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Abstract: Climate warming can affect freeze–thaw cycle (FTCs) patterns in northern high-latitude
regions and may affect permafrost carbon emissions. The response of carbon release and microbial
communities to FTCs has not been well characterized. Here, we conducted laboratory incubation
experiments to investigate the relationships among carbon emissions, bacterial community, and
soil variables in a permafrost-affected forest–wetland ecotone in Northeast China. The emission
rates of CO2 and CH4 increased during the FTCs. FTC amplitude, FTC frequency, and patch type
had significant effects on carbon emissions. FTCs increased the contents of soil DOC, NH4

+-N, and
NO3

−-N but reduced bacterial alpha diversity. CO2 emissions were mainly affected by bacterial alpha
diversity and composition, and the inorganic nitrogen content was the important factor affecting CH4

emissions. Our findings indicated that FTCs could significantly regulate CO2 and CH4 emissions by
reducing bacterial community diversity and increasing the concentration of available soil substrates.
Our findings shed new light on the microorganism-substrate mechanisms regulating the response
patterns of the soil carbon cycle to FTCs in permafrost regions.

Keywords: climate warming; permafrost degradation; freeze–thaw cycle; methane; carbon dioxide;
bacterial community

1. Introduction

The global air temperature is expected to increase by more than 1.5–2 ◦C in this century
if no effective emission reduction measures are taken [1]. Under a warming climate, the
carbon cycle in permafrost regions will make a major contribution to the global carbon
budget due to its large amount of stored carbon and the high sensitivity of carbon release to
temperature [2–4]. Permafrost degradation, including a deeper active layer, and reduction
of permafrost areas have been widely observed in northern high latitudes [5–7], and this
process can promote the microbial utilization of soil organic matter that has accumulated
over the past thousands of years [8,9].

Climate warming can increase soil temperature and thaw permafrost, which can
increase microbial activities and promote the decomposition of organic matter; it can also
alter soil freeze–thaw cycle (FTCs) patterns. FTCs play a vital role in the soil biogeochemical
process [10,11] via several mechanisms. First, phase changes of soil water in the freezing
phase can destroy soil aggregate structure and promote the release of nutrients from soil
lattices and colloids [12]. The melting of ice can increase the liquid water content of the soil,
which can benefit the growth of anaerobic microorganisms [13]. Second, low temperature
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during the freezing stage can lead to the death of some microorganisms and plant roots. The
nutrients and carbon substrate released from this organic matter can be used by survivors
in the thawing stage to further enhance soil respiration [14,15]. Third, greenhouse gases
produced during the freezing period remain in soil due to a physical barrier [16], and these
gases can be released after the melting of ice [17]. Therefore, FTCs have a strong effect on
CH4 and CO2 emissions, and peak values usually occur during the initial phase of spring
and autumn FTCs [18]. Although the mechanisms and processes underlying the effects of
FTCs on greenhouse gases have been studied, the quantitative effects of FTCs on carbon
release have not yet been characterized. This knowledge gap can introduce significant
uncertainty in future predictions of the permafrost carbon cycle.

In northern permafrost regions, climate warming rapidly leads to the degradation of
permafrost [19], and this will alter the soil hydrothermal process and result in changes in
vegetation composition and community succession [20,21]. Vegetation type can also affect
soil carbon emissions [22,23]. Therefore, the ecological ecotone also requires consideration
in studies of permafrost carbon release given that soil moisture levels, thermal regimes,
and microhabitat types vary among ecological ecotones [24]. However, the response of
soil carbon emissions and the bacterial community to the FTCs in different ecotones of
permafrost regions are rarely known.

The DaXing’an Mountains, located on the southern boundary of the Eurasian per-
mafrost zone, have experienced rapid warming over the past 100 years [25]. This area
provides an excellent opportunity to examine the effects of FTCs on ecotones because it
is a high-temperature permafrost region. Here, we collected soil samples from forest and
wetland patches to investigate the effects of FTCs on the release rates of greenhouse gases
and the factors driving them using laboratory experiments. The main goals of this study
were to (1) determine the effect of FTC amplitude and frequency on soil carbon emissions
and the bacterial community in different forest–wetland ecotones and (2) investigate the
mechanisms underlying the regulation of the microbial community and substrate avail-
ability for CO2 and CH4 emissions under FTCs. We hypothesized that FTCs and ecotone
type have a strong effect on soil carbon emissions and bacterial community structure, and
FTCs might regulate CO2 and CH4 emissions by altering bacterial community diversity
and increasing available soil substrates.

2. Materials and Methods
2.1. Site Description

This study was performed in a permafrost-affected forest–wetland ecotone in Beiji
town, Daxing’an Mountains, Northeast China (Figure 1). The area experiences a typical
cold temperate continental monsoon climate with an annual mean air temperature and
precipitation of −2.19 ◦C and 549.9 mm, respectively [26]. The depth of the active layer
is approximately 90–100 cm and 125–135 cm in wetland and forest patches, respectively,
and measurements of the active layer were taken manually using a stainless steel drill in
September 2020. The multiple diurnal FTCs begin in early May, and the spring FTC period
lasts approximately two weeks; the autumn FTC period lasts approximately a week in mid-
October [26]. The dominant species of the forest patches are Larix gmelina Ruprecht, Ledum
palustre Linn., Betula ovalifolia Ruprecht, and Vaccinium uliginosum Linn., and Eriophorum
vaginatum Linn. mainly occurs in wetland patches.

2.2. Soil Sampling and Experimental Design

In early September 2020, three Larix gmelina Ruprecht forest patches and Eriophorum
vaginatum Linn. wetland patches in the forest–wetland ecotone were selected for sam-
pling. Three soil cores (0–10 cm) were collected with a soil auger after removing the litter
and aboveground vegetation in each patch [27,28]. The samples were divided into three
subsamples. One subsample was used for bacterial analysis, the second subsample was
sieved by a 4 mm mesh filter for incubation experiments and used for measurements of
the content of soil dissolved organic carbon (DOC), ammonium nitrogen (NH4

+-N), and
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nitrate nitrogen (NO3
−-N) [29]; the rest of the soils were sieved through a 0.25 mm mesh

filter after being air-dried to determine soil pH.
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Figure 1. Sampling sites of forest–wetland ecotone in Northeast China.

Fresh soil (equivalent to 20 g of dry soil) with field moisture levels was incubated in
500 mL glass bottles. The samples were preincubated at 5 ◦C for 5 days before the FTC
experiment to restore the normal activity of soil microorganisms [30–32]. The soil was
frozen for 24 h and thawed for 24 h, which corresponded to a single FTC. The two FTC
amplitudes were −5–5 ◦C and −10–10 ◦C, respectively [33]. After preincubation (CK) and
the 1st [32,33], 3rd (close to the shortest FTC duration of 10 cm soil depth, 5 days), and
9th FTCs (close to the longest FTC duration of 10 cm soil depth, 17 days) [26], 10 mL gas
samples were collected with a syringe with a three-way valve, and were analyzed using a
gas chromatograph (Agilent 7890B, USA) (Table 1). Emission rates of CO2 and CH4 were
calculated according to Lang et al. [34].

Table 1. Details of the FTC simulation experiment.

Ecotone Soil Water Content FTC Amplitude FTC Period Sampling Time

Forest patches Field water content
(23.38 ± 0.81%) −5–5 ◦C and

−10–10 ◦C

2 days (the treated sample was
frozen at −5 ◦C or −10 ◦C for 24 h

and thawed at 5 ◦C or 10 ◦C for 24 h)

After preincubation
(CK) and the 1st, 3rd,

and 9th FTCsWetland patches Field water content
(84.41 ± 5.36%)

The soil carbon and nitrogen contents were measured after preincubation and the 1st,
3rd, and 9th FTCs. The DOC content was extracted by mixing soil samples with distilled
water, shaking for 30 min, then centrifuging at 8000 rpm for 20 min [35] and supernatant was
filtered by 0.45 µm filter membrane and then determined by TOC analyzer (Multi N/C 2100
analyzer Analytik Jena, Germany). Extraction of the content of soil NH4

+-N and NO3
−-N

was performed using 2 mol L−1 KCl solution and shaking for 1 h [36], and was measured
with a continuous flowing analyzer (SAN++ Skalar, Netherlands). Measurement of soil
pH used a pH meter (PHS-25, Shanghai, China) at 1:10 soil water ratio [37]. Soil moisture
content was determined by the weighting method after drying at 105 ◦C for 12 h [38].
In this study, the soil water content and pH of the forest patches were 23.38 ± 0.81%
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and 5.04 ± 0.04, respectively; the soil water content and pH of the wetland patches were
84.41 ± 5.36% and 4.84 ± 0.01, respectively.

2.3. Soil Microbial Analysis

Soil bacterial community samples were taken after preincubation and the 1st, 3rd, and
9th FTCs. An E.Z.N.A.® soil DNA kit (Omega Bio-tek, Norcross, GA, USA) was used for
extracting genomic DNA of microbial communities. DNA quality was estimated using 1%
agarose gel electrophoresis, and measured by NanoDrop 2000 spectrophotometer (Thermo
Scientific, Waltham, MA, USA). Amplification of 16S rRNA gene occurred by the primer
pairs 515F (5′-GTGCCAGCMGCCGCGG-3′) and 806R (5′-GGACTACHVGGTWTCTAAT-
3′). The details of thermal cycling were pre-denaturation for 3 min at 95 ◦C, 27 cycles (30 s
at 95 ◦C, 30 s at 55 ◦C, and 45 s at 72 ◦C), and ultimately extension at 72 ◦C for 10 min.
Each sample had three replicates. An AxyPrep DNA Gel Extraction Kit was used for the
purification of PCR products (Axygen Biosciences, Union City, CA, USA), quantification
for Quantus™ Fluorometer (Promega, Madison, WI, USA), and sequencing was performed
on Illumina MiSeq PE300 platform (Illumina, San Diego, CA, USA).

The quality of the original sequences was controlled using Fastp software [39] spliced
with Flash software [40]; sequences were clustered according to 97% similarity using
UPARSE software [41], and chimeras were removed [41,42]. Each sequence was annotated
using RDP classifier [43], the Silva 16S rRNA database (Silva v138) was compared, and the
comparison threshold was set to 70%. The OTU table was rarefied at the lowest sequencing
depth of the experimental samples. All the raw sequences have been deposited in the NCBI
database under accession number PRJNA872837.

2.4. Data Analysis

SPSS 20.0 was used for statistical analysis. Differences in the soil carbon content,
nitrogen content, and carbon emissions among experimental treatments or patch types
were evaluated using independent samples t-tests [44]. Three-way ANOVA was performed
to evaluate the effect of FTC amplitude, FTC frequency, patch type, and interactions on soil
carbon content, nitrogen content, and carbon emissions [45]. Stepwise regression analysis
was performed to analyze the main controlling factors of soil carbon emissions [46]. Redun-
dancy analysis (RDA) used CANOCO 5.0 to clarify the relationship between soil substrates
and bacterial phyla [47]. Non-metric multidimensional scaling (NMDS) and partial least
squares discriminant analysis (PLS-DA) were performed using the Majorbio cloud platform
to clarify the feedback of bacterial community structure to FTCs [48–50]. Student’s t-tests
were carried out to determine differences in alpha diversity among treatments [51]. Other
figures were drawn in Origin 2022b.

3. Results
3.1. Soil Carbon Emissions of Forest and Wetland Patches after FTCs

Compared with the preincubation period, higher CO2 and CH4 emissions were found
during FTCs, and this effect was more pronounced in the −10–10 ◦C treatment (p < 0.05).
FTC frequency increased the CO2 emission rates and decreased the CH4 emission rates in
both the forest patches and wetland patches (Figure 2). The forest patches had a higher CO2
emission rate, and the wetland patches had a higher CH4 emission rate. FTC amplitude,
FTC frequency, and patch type significantly affected CO2 and CH4 emissions (p < 0.05)
(Table S1).

3.2. Soil Bacterial Community Composition and Diversity after FTCs

Chloroflexi, Actinobacteriota, Proteobacteria, Acidobacteriota, and Firmicutes were
the dominant phyla across all control samples and FTC treatments and accounted for more
than 80% of all taxa, excluding unclassified bacteria (Figure 3). No significant differences
were found in the relative abundance of bacterial phyla under treatments with different
FTC frequencies. Therefore, we compared the average relative abundances of bacterial
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phyla in the treatments with the three FTCs with those of the preincubation samples. FTCs
significantly increased the relative abundance of Actinobacteriota in forest and wetland
patches under both FTC amplitudes (−5–5 ◦C and −10–10 ◦C). The relative abundances
of Bacteroidota and Myxococcota decreased regardless of the FTC amplitude and patch
type. Significant decreases were observed in a greater number of bacterial taxa in the
wetland patches compared with the forest patches. Significant decreases in Chloroflexi and
Acidobacteriota were only observed in the wetland patches (Figure 4).

Shannon index slightly decreased after FTCs, and the FTC amplitude had no significant
effect on the Shannon index in both wetland and forest patches. The Shannon index in
forest patches was significantly higher than that in wetland patches (Figure 5). The NMDS
analysis revealed differences in the soil bacterial community between preincubation and
FTC treatments (Figure 6a,b). To clarify the effects of FTC amplitude and frequency on
bacterial communities, we used PLS-DA, by which random differences between groups
were ignored and systematic differences between groups were highlighted (Figure 6c,d).
Comp 1 revealed a contrast between the two FTC amplitudes in the wetland patches,
suggesting that FTC amplitude in the wetland patches had significant effects on bacterial
community structure (Figure 6d). Although comp 1 and comp 2 did not separate groups in
the forest patches, obvious separation between groups was still observed (Figure 6c).
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(d) wetland patches, −10–10 ◦C FTC treatment. Values in column represent the relative abundance of
bacteria on phylum level.
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3.3. Soil Substrates of Forest and Wetland Patches after FTCs

The initial DOC content of the wetland patches and forest patches was 84.02± 2.26 mg kg−1

and 48.91 ± 12.09 mg kg−1, respectively. After various FTCs, the DOC content increased
under the two FTC amplitudes (Figure 7). There was a significant difference in the average
rate of increase in the DOC content between the forest patches (−5–5 ◦C: 99.36 ± 14.24%;
−10–10 ◦C: 107.02 ± 14.86%) and wetland patches (−5–5 ◦C: 47.39 ± 4.57%; −10–10 ◦C:
42.73 ± 15.51%) (p < 0.05) (Table S2). FTCs had no significant effect on the NH4

+-N
content (Table S2). The percent increase in the content of NO3

−-N was significantly
higher under the −10–10 ◦C treatment (forest patches: 77.43 ± 23.08%; wetland patches:
82.37 ± 19.66%) than under the −5–5 ◦C treatment (forest patches: 49.71 ± 4.15%; wetland
patches: 50.74 ± 7.81%).
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3.4. Relationship among Soil Carbon Emissions, the Soil Bacterial Community, and Soil Substrates

The two axes of the RDA explained 82.89% of the total variances between bacterial
phyla and the soil carbon and nitrogen contents (Figure 8a). The DOC and NO3

−-N con-
tents were the most important factors affecting bacterial phyla, which explained 56.38%
and 26.51% of the variances, respectively. The relative abundance of Actinobacteriota and
Proteobacteria has a significantly positive relationship with soil DOC content, while it was
significantly negative related with the NH4

+-N content. The relative abundance of Chlo-
roflexi showed a significantly positive correlation with soil NH4

+-N content, while it was
significantly negatively correlated with the NO3

−-N content. The correlations between soil
bacterial phyla and substrates were slightly different between two patch types (Figure 8b,c).
In forest patches, the relative abundance of Proteobacteria was significantly negatively
correlated with DOC content. In wetland patches, NH4

+-N content was significantly
positive correlated with Firmicutes and negatively correlated with Actinobacteriota. The
correlations between Proteobacteria and DOC content as well as Chloroflexi and NO3

−-N
content were opposite for forest and wetland patches.
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Figure 8. Redundancy analysis of soil bacterial phyla and the soil carbon and nitrogen contents in
forest–wetland ecotone (a), forest patches (b) and wetland patches (c).

Correlation analysis showed that the CH4 emission rate was significantly positively
correlated with soil DOC, NO3

−-N contents, and Shannon index (Figure 9). CO2 emission
rate had a significantly negative relationship with Shannon index, while it was positively
correlated with bacterial composition (Figure 9). In addition, soil CH4 and CO2 emis-
sion rates showed the same correlation with substrates and bacterial diversity in different
patches (Figure S1). To remove multicollinearity, stepwise multiple linear regression was
used to find out the main biological and non-biological factors affecting CH4 and CO2
emissions in different patches (Table 2). Regardless of patch type, CO2 and CH4 emissions
were affected by Proteobacteria. The main non-biological factors affecting the CH4 emission
rate were NO3

−-N in forest patches and the NH4
+-N and NO3

−-N content for wetland
patches. Variation in CO2 emissions was largely explained by Chloroflexi, Proteobacteria,
Actinobacteriota, MBNT5, and Gemmatimonadota for forest patches and by the Actinobac-
teriota, Proteobacteria, Acidobacteriota, Gemmatimonadota, and Desulfobacterota for
wetland patches.
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Figure 9. Pearson correlations among soil carbon emissions, bacterial diversity, and substrates after
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significant correlations at the 0.05 level.

Table 2. The biological and abiotic factors related to CO2 and CH4 emission rates in forest and
wetland patches.

Patch type Adjusted R2 F-Statistic p Significant Variables
(p < 0.05) Beta Coefficient

Forest
patches

Biological
factors

CH4 0.894 5.751 0.035
Proteobacteria 0.575
Bacteroidota 1.145

CO2 0.878 18.487 <0.001

Chloroflexi −0.547
Actinobacteriota 0.295
Proteobacteria −0.423

MBNT15 0.646
Gemmatimonadota −0.608

Non-biological
factors

CH4 0.456 11.254 0.029 NO3
−-N 0.536

CO2 0.312 8.727 0.009 DOC 0.594

Wetland
patches

Biological
factors

CH4 0.316 13.617 0.04
Proteobacteria 1.689

Firmicutes −1.295
Patescibacteria −1.287

CO2 0.729 8.643 0.01

Actinobacteriota 2.181
Proteobacteria −1.370

Acidobacteriota 0.646
Gemmatimonadota 0.672

Desulfobacterota 0.518

Non-biological
factors

CH4 0.689 19.842 0.009
NH4

+-N −0.712
NO3

−-N 0.615

CO2 - - - None -

Note: For the linear regressions, we standardized predictors (mean = 0, SD = 1) to permit the interpretation of
coefficients as effect sizes.
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4. Discussion
4.1. Response of Carbon and Nitrogen to FTCs

In this study, FTCs increased the contents of DOC, NH4
+-N, and NO3

−-N both under
the−5–5 ◦C and−10–10 ◦C treatments for the two patches. Previous findings also reported
that DOC content significantly increased after FTCs in peatlands in Northeast China [52],
pristine grassland soil of southern Edmonton [53], sub-arctic heath tundra mesocosms [54],
and meadows in the Sanjiang Plain [55]. The FTC amplitude had no significant effects on
DOC content, which could be due to the fact that DOC is easily mineralized by microor-
ganisms [56]. In this study, the soil carbon emission increased with FTC amplitude, which
might indicate a rapid consumption of DOC at the −10–10 ◦C treatment. The FTCs can
significantly increase NH4

+-N content [57], which is related to the conversion of nitrogen
in soil [58]. During FTCs, the NO3

−-N content increases when the production of nitrogen
via mineralization and nitrification is higher than its consumption via denitrification [55].
With the increase of FTC frequency, the increase rate of carbon and nitrogen contents
reduced, indicating that the first FTC already stimulated the maximum release of soil
substrates [58,59]. Generally, FTCs increase the contents of carbon and nitrogen by killing
microbial cells [60], which can release nutrients inside microbial cells into soil solution [61].
FTCs can also physically destroy soil aggregates and release nutrients [62,63]. The organic
macromolecules will break down into smaller organic molecules when combined with soil
aggregates, which further increases the DOC content [64].

4.2. Soil Bacterial Community Composition and Diversity Respond to FTCs

The response of the relative abundance of bacteria to FTCs varied among phyla. Some
bacterial phyla are resistant to FTCs, and FTCs eventually result in decreases in less com-
petitive phyla [65]. In this study, FTCs significantly increased the relative abundance of
Actinobacteriota, which was consistent with previous studies [65–68]. This might be related
to the filamentous and spore-forming properties of Actinobacteria, which can improve their
ability to acquire resources during FTCs [69]. Männistö et al. [70] found that the relative
abundances of Proteobacteria in arctic tundra significantly decreased after FTCs. In this
study, FTCs decreased the abundance of Proteobacteria in the forest patches, which might
stem from the fact that the increase in the abundance of Actinobacteriota was greater in
the forest patches than in the wetland patches. Actinomycetes can produce secondary
metabolites such as antibiotics under pressure, which allows them to outperform Proteobac-
teria [71]. Firmicutes include spore-forming groups such as Clostridia, which leads to its
resistance to environmental interference [72]. The relative abundance of Firmicutes in both
forest and wetland patches did not respond significantly to FTCs [70]. Gemmatimonadota
prefer dry environments [73], and freezing may reduce the soil water supply and result
in desiccation; however, the subsequent thawing process might induce rapid changes in
the osmotic pressure balance inside and outside of cells, which can result in decreases in
microbial activity [74]. Thus, the relative abundances of Gemmatimonadota decreased
significantly after FTC treatment in Han et al. [66].

In this study, the relative abundance of Actinobacteriota and Proteobacteria has a
significantly positive relationship with soil DOC content, which was agreed with Fierer
et al. [75] and Schostag et al. [76]. The oligotrophic Acidobacteria significantly negatively
correlated with soil DOC content [77]. Moreover, the relative abundance of Acidobacteria
showed significant correlation with inorganic nitrogen content in different patches because
Acidobacteria have multiple transport systems that promote ammonia, amino acids, and
maintain growth by immobilizing inorganic nitrogen in the soil [78,79]. The correlations be-
tween bacterial phyla and substrates were slightly different between two patch types, which
is reasonable because the original physico-chemical variables are different. For example,
soil water contents greatly affected the changes in bacterial community composition [80].

Shannon index slightly decreased after FTCs, indicating that richness declined after
FTCs. Changes in soil moisture, temperature, and substrate can directly or indirectly affect
bacterial community structure [50,81,82]. In our study, the FTC amplitude and frequency
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had no significant effects on soil bacterial alpha diversity, but significant differences were
observed between the two patches. These findings were consistent with the study of
Ji et al. [83], showing that the bacterial alpha diversity of permafrost reflects adaptation to
FTC stress. Generally, FTCs cause changes in the water phase, which changes the microbial
niche and, thus, affects microbial diversity [84], and the significant differences in the soil
water content between forest and wetland patches might explain the differences in soil
bacterial alpha diversity between the two patches. NMDS and PLS-DA showed that both
the amplitude and frequency of FTCs affected soil bacterial beta diversity, indicating that
FTCs altered the structure of the soil bacterial community [85–87].

4.3. Response of Soil Carbon Emissions to FTCs and Its Relationship with the Soil Bacterial
Community and Soil Substrates

FTCs increased the emission rates of CO2 and CH4, and this has been demonstrated in
several previous studies [32,33,88–90]. The increases in greenhouse gas emissions might be
related to the increases in soil carbon and nitrogen content caused by FTCs. Generally, FTCs
destroy soil aggregates and microbial cells through a transition phase of soil moisture and
low temperature, thereby releasing protected organic matter and enhancing the accessibility
of substrates for microorganisms [91,92]. FTC amplitude, FTC frequency, and patch type
significantly affected the CO2 and CH4 emission rates. FTC amplitude was significantly
correlated with soil carbon emissions, which can be explained by the fact that high-intensity
FTCs can supply more nutrients [93,94]. Although carbon emissions gradually decrease
when readily available soil substrates are depleted [58], there were only nine FTCs in
our experiment, which might be far from the number of FTCs that would be required to
generate limitations in the amount of available substrate.

There were significant correlations among soil substrates, the bacterial community,
and soil carbon emissions, and the stepwise regression analysis showed that the main
factors affecting CO2 and CH4 emissions were bacterial community and inorganic nitrogen
content. This result indicated that FTCs affect carbon emissions via soil substrates and the
bacterial community. Dong et al. [95] found there were significantly positive relationships
between CO2 emissions and most bacterial phyla abundances and diversity. Microbial
community structure in the permafrost region is also a good predictor of CO2 emissions [96].
Actinobacteriota can perform refractory carbon degradation [97], and their genomes are
thought to be rich in glycoside hydrolases that show good performance in cellulose, starch,
and xylan degradation [98]. Proteobacteria are thought to have a positive correlation with
the availability of carbon [76,99]. Significant negative relationships were observed between
Gemmatimonadota and CO2 emissions [100,101]. Chloroflexi can affect CO2 emissions
because the class Anaerolineae comprises anaerobic heterotrophic bacteria capable of
decomposing carbohydrates and amino acids [102,103]. We also found that CH4 emissions
were significantly correlated with NH4

+-N and NO3
−-N contents, which is consistent with

the results of Jiang et al. [104] and Zhang et al. [105]. This finding likely stems from the
ability of NO3

−-N and NH4
+-N to inhibit CH4 oxidation [106,107].

5. Conclusions

We examined the response of soil carbon emissions to FTCs in forest–wetland ecotone
in a permafrost zone. Based on laboratory incubation experiments, we found that soil
substrates as well as CO2 and CH4 emissions increased after the FTC treatment. FTCs
did not change the dominant phyla taxa, but greatly affected the bacterial communities
during different FTCs. FTC frequency, FTC amplitude, and patch type significantly affected
CO2 and CH4 emissions. CH4 emission was affected by inorganic nitrogen content, and
bacterial diversity and composition were the main factors affecting CO2 emissions. The
relationship among carbon emissions, soil substrates, and bacterial community suggested
that the accelerating effects of FTCs on CO2 and CH4 emissions were mainly related to
the increasing microbial utilization of substrates, and FTC should be considered in the
estimation of permafrost carbon emissions in a changing climate.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/microorganisms10101950/s1. Table S1: Three-way factorial ANOVA of
the effects of FTC amplitude, FTC frequency, patch type, and their interactions on CO2 and CH4
emission rates. Table S2: Three-way ANOVA for evaluating the effects of FTC amplitude, FTC
frequency, patch type, and their interactions on DOC, NH4

+-N, and NO3
−-N contents. Figure S1:

Pearson correlations among soil carbon emissions, bacterial diversity, and substrates in forest and
wetland patches.
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FTCs freeze–thaw cycles
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