adaptive immunity broadly.

Vaccination Strategies Using Passive
Maternal Antibody Transfer
Another way to overcome the challenges to generating persistent
humoral responses in neonates is to leverage passive maternal
antibody transfer. Vaccine-elicited IgG transferred transplacentally
and sIgA transferred via breast milk can protect neonates while
adaptive immunity matures. Maternal vaccination against influenza
and pertussis during pregnancy has been shown to be effective in
protecting infants (161, 162). Moreover, we recently showed that
maternal tetanus, diphtheria and pertussis (Tdap) vaccination
during pregnancy improved infant vaccine-specific antibody levels
when compared to prenatal vaccination (163). Importantly,
additional research into the antibody characteristics, such as
subtype and Fc glycosylation, that are most efficiently transferred
and that best enhance infant immunity is necessary to maximize the
benefits of such interventions [reviewed in (125)].

Considerations of maternal antibody interference with infant
B cell development and antibody responses must be considered
when integrating maternal vaccination strategies into the
pediatric vaccine schedule. A recent randomized control trial
of maternal Tdap vaccination suggested that infant vaccination
may need to be delayed in the setting of maternal immunization
(164, 165). Moreover, maternal immunization in the late
secondary trimester led to improved infant antibody levels
compared to third trimester vaccination (163). Thus, strategies
to improve early life immunity through interventions aimed
directly at the neonate and indirectly though maternal
immunization must be coordinated.
CONCLUDING REMARKS

Though early life adaptive immune responses to pathogens and
vaccinations are limited, the neonatal immune system is clearly
capable of generating antigen-specific T and B cell responses.
Importantly, the immunologic milieu, immune stimulus, and
immune cross-talk from maternal antibodies and microbial
colonization are key regulators of infant adaptive immune
responses, which must be considered when developing
immune-based interventions for early life. In order to harness
infant adaptive immunity through vaccination, the informed use
adjuvants and optimization of vaccine schedules will be essential.
Moreover, immunization strategies targeting mother-infant
dyads and passive maternal antibody transfer are a promising
strategy for protecting neonates during this vulnerable period of
immune development. Significant work remains in this
specialized area of human immunology, yet the unique nature
of the infant immune system need not be viewed as a barrier to
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developing effective therapies. By translating our knowledge of
early life adaptive immunity, we can develop targeted
interventions that improve pediatric health on a global scale.
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25. Zhang X, Mozeleski B, Lemoine S, Deŕiaud E, Lim A, Zhivaki D, et al. CD4 T
cells with effector memory phenotype and function develop in the sterile
environment of the fetus. Sci Transl Med (2014) 6:238ra72. doi: 10.1126/
scitranslmed.3008748

26. Halkias J, Rackaityte E, Hillman SL, Aran D, Mendoza VF, Marshall LR, et al.
CD161 contributes to prenatal immune suppression of IFN-g-producing PLZF+
T cells. J Clin Invest (2019) 129:3562–77. doi: 10.1172/JCI125957

27. Gibbons D, Fleming P, Virasami A, Michel ML, Sebire NJ, Costeloe K, et al.
Interleukin-8 (CXCL8) production is a signatory T cell effector function of
human newborn infants. Nat Med (2014) 20:1206–10. doi: 10.1038/nm.3670

28. Scheible KM, Emo J, Laniewski N, Baran AM, Peterson DR, Holden-Wiltse J,
et al. T cell developmental arrest in former premature infants increases risk
of respiratory morbidity later in infancy. JCI Insight (2018) 3:e96724.
doi: 10.1172/jci.insight.96724

29. Rudolph ME, McArthur MA, Barnes RS, Magder LS, Chen WH, Sztein MB.
Differences between pediatric and adult T Cell Responses to in vitro
staphylococcal enterotoxin B stimulation. Front Immunol (2018) 9:498.
doi: 10.3389/fimmu.2018.00498
January 2021 | Volume 11 | Article 595297

https://doi.org/10.1056/NEJMra1111853
https://doi.org/10.1056/NEJMra1111853
https://doi.org/10.1016/S0140-6736(14)61698-6
https://doi.org/10.1016/S2214-109X(19)30163-9
https://doi.org/10.1016/S0140
http://www.thelancet.com
https://doi.org/10.3389/fimmu.2015.00077
https://doi.org/10.1016/j.immuni.2017.03.009
https://doi.org/10.1038/nri.2017.54
https://doi.org/10.1016/B978-0-12-394299-9.00003-5
https://doi.org/10.1016/B978-0-12-394299-9.00003-5
https://doi.org/10.1016/j.immuni.2012.02.006
https://doi.org/10.1126/science.aaz9330
https://doi.org/10.1038/nri1394
https://doi.org/10.1146/annurev-immunol-091319-083608
https://doi.org/10.1016/j.cell.2018.06.045
https://doi.org/10.1016/j.vaccine.2011.12.047
https://doi.org/10.1111/pai.12023
https://doi.org/10.1084/jem.181.4.1445
https://doi.org/10.1084/jem.181.4.1445
https://doi.org/10.1084/jem.168.3.1061
https://doi.org/10.1182/blood-2002-11-3591
https://doi.org/10.1126/scitranslmed.aaa0072
https://doi.org/10.1126/scitranslmed.aaa0072
https://doi.org/10.1038/nm.4008
https://doi.org/10.1084/jem.20080996
https://doi.org/10.4049/jimmunol.1700551
https://doi.org/10.1172/jci.insight.93739
https://doi.org/10.1073/pnas.1221955110
https://doi.org/10.1126/scitranslmed.3008748
https://doi.org/10.1126/scitranslmed.3008748
https://doi.org/10.1172/JCI125957
https://doi.org/10.1038/nm.3670
https://doi.org/10.1172/jci.insight.96724
https://doi.org/10.3389/fimmu.2018.00498
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Semmes et al. Infant Adaptive Immunity and Vaccines
30. Mold JE, Michaëlsson J, Burt TD, Muench MO, Beckerman KP, Busch MP,
et al. Maternal alloantigens promote the development of tolerogenic fetal
regulatory T cells in utero. Science (80- ) (2008) 322:1562–5. doi: 10.1126/
science.1164511
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