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Abstract

Trauma represents the leading cause of death among young people in industrialized countries. Recent clinical and
experimental studies have brought increasing evidence for activation of the innate immune system in contributing
to the pathogenesis of trauma-induced sequelae and adverse outcome. As the “first line of defense”, the
complement system represents a potent effector arm of innate immunity, and has been implicated in mediating
the early posttraumatic inflammatory response. Despite its generic beneficial functions, including pathogen
elimination and immediate response to danger signals, complement activation may exert detrimental effects after
trauma, in terms of mounting an “innocent bystander” attack on host tissue. Posttraumatic ischemia/reperfusion
injuries represent the classic entity of complement-mediated tissue damage, adding to the “antigenic load” by
exacerbation of local and systemic inflammation and release of toxic mediators. These pathophysiological sequelae
have been shown to sustain the systemic inflammatory response syndrome after major trauma, and can ultimately
contribute to remote organ injury and death. Numerous experimental models have been designed in recent years
with the aim of mimicking the inflammatory reaction after trauma and to allow the testing of new
pharmacological approaches, including the emergent concept of site-targeted complement inhibition. The present
review provides an overview on the current understanding of the cellular and molecular mechanisms of
complement activation after major trauma, with an emphasis of emerging therapeutic concepts which may
provide the rationale for a “bench-to-bedside” approach in the design of future pharmacological strategies.

Introduction
Despite significant advances in injury prevention, prehos-
pital resuscitation strategies, and modern intensive care,
trauma remains the main cause of death in young people
in the United States, resulting in more years of potential
life lost before the age of 75 years than any other disease
[1-4]. Until present, the pathophysiology of major trauma
remains poorly understood [5,6]. In principle, the patho-
physiological sequelae of major injuries are characterized
by the initial traumatic impact (so-called “first hit”), fol-
lowed by a cascade of subsequent immunological reac-
tions, which render the patient susceptible to a potentially
detrimental “second hit” insult [7]. The activation of innate
immune response mechanisms has been characterized as a

crucial event initiating the early phase of hyperinflamma-
tion within hours to days after major trauma [6-8]. While
innate immunity is classically considered to be the
immediate “first line of defense” against non-self antigens
(e.g. infectious pathogens), a traumatic insult can induce a
similarly potent acute inflammatory response [9-13]. The
trauma-induced immune response may be limited locally,
as in isolated injuries, or result in a massive systemic
immune activation, as in patients with multiple injuries
[1]. The endogenous triggers of trauma-associated inflam-
mation have been thoroughly investigated and character-
ized in recent years [7,14]. The so-called “first hit” induced
by a traumatic impact leads to the appearance of an
arsenal of “damage-associated molecular patterns”
(DAMPs) that are recognized by receptors of immune
cells [15]. DAMPs represent a recently characterized large
superfamily of danger signals which can activate innate
immune responses after trauma or trauma-induced com-
plications, such as infection and sepsis [7,16]. The DAMP
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family of danger signals includes the so-called “pathogen-
associated molecular patterns” (PAMPs) and molecules
termed “alarmins” [17]. The list of molecules belonging to
the DAMP family has been increasing dramatically in
recent years, and their pathophysiological function in
mediating trauma-induced inflammation is far from being
fully understood [18]. PAMPs represent a heterogenic
entity of recently described inflammatory molecules
related to the innate immune system [17,19]. These micro-
bial molecules are recognized by the immune system as
foreign due to their characteristic molecular patterns. In
contrast, the so-called “alarmins” represent the correlate of
PAMPs for all non-pathogen-derived danger signals which
originate from tissue injury [17]. This heterogeneic group
of danger molecules is capable of activating innate
immune responses in response to tissue damage and cell
injury. The alarmins comprise the “heat-shock proteins”
(HSPs), annexins, defensins, as well as “classical” markers
of tissue injury, such as the S100 protein and the high
mobility group box 1 (HMGB1) protein [17,20].

Immunologically competent cells recognize both PAMPs
and DAMPs through multiligand receptors expressed on
their surfaces, such as Toll-like receptors (TLRs) [21,22].
The very early stage after tissue trauma is character-

ized by activation of cellular and molecular effectors of
the innate immune system, including complement acti-
vation and recruitment and activation of neutrophils
(polymorphonuclear leukocytes; PMNL) [6,7]. The com-
plement system appears to represent the crucial effector
of innate immune responses in the early phase after major
trauma [23-25]. Once the cascade is activated through one
of three (five) established pathways (Figure 1), comple-
ment plays a critical role in the elimination of invading
pathogens by opsonization for phagocytosis (C3b, C4b),
chemotaxis of leukocytes (C3a, C5a), and by direct lysis of
pathogens through the membrane attack complex (MAC,
C5b-9) [23,26,27]. The generation of anaphylatoxins C3a
and C5a provides potent chemoattractants for phagocytes
and neutrophils, and recruit these immune cells to the site
of injury [24,28,29]. The anaphylatoxins further induce

Figure 1 Overview on the complement activation pathways and biological effects mediated by complement products. See text for
details and explanations.
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degranulation of mast cells, basophils and eosinophils and
mediate the hepatic acute-phase response [30,31]. Finally,
the generation of C5b by cleavage of C5 initiates the term-
inal complement pathway with MAC formation. The
MAC forms through the self-association of C5b along
with C6 through C9 and leads to the formation of a large
membranolytic complex capable of lysing prokaryotic and
eukaryotic cells [32]. Multiple previous studies have
unequivocally shown that trauma activates complement,
both locally at the site of injury, and systemically. Early
studies in the 1980s revealed that the complement cascade
is activated at the level of C3 in serum of trauma patients,
and the extent of activation correlates with the severity of
injury [33,34].
The neutrophil (or PMNL) has been established as the

cellular counterpart to the humoral immune response
mediated by complement activation, and represents a
“key effector” cell of the early posttraumatic immune
response. Within minutes, and up to several days after
injury, neutrophils play an important role in mounting
the immunological defense and the debridement of
injured tissue. Primed neutrophils are capable of mediat-
ing an inflammatory response, characterized by release of
cytokines, chemokines, reactive oxygen species, and tis-
sue-toxic enzymes, such as myeloperoxidase and elastase
[20,35]. Aside from the beneficial role of neutrophils in
host-defense and clearance of damaged tissue after
trauma, excessive priming and cellular PMNL activation
may lead to an overwhelming inflammatory response and
“innocent bystander” injury to host tissue [35,36]. Unin-
jured tissue may become damaged by the local release of
toxic metabolites and enzymes, thus contributing to
remote organ injury (e.g. to brain and lungs), by contri-
buting to tissue edema and secondary tissue damage
[12,35,37-39].
Based on the delicate balance between protection and

harm, the posttraumatic inflammatory response has been
rightfully termed a “double-edged sword” [40-42]. The
present review will outline the current understanding of
complement activation and regulation after major trauma,
with a focus on specific injury patterns, including muscu-
loskeletal trauma, ischemia/reperfusion, chest and brain
injuries. We will furthermore discuss potential new phar-
macological strategies related to the targeted inhibition of
complement, which may shed some hope into the design
of new immunomodulatory treatment modalities for
severely injured patients in the future.

Complement activation and effector functions
The complement system represents one of the phylogen-
etically oldest cascade systems of the body, consisting of
a proteolytic cascade of more than 30 soluble and sur-
face-bound proteins that can be activated by the classical,
the lectin and the alternative pathway [32,43,44].

Recently, two additional complement activation pathways
have been described, i.e. the properdin and the thrombin
pathways, both of which will be discussed in more detail
below. Figure 1 depicts a rough schematic of the so far
known complement activation pathways and of the biolo-
gical functions of activated complement components. In
brief, the three main activation pathways converge in the
formation of enzymatic complexes termed the C3 con-
vertases and C5 convertases, which cleave the two main
components of the complement system, C3 and C5. The
two proteolytic fragments generated by the action of the
convertases are the anaphylatoxins C3a and C5a. Both
can trigger proinflammatory signaling through binding to
their corresponding receptors, the C3a receptor (C3aR)
and C5a receptor (C5aR and C5L2), on various myeloid
and non-myeloid cells [28,29,45,46]. C5a is a powerful
chemoattractant for neutrophils that recruits immune
cells to the site of injury and activates cellular attack
mechanisms like oxidative burst and lysosomal enzyme
release [47,48]. Furthermore, the anaphylatoxins contri-
bute to the degranulation of mast cells and basophils,
induce the expression of adhesion molecules on endothe-
lial cells, cause smooth-muscle contraction and enhance
the acute phase response of the liver [48]. The cleavage
of C3 by C3 convertases leads to the generation of a sec-
ond major fragment, C3b, which acts as an opsonin facili-
tating the removal of bacteria and cell detritus by
phagocytic cells [49]. Finally, the formation of C5b by
cleavage of C5 initiates the assembly of a multimolecular
complex, the MAC (C5b-9), that perforates membranes
of bacteria and nucleated cells and causes rapid cell lysis
and death [45,50,51].
Recently, a second initiation mechanism of the alterna-

tive activation pathway was described, termed the prop-
erdin pathway [52]. Properdin is capable of recognizing
several DAMPs and PAMPs on foreign and apoptotic
cells, thus allowing C3 convertase assembly on the target
surface [32,52]. Properdin also functions as a stabilizer
for C3 convertase complexes of the alternative pathway.
In addition to properdin, a fifth complement activation
pathway has been described, which identified the clotting
factor thrombin as a C5 convertase. This notion was sup-
ported by the observation that thrombin is capable of
generating C5a in the absence of C3, thus providing a
direct link between the complement and coagulation
system [53,54].

Traumatic brain injury
Traumatic brain injury (TBI) induces a profound inflam-
matory response that contributes to brain edema, neuronal
cell death, and adverse outcome [55-57]. Posttraumatic
activation of the complement cascade has been shown to
play a pivotal role in the development of secondary brain
injury (Table 1) [10,12,23,24,58,59]. Multiple experimental
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Table 1 Insights from experimental complement inhibition based on genetically engineered mice and pharmacological approaches in models of traumatic
brain injury (TBI).

Complement inhibitor/mouse
strain

Inhibited complement
molecule

Affected complement
pathway

Inhibition-induced effects Reference

C3-/- mice C3 Classical, alternative,
lectin

Reduction of neutrophil extravasation, injury sizes and chemokine expression. Sewell et al., 2004 [67]

C4-/- mice C4 Classical, lectin Decrease of motor deficits and brain lesion size. You et al., 2007 [81]

Factor B-/- mice, anti-factor B
monoclonal Ab

Factor B Alternative Attenuation of cerebral tissue damage and neuronal apoptosis, upregulation
of anti-apoptotic mediators, down-regulation of pro-apoptotic markers.

Leinhase et al., 2006,
2007 [79,80]

CD59a-/- mice CD59a Terminal Exacerbated tissue injury in CD59a-deficient mice, implying MAC-mediated
secondary neuronal cell death.

Stahel et al., 2009 [88]

C1-INH C1r/s, MASPs, C3b Classical Reduction of motor deficits, cognitive
dysfunction and contusion volume.

Longhi et al., 2009 [59]

sCR1 C3 convertases Classical, alternative,
lectin

Reduction of neutrophil accumulation
in the brain.

Kaczorowski et al., 1995
[68]

Crry-Ig, GFAP-sCrry mice C3 convertases Classical, altenative,
lectin

Neuroprotection with improved neurological scores and decreased tissue injury
and blood-brain barrier dysfunction.

Leinhase et al., 2006
[71]
Rancan et al., 2003 [70]

VCP C3b, C4b, C3
convertases

Classical, alternative,
lectin

Improvement of sensorimotor outcome and spatial memory. Pillay et al., 2007 [72]
Hicks et al., 2002 [69]

C5aR antagonist C5aR C5a anaphylatoxin Decreased neutrophil extravasation in the brain. Sewell et al., 2004 [67]

See text for details and explanations.
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and clinical studies have revealed elevated levels of com-
plement components and complement activation frag-
ments in serum, cerebrospinal fluid (CSF), and brain
parenchyma after head injury [12,23,60,61]. Intracerebral
complement deposition after TBI derives either from an
altered permeability of a dysfunctional blood-brain barrier
(BBB), or from posttraumatic biosynthesis of complement
components by resident and infiltrating cells of the central
nervous system (CNS) [12,62-64]. Most studies have
focused on the central complement component C3, and
on the potential neuroprotective effects of inhibiting C3
convertases, the level at which the three main activation
pathways merge, thus inhibiting downstream complement
activation. Clinical studies revealed elevated C3 levels in
the CSF of patients with severe TBI [65]. Experimental
brain injury models described intracerebral PMNL infiltra-
tion and concomitant accumulation of complement C3 in
cortical and hippocampal brain sections after experimental
TBI in rats [66]. In those studies, C3 accumulation was
significantly related to places of intracerebral cell death
and to increased intracerebral myeloperoxidase activity
[66]. In accordance with these findings, C3-deficient mice
were found to have lower neutrophil extravasation and
cerebral lesion volumes in a freeze model of brain injury
[67]. In light of the central role of C3 and downstream
complement activation fragments in the pathophysiology
of TBI, much emphasis has been recently devoted to eluci-
dating therapeutic aspects of C3 convertase inhibition, in
various experimental model systems [68-72]. Genetically
engineered mice, either deficient in the C3 gene, or with
transgenic CNS-restricted overexpression of Crry - a solu-
ble inhibitor of C3 convertases in mice-showed a signifi-
cant extent of neuroprotection after brain injury,
compared to wild-type animals [67,70]. The GFAP-sCrry
transgenic mice showed a significantly improved neurolo-
gical outcome and an attenuated extent of posttraumatic
BBB dysfunction in a model of closed head injury [70].
Based on these insights, the concept of Crry-mediated
neuroprotection was extrapolated to a pharmacological
approach, by posttraumatic injection of a recombinant chi-
meric Crry-Ig molecule in the same model of closed head
injury [71]. The systemic injection of Crry-Ig during an
early therapeutic “window of opportunity” within one
hour to 24 hours after trauma resulted in a significant
neurological improvement and reduced extent of neuronal
cell death, compared to vehicle-injected control mice [71].
A similar therapeutic approach was tested in a fluid per-
cussion model of brain injury, using recombinant Vaccinia
virus complement control protein (VCP), a potent inhibi-
tor of alternative and classical pathway C3 convertases
[69,72]. In these studies, the intracranial administration of
VCP mediated neuroprotective effects related to posttrau-
matic preservation of spatial memory, as compared to
vehicle-injected controls [69,72].

Further therapeutic approaches were designed to more
specifically target “key” effector components of comple-
ment activation, such as the anaphylatoxin C5a and its
receptor (C5aR, CD88) [29,67,73,74]. In addition, more
attention was recently devoted to target specific pathways
of complement activation exclusively, in order to over-
come the potentially deleterious effects of a complete
“shut-down” of complement activation at the central C3
level. This notion is based on the fact that complement
also mediates neuroprotective effects in the injured brain,
as e.g. shown by a dose-dependent protection of gluta-
mate-induced excitotoxicity against neurons by the C3-
derived proteolytic fragment, anaphylatoxin C3a [75],
and by C3a-mediated induction of nerve growth factor
(NGF) by microglia [76]. Based on the recent concept of
a “dual role” for complement in the pathophysiology of
brain injury, by promoting both early neurotoxic and late
neuroreparative mechanisms after TBI [12,77,78], the
exclusive targeting of selected complement pathways was
given more consideration, as opposed to the “pan” inhibi-
tion at the C3 convertase level [79-82]. Among these, the
targeted inhibition of the alternative pathway has drawn
particular attention in recent years [79,80,83]. Factor B,
the “key” component of the alternative pathway, was pre-
viously reported to be significantly elevated in the
intrathecal compartment of patients with severe TBI [65].
Experimental studies on factor B-deficient mice (fB-/-),
which are devoid of a functional alternative pathway,
revealed significant neuroprotection after closed head
injury, in conjunction with a decreased extent of post-
traumatic complement activation [79]. These positive
findings derived from studies in gene knockout mice
were extrapolated into a pharmacological approach,
using a neutralizing monoclonal anti-factor B antibody
(mAb1379) in the same model system [80]. The post-
injury injection of mAb1379 led to significantly attenu-
ated extent of complement activation and anaphylatoxin
C5a generation, and was associated with an improved
neurological recovery and reduced neuronal cell death
after experimental closed head injury [80]. These data
imply an important role of the alternative complement
pathway in contributing to the delayed neuropathology
after TBI, and provide strategic opportunities for thera-
peutic targeting of alternative pathway molecules as a
potential future pharmacological strategy.
An additional avenue of research has been focusing on

the terminal complement pathway, or “membrane
attack” pathway, which results in cellular lysis by the
MAC/C5b-9 [51,84,85]. In clinical studies, elevated
levels of activated soluble MAC/C5b-9 were detected in
the CSF of severely head-injured patients [62]. More-
over, the extent of intrathecal complement activation
was associated with secondary cerebral insults in TBI
patients, including post-injury BBB dysfunction
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[10,62,64]. Experimental studies have revealed that the
intracerebroventricular injection of MAC induced a
marked upregulation of adhesion molecule expression
and leukocyte infiltration in the subarachnoid space and
cerebral parenchyma [84]. In addition, MAC injection
into hippocampus evoked seizures and neurocytoxic
effects in rats [85]. Local MAC deposition in the injured
brain was demonstrated in experimental models [86]
and in injured human brains [87]. The complement reg-
ulatory molecule CD59 represents the main controlling
molecule of MAC formation and an essential protector
from neuronal cell injury after complement activation
[51,88]. Neurons express CD59 constitutively, as a pro-
tective mechanism from autologous “innocent bystan-
der” cell lysis after complement activation in the brain
[51,89]. However, the posttraumatic activation of phos-
phatidyl-inositol-specific phospholipase C (PI-PLC) after
traumatic brain injury renders neurons vulnerable to
MAC-mediated lysis by shedding of the glycosyl-phos-
phatidyl-inositol (GPI)-anchored glycoprotein CD59
from neuronal membranes [88,90]. A recent experimen-
tal study on closed head injury in mice lacking the gene
for Cd59a (CD59a-/-) revealed increased susceptibility to
brain injury in CD59a-/- mice, compared to wild-type
littermates [88]. In fact, head-injured CD59a-/- mice
showed increased neuronal cell death in tissue sections
assessed by TUNEL histochemistry, in conjunction with
elevated serum levels of neuron specific enolase (NSE),
an indirect marker of neuronal injury [88]. These data
corroborate the crucial role of the complement regula-
tory molecule CD59 in protecting neurons from com-
plement-mediated lysis, and emphasize the impact of
the terminal complement pathway in contributing to the
pathophysiology of delayed neuronal cell death after
TBI.
Until present, there is a lack of specific pharmacologi-

cal therapy designed to avoid induction of secondary
brain injuries and delayed neuronal cell death [91].
There have been some significant advances in the field
of therapeutic complement inhibitor development, in
recent years [43,74,92-94]. While some of these inhibi-
tors have been successfully tested in experimental head
injury models (Table 1) [67,68,71,80], the “bench-to-
bedside” extrapolation to clinical applications in head-
injured patients has yet to be accomplished [91].

Chest trauma and acute lung injury
Severe blunt chest trauma with associated pulmonary con-
tusions is characterized by a robust inflammatory reaction
which can result in exacerbated lung injury, acute respira-
tory distress syndrome (ARDS), multiple organ failure, and
death [95-99]. Activation of alveolar macrophages and
recruitment of neutrophils into the interstitial and alveolar
compartments are followed by the release of an arsenal of

proteinases and oxidants causing leakage of the pulmonary
microvasculature and destruction of the alveolar epithe-
lium [100-103]. Various experimental models of lung
injury could yield important insights into the critical role
of complement activation products, particularly anaphyla-
toxin C5a, in the pathophysiology of trauma-induced lung
inflammation and progressive alveolar injury [28,104-106].
Elevated levels of C5a have been described in broncheoal-
veolar fluid samples from patients with acute lung injury
[28,107,108]. When C5a was applied intratracheally in rats
exposed to an IgG immune complex model, increased
intrapulmonary generation of chemokines, accumulation
of neutrophils and changes in vascular permeability could
be detected [106]. The protective effects of anti-C5a were
further corroborated by the observation that the antibody
also suppressed release of tumor necrosis factor (TNF)
into bronchoalveolar lavage [109]. Furthermore, C5a was
shown to be required for TNF-dependent upregulation of
intercellular adhesion molecule-1 (ICAM-1), an essential
endothelial adhesion molecule required for neutrophil
migration [109]. Czermak and colleagues demonstrated
that both the in vitro and in vivo blockade of C5a led to
significantly reduced production of CXC and CC chemo-
kines [110,111].
A proposed model for the current understanding of

C5a-mediated inflammatory pathophysiology of acute
lung injury is depicted in Figure 2. Anaphylatoxin C5a
has been shown to induce the early release of pro-
inflammatory cytokines by alveolar macrophages, such
as TNF and interleukin (IL)-1b [104]. Interaction of
endothelial adhesion molecules (e.g. ICAM-1) with their
corresponding receptors on neutrophils (e.g. CD11b/
CD18) leads to adhesion and transmigration of neutro-
phils into the alveoli [104]. Furthermore, release of TNF
and IL-1b can also function in an autocrine way and
activate alveolar macrophages to generate chemokines
[112]. Among these, the different chemokines have been
shown to further mediate neutrophil infiltration [113].
Activated neutrophils, alveolar macrophages and epithe-
lial cells release reactive oxygen species and proteinases
that cause diffuse alveolar and microvascular damage,
thus exacerbating acute lung injury [111].
The interaction of C5a with its receptors, C5aR (CD88)

and C5L2, is crucial for mediating the pulmonary inflam-
matory response. Bronchial and alveolar epithelial cells
have been shown to express the C5aR [114,115]. Mice
lacking the C5aR gene showed a decreased extent of pul-
monary inflammation, as characterized by attenuated mye-
loperoxidase production by neutrophils and decreased
vascular leakage [116].
Furthermore, the use of a specific C5aR antagonist led

to similar attenuation of inflammation signs in immune
complex-induced lung injury, indicating the C5aR as a
predominant effector of the C5a-mediated inflammation
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in the lung [117]. A recent study could point out that
the cellular responses induced by C5a/C5aR interaction
are potentiated by a tight connection between comple-
ment and Fcg receptors [118]. Both C5aR and FcgR are
known to be expressed on alveolar macrophages [111].
Shushakova et al. found that C5a causes induction of
the activating FcgRIII and suppression of the inhibitory
FcgRII during lung injury resulting in a pro-inflamma-
tory reaction. Genetic ablation of C5aR expression in
mutant mice completely abolished C5a/C5aR-induced reg-
ulation of FcgRs and led to decreased intrapulmonary gen-
eration of TNF and neutrophil accumulation [118]. Taken
together, C5a seems to have a broader critical function
through FcgR regulation, thus augmenting inflammation in
the lung. In contrast to the C5aR, the effects of C5a are lim-
ited by C5L2 that is co-expressed with the C5aR on many
cells including neutrophils [119]. Besides of C5a, C5L2 can
also bind C5adesArg and potentially additional complement
fragments [120]. Gerard et al. could demonstrate a greater

influx of inflammatory cells and an enhanced release of
IL-6 and TNF in C5L2-deficient mice in the model of
immune complex-induced lung injury [121]. This observa-
tion proposes an anti-inflammatory role of C5L2 in the
lung that seems to counteract C5a/C5aR-mediated
inflammation.
The complement-induced pulmonary response after

chest trauma has been suggested to depend on a deli-
cate balance between pro- and anti-inflammatory tran-
scription factors [111]. Alveolar macrophage activation
is characterized by increased nuclear translocation of
nuclear factor(NF)-�B and activator protein-1 (AP-1)
representing an initial event in the genesis of the inflam-
matory cascade [112,122]. In contrast to NF-�B and AP-
1, the transcription factor STAT3 has emerged as a
negative regulator of the inflammatory response [28].
Interestingly, C5a has been shown to be responsible for
STAT3 activation in lungs and alveolar macrophages
after immune complex-induced lung injury whereas no

Figure 2 Schematic understanding of complement anaphylatoxin C5a-mediated inflammation and alveolar injury after blunt chest
trauma. See text for details and explanations.
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complement-dependence could be found for activation
of AP-1 [122,123]. STAT3 has been hypothesized to act
as a transcriptional mediator for the anti-inflammatory
cytokine IL-10, and might contribute to a negative feed-
back system in acute lung injury [28,111,124]. In addi-
tion to the above described “classic” lung injury models,
a recent study has paid more attention to the immune
response after experimental blunt chest trauma induced
by a blast wave [104]. Flierl and colleagues reported
complement activation after trauma-induced bilateral
lung contusion in rats with C5a-dependent perturba-
tions in neutrophil functions. Treatment with anti-C5a
antibody abolished functional deficits in neutrophils and
reduced intrapulmonary levels of leukocytes and of cyto-
kines [104].
Taken together, there is evidence from various animal

models that support a predominant role of C5a in initi-
ating a cascade of inflammatory events during acute
lung injury. If lung trauma is severe, activation of the
innate immune system can lead to a dysregulated
inflammatory response resulting in ARDS [125]. Ele-
vated levels of C3a and C5a were measured in plasma of
patients with ARDS [126]. In addition, experimental
complement inhibition led to attenuated pathology in an
animal model of lung injury [126-128]. Thus, it is
tempting to speculate that C5a might act as a potential
target for immunomodulation after chest trauma [74],
to avoid the deleterious effects of posttraumatic inflam-
mation, which lead to ARDS, multiorgan failure, and
death [97,129].

Musculoskeletal trauma
Experimental models of musculoskeletal trauma demon-
strated that the early posttraumatic inflammatory
response is often accompanied by robust generation of
complement activation products [66,104,105]. However,
up to now, the involvement of the complement cascade
in bone and cartilage trauma has only been marginally
investigated [130]. In recent years, increased attention
has been devoted to the investigation of the role of
complement in bone biology and fracture healing [131].
Mesenchymal stem cells as progenitor cells of osteo-
blasts were shown to express the complement receptors
C3aR and C5aR, and the complement regulator mole-
cules, CD55 and CD59 [132-134]. Moreover, osteoblastic
differentiation as a key aspect of bone formation and
remodeling induces upregulation of a number of com-
plement-related genes, like C1q, C4, C3aR, properdin,
C1-inhibitor (C1-INH) and complement factor H [135].
Pobanz and colleagues reported the expression of a
functional C5aR by a human osteoblast-like cell line and
detected increased osteoblast IL-6 production after sti-
mulation of these cells with C5a [136]. Furthermore,
vitamin D3 has been described to regulate C3

production by murine osteoblastic cells both in vitro
and in vivo [137-139]. Complement C3 was postulated
to exhibit a modulating influence on the differentiation
of bone marrow cells into osteoclasts [139,140]. Addi-
tional studies pointed out that complement appears to
be involved in the transformation of chondral precursors
to bone tissue during the enchondral ossification pro-
cess, involving both the classical and alternative pathway
complement activation [141,142]. Consequently, comple-
ment components were hypothesized to be also involved
in the inflammatory response after musculoskeletal
trauma, and in mediating induction of fracture repair
processes [131]. A recent study revealed that the C5aR
is expressed in fracture callus by differentiated osteo-
blast, chondroblast-like cells, and osteoclasts [143].
Since fracture healing is known to be delayed in case of
additional trauma-induced injuries, it furthermore
remains to be examined if systemic complement genera-
tion might be the initiator of this delayed recovery after
musculoskeletal trauma [144].
In addition to the role in fracture healing, the effect of

complement activation on cartilage destruction after
joint injuries has been discussed in recent years [130].
Gene expression analyses demonstrated that chondro-
cytes express a broad range of complement components
and complement regulatory proteins [145-147]. The ori-
gin of complement components in the synovial fluid
remains a topic of debate [130,148]. Aside from chon-
drocyte-induced biosynthesis, it appears that multiple
other non-cartilaginous sources contribute to comple-
ment release in the inflamed joint, including synovial
cells and infiltrating leukocytes [130]. We recently
hypothesized that chondrocytes may release pro-inflam-
matory cytokines, express neoantigens and undergo
enhanced apoptosis after cartilage injury [130]. However,
until present, the involvement of the complement sys-
tem in posttraumatic joint inflammation and the devel-
opment of posttraumatic osteoarthritis remains poorly
understood, and requires further research.
The pathophysiology of musculoskeletal trauma and of

skeletal muscle ischemia/reperfusion is summarized in
Figure 3. The oxygen deficit in major trauma, in con-
junction with subsequent reperfusion of ischemic tissues
has been recognized as a trigger of an intense inflamma-
tory response that may cause damage both locally in the
affected muscle and also in remote organs primary not
involved in the ischemic insult [149-152]. Complement
activation and consumption represents a critical event
in the early phase of limb ischemia/reperfusion (I/R)
injury resulting in the release of potent complement
fragments like C3a and C5a [150,153,154]. It has been
suggested that binding of preexisting natural IgM anti-
bodies to neoantigen expressed by hypoxic cells after
interruption of the blood flow is responsible for the
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activation of the classical complement pathway that
importantly contributes to skeletal muscle I/R injury
[155-157]. This hypothesis is strengthened by the fact
that mice genetically deficient of mature B and T cells
and natural antibodies (Rag1-/- mice) show significant
reductions of tissue damage in a model of hindlimb
ischemia and reperfusion [155,158]. Furthermore, mus-
cle edema and secondary neutrophil accumulation in
the lung, as signs of reperfusion injury, were attenuated
in C1q-/- and C4-/- mice deficient in central components
of the classical complement pathway [159,160]. Aside
from the classical pathway, recent data indicate impor-
tant involvement of the classical and the lectin pathway
in skeletal muscle I/R injury [159,161]. A protective
effect was attributed to the complement regulatory
molecules decay-accelerating factor (DAF/CD55), C1-
INH, and soluble complement receptor type 1 (sCR1)
after skeletal muscle reperfusion injury [162-164]. More-
over, a pivotal role of C5a in causing lung damage after
hindlimb I/R was shown in an experimental study in

rats [165]. In accordance with this observation, multiple
markers of local and remote organ injury were markedly
reduced in C5-deficient mice, and in mice treated with a
neutralizing C5aR antagonist [74,166-168].
In summary, complement activation appears to play a

significant role in contributing to post-injury inflamma-
tion in musculoskeletal trauma, including fractures, car-
tilage injury, and skeletal muscle I/R injury.

Polytrauma and sepsis
Polytrauma is characterized as a syndrome of multiple
injuries with defined severity which leads to a massive
systemic immune activation and to secondary dysfunc-
tion and failure of remote, initially uninjured, organs
[1,5-7]. Clinical studies have demonstrated that comple-
ment activation occurs in plasma of patients after major
trauma, as early as at the time of presentation in the
emergency department [169-171]. The extent of comple-
ment-mediated inflammation was correlated with injury
severity, tissue hypoperfusion, and posttraumatic

Figure 3 Pathophysiology of complement mediated secondary tissue injury after major trauma, and potential pharmacological
strategies for complement inhibition. See text for details and explanations.
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mortality [171,172]. Serum levels of C3 and C3a were
identified as markers of injury severity and outcome in
multiply injured patients [173,174]. Moreover, expres-
sion profiles of complement regulatory molecules and of
the anaphylatoxin C5a receptor (C5aR/CD88) appeared
to be significantly altered in leukocytes of multiply
injured patients during the early phase of polytrauma,
compared to blood samples from healthy volunteers
[175]. The expression profiles of CD46 (membrane
cofactor protein; MCP), CD59, and C5aR (CD88) on
neutrophils correlated inversely with the severity of
injury, an observation which was attributed to an intri-
guing trauma-induced “complementopathy” in multiply
injured patients [175].
Sepsis represents a lethal complication of major trauma,

characterized by an uncontrolled complement activation,
as determined by significantly elevated plasma levels of
C3a, C4a and C5a [176-178]. The anaphylatoxin C5a
appears to represent the central molecule in the develop-
ment of the overwhelming inflammatory response in

sepsis, and has been coherently described as “too much of
a good thing” [179-181] (Figure 4). Blockade of C5a was
linked to improved survival in different experimental mod-
els of sepsis [182-185]. Persistent elevation of C5a during
progressive sepsis was related to a posttraumatic immun-
paralysis with “shutdown” of crucial neutrophil functions,
including a loss of chemotactic and phagocytotic activity,
impairment of the oxidative burst, and disturbances in
intracellular signaling pathways [48,186,187]. Recent stu-
dies corroborated an important contribution of C5a in
modulating apoptosis in different cell types during sepsis.
While apoptosis rates in neutrophils were shown to be
significantly attenuated during sepsis, lymphocytes, thy-
mocytes and adrenal medullary cells exhibited increased
C5a-dependent susceptibility to programmed cell death
[188-192]. The latter phenomenon was hypothesized to be
responsible for impaired adreno-medullary catecholamine
release predisposing the development of septic shock
[191]. Excessive C5a levels during sepsis were furthermore
associated with reduced myocardial contractility and

Figure 4 Role of C5a ligand and receptor interaction in mediating the detrimental sequelae of major trauma, leading to secondary
remote organ failure and adverse outcomes. See text for details and explanations.
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cardiac output, a phenomenon described as “cardiomyopa-
thy of sepsis” [193]. In general, multiple organs seem to be
put at increased risk for C5a-mediated damage induced by
an abrupt upregulation of the C5aR in a variety of tissues
(heart, lung, kidney, liver, thymus) in early phases of sepsis
[194,195]. A recent study implied that C5a-mediated sig-
naling through the two C5a receptors (CD88 and C5L2)
contributes to adverse outcome from sepsis [196,197]. In
experimental models of sepsis, the blockade of C5a and its
receptors has been shown to protect end-organ function
and to improve outcomes, thus providing a future new
avenue for pharmacological treatment of this detrimental
complication of major trauma [198-201]. Future studies
will have to be designed to validate this promising notion
in a clinical setting.

Conclusions
In recent years, multiple experimental and clinical studies
have substantiated the notion of “key” role of complement
activation after major trauma in contributing to the dele-
terious pathophysiological sequelae in the injured brain,
lungs, and musculoskeletal system. Complement activation
furthermore significantly contributes to the mechanisms of
systemic post-injury complications, such as I/R injury, sep-
sis, and multiple organ failure. Therapeutic options aimed
at attenuating the inflammatory complications of major
trauma are currently unsatisfactory, and research strategies
have largely failed in extrapolation from “bench to bed-
side”. Experimental data from recent animal studies high-
light the potential for complement inhibitors aimed at
targeting central complement components and specific
complement activation products, as promising future
pharmacological agents in patients with major trauma. In
this regard, site-targeted complement inhibition by new
generation chimeric molecules which link pharmacological
inhibitors to the local site of complement activation and
tissue deposition may represent the future pharmacologi-
cal “golden bullet”. These chimeric molecules act locally at
the site of injury and inflammation, and thus avoid the
unwanted negative and adverse effects of a systemic com-
plement blockade. Clearly, there is a tremendous need for
well-designed experimental studies to shed some further
light into our understanding of the complement-mediated
pathology of major trauma, with the hope of designing
and implementing new clinical treatment strategies for
severely injured patients in the near future.
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