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Abstract. Fatty acid oxidation (FAO) plays a crucial role in 
glioma metabolism and its interaction with the immune micro‑
environment. The aim of the present study was to investigate 
the relationship between FAO‑related genes and glioma by 
constructing gene clusters using a glioma cohort. A total of 
287 differentially expressed genes related to FAO were identi‑
fied and the top 50 genes were selected based on their P‑values. 
Subsequently, patients were classified into two distinct gene 
subtypes (A and B) based on these genes. Scores for each 
patient were calculated using the 50 genes and the patients 
were divided into the high and low‑score groups accordingly. 
Patients in subtype B exhibited higher tumor grades and 
poor prognostic factors such as older age and worse survival 
rates. The high‑score subgroup had unfavorable indicators, 
including isocitrate dehydrogenase 1 wild‑type, high tumor 
grade and 1p19q non‑codeleted, while immune checkpoint 
expression was generally higher in the high‑score subgroup. 
The constructed scoring model was validated using an external 
dataset, and the tissue inhibitor of metalloproteinase 1 gene 

was identified through protein interaction analysis, suggesting 
its potential involvement in glioma malignancy and promo‑
tion of glioblastoma proliferation. In conclusion, FAO‑related 
genes may contribute to tumor development through immune 
mechanisms and the present study may provide novel insights 
for potential therapeutic strategies in glioma treatment.

Introduction

Glioma is the most common primary malignant brain tumor 
in adults worldwide, often affecting individuals 55‑60 years of 
age (1). Gliomas are characterized by diffuse infiltrative growth 
and high invasiveness, making complete surgical resection 
challenging and yielding suboptimal outcomes following post‑
operative traditional chemotherapy with radiotherapy (2,3). 
Compared with low‑grade gliomas (LGGs) (grades II and III), 
glioblastoma (GBM) (grade IV) is significantly more fatal 
to patients (4). Patients diagnosed with GBM have a median 
survival time of <15 months and a 5‑year survival rate of 
<5% (5). Despite current therapies such as anti‑angiogenic 
drugs and electric field therapy, recent therapeutic advances 
have not yielded substantial benefits, and disease control has 
remained elusive (6‑8). Thus, studying tumorigenesis mecha‑
nisms to identify new therapeutic targets is critical (9).

Glioma, as with a number of other rapidly prolifer‑
ating tumor cells, requires abundant energy to thrive (10). 
Furthermore, tumor cells develop metabolic pathways to 
increase the synthesis and transformation of carbohydrates, 
lipids and proteins (11,12). Changes in tumor metabolism are 
closely associated with the tumor microenvironment (TME) 
and immunity (13). The enhanced fatty acid (FA) metabo‑
lism observed in glioma is a hallmark of cancer, with the 
FA composition of cell membranes playing a crucial role in 
cell survival, lipid peroxidative damage protection and the 
prevention of ferroptosis (14). Glioma cells derive FAs from 
exogenous sources or synthesize endogenous FAs excessively 
through adipogenic pathways (15). Previous studies have 
found an association between FA oxidation (FAO) and glioma 
prognosis and malignancy (16‑18). However, there has not been 
an extensive exploration of the link between FA metabolism 
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and tumor immunity. Therefore, the present study aimed to 
analyze a prognostic model of FAO‑related genes in glioma 
and its association with tumor immune infiltration, identify a 
new model and screen out key molecular markers, to facilitate 
the development of improved therapeutic strategies based on 
clinical and immune characteristics and treatment responses.

Materials and methods

Data sources. RNA sequencing and clinical data were 
extracted from The Cancer Genome Atlas (TCGA; 
https://tcga‑data.nci.nih.gov/) LGG and GBM datasets and the 
Chinese Glioma Genome Atlas (CGGA; http://www.cgga.org.
cn/) database (CGGA.mRNAseq_693) (19). A total of 1,363 
glioma samples, including 670 from TCGA and 693 from the 
CGGA were included in the present study. The FAO‑related 
gene signature comprised of 15 genes was determined using 
the gene set, ‘GOBP_POSITIVE_REGULATION_OF_
FATTY_ACID_OXIDATION’, in the MsigDB database 
(https://www.gsea‑msigdb.org/gsea/msigdb) (20). The genes 
included PPARG coactivator 1 α, carnitine palmitoyltrans‑
ferase 1A, mitoregulin, AKT serine/threonine kinase 2, ATP 
binding cassette subfamily D member 1 (ABCD1), fatty acid 
binding protein 1, ABCD2, malonyl‑CoA decarboxylase, 
insulin receptor substrate 1 (IRS1), perilipin 5, peroxisome 
proliferator activated receptor α, peroxisome proliferator 
activated receptor δ, twist family bHLH transcription factor 1, 
nuclear receptor subfamily 4 group A member 3 and IRS2. 
The subsequent analysis was performed using the R software 
(version 4.1.1) (21).

Single‑cell level analysis. The expression of FAO‑related 
genes in glioma were analyzed at the single‑cell level using 
the Tumor Immune Single‑cell Hub 2 (TISCH2) database 
(http://tisch.comp‑genomics.org/) (22). Furthermore, analyses 
were conducted to investigate the features and traits of the 
FAO‑related genes located within glioma. The Gene Set 
Cancer Analysis (GSCA) database (http://bioinfo.life.hust.edu.
cn/GSCA/) (23) was used for these additional analyses, which 
included gene mutation, DNA methylation, somatic copy 
number variation and immune cell infiltrate analyses.

Principal component analysis (PCA). The present study 
utilized two R packages, ‘sva’ and ‘limma’, to remove batch 
effects and normalize samples obtained from the TCGA and 
CCGA databases. PCA was conducted using two R pack‑
ages, ‘FactoMineR’ and ‘factoextra’ to visualize the principle 
components. A correlation analysis was conducted to deter‑
mine the correlation between genes using the R package, 
‘ggplot2’. Additionally, the R package, ‘survival’, was used to 
analyze the relationship between FAO‑related gene expression 
and prognostic values in patients with glioma. The R package, 
‘TSHRC’, was used to generate Kaplan‑Meier (KM) survival 
curves, which uses the two‑stage test to generate P‑values. 
P<0.05 was considered to indicate a statistically significant 
difference.

Consensus clustering analysis. For exploring the functions of 
FAO‑related genes in glioma, unsupervised consensus cluster 
analysis was conducted using the ‘ConsensusClusterPlus’ 

package in R, which classified patients into different clusters 
based on the comparison of FAO‑related gene expression 
profiles. Survival analyses were undertaken for each cluster 
by utilizing the ‘survival’ and ‘survminer’ R packages. The 
‘limma’ R package was utilized to analyze the differential 
expression of FAO‑related genes between different clusters. 
The correlation of gene expression patterns with clinicopatho‑
logical characteristics were presented as a heatmap using the 
‘pheatmap’ R package. To identify the enriched biological 
pathways in FAO‑related gene sets, the HALLMARK, 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
Reactome gene sets were downloaded from the Molecular 
Signature Database, MsigDB 3.0 (http://www.broadinstitute.
org/gsea/msigdb/index.jsp). The enrichment of specific biolog‑
ical pathways was then analyzed utilizing the R package, 
‘GSEA’. The resulting data from the gene set enrichment 
analysis (GSEA) was used to create a heatmap that compared 
the enrichment across clusters using the R package ‘pheatmap’.

Gene subgroup construction. The R package ‘limma’ was 
used for differential expression analysis,, and the R package, 
‘ggplot2’, was utilized to visualize pairwise comparisons via 
Volcano plots. The screening threshold applied for identifying 
differentially expressed genes (DEGs) was log fold change >2 
and P<0.05. The overlapping set of the three differential results 
was obtained and analyzed further utilizing the R package, 
‘clusterprofiler’, for enrichment analysis. KEGG pathway and 
Gene Ontology (GO) enrichment analyses were conducted 
using the R packages, ‘enrichplot’ and ‘ggplot2’.

Gene subgroup immune infiltration. PCA was conducted 
using the R package, ‘prcomp’, with default parameters. The 
R package, ‘ESTIMATE’, was used to estimate immune 
infiltration based on the StromalScore, ImmuneScore and 
ESTIMATEScore and the differences were compared between 
the subgroups. Furthermore, the infiltration levels of the immune 
cell types were estimated using the single‑sample (ss)GSEA 
method via the R package, ‘GSVA’, and the differences were 
compared between the different subgroups. Finally, all results 
were visualized using the R package ‘ggplot’.

Prognostic scoring model based on key DEGs. To identify 
a set of candidate prognostic genes, univariate Cox regres‑
sion analysis was performed using the selected DEGs by R 
package ‘survival’ (Table SI). The DEGs were ranked by 
P‑value from high to low, and the top 50 DEGs were selected 
for unsupervised consensus cluster analysis by R package 
‘ConsensusClusterPlus’. Survival status, heatmap distribu‑
tion and differential expression of FAO‑related genes were 
compared between the different DEG subgroups. Following 
PCA using the top 50 DEGs by R package ‘princomp’, prin‑
cipal components 1 (PC1) and PC2 were extracted, which were 
then used to construct the FAO‑related DEGs score. The score 
for each sample was determined based on the prognostic value 
of the gene signature (24). The formula was as follows: DEGs 
score=Σ(PC1i)‑Σ(PC2i), where ‘i’ represents DEG expression. 
Survival analysis was then performed with the ‘survival’ R 
package and using KM survival analysis (log‑rank test) to 
compare groups with high and low scores; the cut‑off value 
was determined by using R package ‘maxstat’ (25). The 
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relationship between type of cluster, score and prognostic 
status was displayed in a Sankey diagram, the relationship 
between FAO gene subtypes, DEG subtypes and scores were 
separately compared, and the correlation between scores 
and immune cell infiltration were calculated. The χ2 test was 
used to analyze the relationship between the risk score and 
clinicopathological characteristics of the glioma samples by 
the ‘ggpubr’ R package. Additionally, the expression of five 
immune checkpoints in glioma samples were compared across 
score subgroups by the R package ‘ggpubr’.

Validation set validates scoring model performance. Given 
the absence of a glioma‑specific immunotherapy database and 
the pan‑cancer attributes of immunotherapy, certain datasets 
containing abundant immunotherapy sample data were selected 
as validation sets (26‑28). The two independent validation data‑
sets, GSE135222 (29) and GSE61676 (30), were downloaded 
from the Gene Expression Omnibus website (https://www.
ncbi.nlm.nih.gov/geo/) (31), to further scrutinize the predictive 
performance of the deployed scoring model in tumor treatment. 
Moreover, another validation dataset was obtained from the 
R package, ‘IMvigor210CoreBiologies’ (http://research‑pub.
gene.com/IMvigor210CoreBiologies) (32), which contained a 
metastatic urothelial tumors cohort. For each sample within 
the validation sets, the score was calculated using the model 
constructed in the training set. Next, the risk score, survival 
rate and recurrence status of the patients were charted to 
demonstrate the correlation between the risk score and patient 
response to immunotherapy.

Half maximal inhibitory concentration (IC50) value based 
on the scoring model. To predict therapeutic response the R 
package ‘pRRophetic’ was used to calculate the IC50 values 
of antitumor drugs for each sample. pRRophetic comprises 
~700 cell lines and 138 drugs and prognosticates the clinical 
responsiveness of cancer to specific medications, predicated 
based on varying gene expression levels in tumors (33,34). The 
gene expression matrices of these samples were derived from 
the aforementioned TCGA‑LGG and TCGA‑GBM datasets. 
Additionally, the Wilcoxon rank‑sum test was used to assess 
the variability in estimated drug sensitivities between the high 
score and low score groups. P<0.05 was considered to indicate 
a statistically significant difference.

Screening of key genes through protein‑protein interac‑
tion (PPI) network construction. The PPI information of 
the top 50 DEGs was analyzed using the Search Tool for 
the Retrieval of Interacting Genes (STRING) database 
(http://www.string‑db.org/) and the resulting PPI network was 
visualized, where the genes represented nodes and the interac‑
tions between nodes represented edges. Cytoscape software 
(v3.7.2) (35). with the plug‑in, ‘CytoNCA’, was then used to 
select the hub genes from the PPI network. The expression and 
prognostic correlation of the screened hub gene in different 
grades of glioma were verified using the GEPIA database 
(http://gepia.cancer‑pku.cn/).

Verification of hub gene expression. The HMC3, HS683, 
A172 (CRL‑1620), LN229 and SF539 cell lines were obtained 
from the American Type Culture Collection (ATCC). All cell 

lines were maintained in DMEM (Shanghai Basal Media 
Technologies Co., Ltd.) containing 10% fetal bovine serum 
(cat. no. C04001‑500; Shanghai VivaCell Biosciences, Ltd.) 
and 1% penicillin/streptomycin (cat. no. S110B; Shanghai 
Basal Media Technologies Co., Ltd.), respectively. Protein 
was extracted from the cells using the RIPA buffer (Beyotime 
Institute of Biotechnology). The protein expression levels of 
the hub gene TIMP1 in various cells were examined using 
western blotting (WB). The protein concentration was deter‑
mined with the BCA Protein Assay Kit (Beyotime Institute 
of Biotechnology). Protein samples were electrophoresed on a 
10% gel using SDS‑PAGE, with 15 µg per lane, and then trans‑
ferred to an nitrocellulose membrane (MilliporeSigma). The 
membrane was then blocked at room temperature for 1 h with 
5% skimmed milk/PBS. The tissue inhibitor of metallopro‑
teinase 1 (TIMP1) antibody (cat. no. K101524P) was obtained 
from Beijing Solarbio Science & Technology and the α‑tubulin 
antibody (cat. no. ER130905) was obtained from Hangzhou 
HuaAn Biotechnology Co., Ltd. The TIMP1 antibody was 
diluted 1:1,000 and the α‑tubulin antibody was diluted 1:5,000. 
Samples were incubated with the primary antibodies overnight 
on a shaker at 4˚C. After washing with TBST containing 0.1% 
Tween, the membranes were incubated with secondary anti‑
bodies (anti‑Rabbit kit; cat. no. A32732; Invitrogen; Thermo 
Fisher Scientific, Inc.) for 1 h at room temperature. Protein 
bands were subsequently visualized using the BeyoECL Star 
chemiluminescence substrate (cat. no. P0018AM; Beyotime 
Institute of Biotechnology) under the ChemiDoc Imaging 
System (Bio‑Rad Laboratories, Inc.) and analyzed using 
ImageJ software (1.47v; National Institutes of Health).

Immunohistochemistry images were downloaded from the 
Human Protein Atlas (HPA) website (https://www.protein‑
atlas.org/humanproteome/pathology).

TIMP1 knockdown. The human glioblastoma cell lines, LN229 
and SF539, were cultured at 37˚C in a 5% CO2 incubator, in 
High Glucose DMEM (Shanghai Yuanpinghao Biotech Co., 
Ltd.) containing 10% fetal bovine serum (Shanghai VivaCell 
Biosciences, Ltd.). Both cell lines were obtained from preserved 
cells in our laboratory (36), originally purchased from the 
ATCC. Two small interfering (si) RNAs targeting TIMP1 and a 
negative control were designed and synthesized by Guangzhou 
RiboBio Co., Ltd. The sequences were as follows: si‑TIMP1‑1 
(sense, 5'‑AGA UGA CCA AGA UGU AUA AAG‑3'; antisense, 
5'‑UUA UAC AUC UUG GUC AUC UUG‑3'); si‑TIMP1‑2 (sense, 
5'‑CAC AGU GUU UCC CUG UUU AUC‑3'; antisense, 5'‑UAA 
ACA GGG AAA CAC UGU GCA‑3') and si‑NC (sense, 5'‑UUC 
UCC GAA CGU GUC ACG UTT‑3'; antisense, 5'‑ACG UGA CAC 
GUU CGG AGA ATT‑3'). Lipofectamine 3000 (Thermo Fisher 
Scientific, Inc.) was used for transfection into the LN229 and 
SF539 cell lines, according to the manufacturer's instructions.

Colony formation assay. LN229 and SF539 cells were 
transfected with the TIMP1 siRNAs or siNC for 48 h as afore‑
mentioned. Then, the cells (1,500 cells/well) were inoculated 
into a 6‑well plate and transfected with siRNA again on the 
6th day. Given the temporary nature of transient transfection, 
transfection was performed twice to ensure the knockdown 
effect of TIMP1. The cells were incubated for a further 
6 days when they were washed with PBS and stained with 4% 
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polyformaldehyde for 40 min, then stained with 0.1% crystal 
violet for 2 h at room temperature. Colonies with >50 cells 
were counted using the ImageJ software.

Cell viability. Cell viability was assessed using Cell 
Counting Kit‑8 (CCK‑8; APeXBIO Technology LLC; lot no. 
K101826133EF5E). The siRNA transfected LN229 and SF539 
cells (3,000‑4,000 cells/well) were seeded into a 96‑well plate. 
Fresh culture medium (100 µl) containing CCK‑8 solution 
(10 µl) was added to each well of the plate in the dark, then the 
plated was incubated for 2 h in the dark. The absorbance at a 
wavelength of 450 nm was measured to detect cell viability.

5‑ethynyl‑2‑deoxyuridine (EdU) assay. An EdU kit 
(BeyoClick™ EDU‑488; Beyotime Institute of Biotechnology) 
was used to detect the effect of TIMP1 knockdown on GBM 
cell proliferation. LN229 and SF539 cells transfected with 
si‑TIMP1 or si‑NC for 48 h were co‑cultured in EdU working 
solution (1:1,000) in a 37˚C and 5% CO2 incubator for 3 h. 
After incubation, the cells were fixed with 4% paraformalde‑
hyde for 30 min at room temperature, washed and incubated 
with reaction solution, according to the instruction manual. 
Then, the cells were treated with Hoechst reagent at room 
temperature for 10 min to label the cell nuclei. Detection was 
conducted using a fluorescence microscope (Leica DMi8; 
Leica Microsystems GmbH), and images were captured using 
ToupView (v3.7) software (AmScope).

Flow cytometry. Cell apoptosis was detected by flow cytom‑
etry using the annexin V‑FITC/PI Apoptosis Detection 
Kit (Nanjing KeyGen Biotech Co., Ltd.), with operations 
performed according to the manufacturer's instructions. The 
BD FACSCelesta (BD Biosciences) flow cytometer was used 
for detection, and statistical analysis was conducted using 
Flow Jo (v10.8.1; FlowJo LLC) software.

Statistical analysis. Each experiment was repeated at 
least three times independently. Data are presented as the 
mean ± standard deviation. All statistical analyses were 
performed using GraphPad Prism (v9.0) software (Dotmatics) 
with either unpaired Student's t‑test or one‑way ANOVA with 
Bonferroni's adjustment. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Genetic mapping and epigenetic landscape of glioma. In the 
present study, the genetic mapping and epigenetic landscape 
of glioma were examined by investigating 13 FAO‑related 
genes. Using TISCH analysis, the single‑cell expression 
of FAO‑related genes in glioma were observed (Fig. S1). 
The analysis of somatic mutations demonstrated a higher 
frequency of mutations in the GBM cohort than in the LGG 
cohort (Fig. 1A). Furthermore, the distribution of mutations 
in the top 10 mutated genes in glioma were summarized, 
along with their copy number variations (CNVs) and the 
ratio of somatic mutations (Fig. 1B). A total of 30 samples 
with complete single‑cell information were obtained 
from the ‘glioma’ dataset on the TISCH2 website. Of the 
30 samples analyzed, 28 had various genetic alterations, 

including missense mutations, frame shift insertions and 
multi‑hit mutations. Fig. 2A shows the distribution of the 
frequency of harmful mutations in FAO‑related genes in 
gliomas. Specifically, a positive correlation between CNVs 
and mRNA expression levels was found, while a negative 
correlation between methylation levels and mRNA expres‑
sion levels was observed (Fig. 2B‑D). The genetic landscape 
and expression levels of FAO‑related genes were significantly 
different between different grades of glioma, indicating a 
potential function of FAO‑related genes in glioma initiation 
and malignancy. Finally, the FAO‑related genes show a strong 
correlation with various immune cells, and this correlation is 
more pronounced in LGG, suggesting a potential connection 
between FAO‑related genes and glioma immune infiltration 
(Fig. S2).

Identification of FAO‑related genes clusters in glioma. 
After performing PCA analysis and visualization, a total of 
15,803 genes and 1,363 samples were obtained from LGG and 
GBM in the TGGA and CCGA cohorts (Fig. 3A). Following 
survival analysis, the KM survival curves demonstrated that 
the expression of 11 genes was significantly correlated with 
prognosis (P<0.05; Fig. 3C). Of the 11 genes, high expression 
of 8 genes was associated with a poor prognosis, and high 
expression of 3 genes was associated with a good prognosis. 
Additionally, through network analysis, the complete genetic 
landscape was visualized, including the regulatory relationship 
between genes and their prognostic implications in patients 
with glioma (Fig. 3B).

An unsupervised cluster analysis identified three optimal 
clusters (k=3), based on the relative change in the area under the 
cumulative distribution function curve (Fig. 4A). KM curves 
indicated a poor prognosis for patients in cluster B compared 
with the other two clusters (P<0.001; Fig. 4B). Notably, certain 
genes displayed different expression levels within different 
clusters, which suggested that they may have prognostic 
significance within the specific cluster (Fig. 4C). Moreover, 
comparing the clinicopathological features of the different 
glioma clusters revealed significant differences in the expres‑
sion of FAO‑related genes and clinicopathological features. 
Cluster B displayed higher World Health Organization grades 
(III‑IV; P<0.01) and an older age (P<0.01) compared with the 
other two clusters (Fig. 4D).

To further explore the differences between clusters, 
HALLMARK, KEGG and Reactome pathway data were 
downloaded from the MsigDB database, revealing significant 
variations in multiple pathways among pairwise contrasted 
clusters, such as the p53 signaling pathway, apoptosis pathway, 
notch signaling pathway and cell cycle (Fig. S3).

Screening DEGs based on the FAO‑related genes clusters. 
Differential analyses were employed to identify three gene 
subtypes and the results were represented in a volcano plot. By 
taking the intersection of the DEGs among the three subtypes, 
287 candidate DEGs were identified (Fig. 5A). GO and KEGG 
pathway analyses revealed that the enriched pathways of the 
DEGs were primarily associated with tumorigenesis and devel‑
opment (Fig. 5B and C). A visual network was constructed 
to display the relationships between the top 5 DEGs and the 
KEGG pathways (Fig. 5D).
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The subsequent PCA demonstrated significant differ‑
ences in transcriptional profiles between subtype B and the 
other two subtypes (Fig. 6A). To assess the TME score, which 
included the stromal, immune and ESTIMATE scores, for the 
three gene subtypes, the ESTIMATE package was utilized. 
A higher stromal or immune score indicated greater propor‑
tions of stromal cells or immunocytes in the TME, while the 
ESTIMATE score reflected the sum of these scores. The find‑
ings indicated that patients with subtype B had higher TME 
scores (Fig. 6B).

To compare immune cell infiltration across the different 
gene subtypes, the ssGSEA function within the R package, 
GSVA, was used. Notably, subtype B demonstrated higher 
immune infiltration compared with the other subtypes, with 
a marked increase in CD4+ T cells, CD8+ T cells, γδT cells, 
mast cells, macrophages and regulatory T cells (P<0.01; 
Fig. 6C).

Constructing gene subgroups based on the DEGs. Since 
gene expression is controlled by a complex regulatory 

Figure 1. SNV data of FAO‑related genes in the glioma cohort from the GSCA database (http://bioinfo.life.hust.edu.cn/GSCA/#/). (A) The SNV frequency of 
FAO‑related genes in the glioma cohort. (B) Summary of the frequency of deleterious mutations in the glioma cohort. SNV, single nucleotide variants; LGG, 
low grade glioma; GBM, glioblastoma; FAO, fatty acid oxidation; PPARGC1A, PPARG coactivator 1 α; CPT1A, carnitine palmitoyltransferase 1A; MTLN, 
mitoregulin; AKT2, AKT serine/threonine kinase 2; ABCD1, ATP binding cassette subfamily D member 1; FABP1, fatty acid binding protein 1; ABCD2, ATP 
binding cassette subfamily D member 2; MLYCD, malonyl‑CoA decarboxylase; IRS1, insulin receptor substrate 1; PLIN5, perilipin 5; PPARA, peroxisome 
proliferator activated receptor α; PPARD, peroxisome proliferator activated receptor δ; TWIST1, twist family bHLH transcription factor 1; NR4A3, nuclear 
receptor subfamily 4 group A member 3; IRS2, insulin receptor substrate 2.
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network, the deep connections between genes were further 
explored based on the screened DEGs. Single‑factor regres‑
sion analysis was conducted using the identified 287 DEGs, 
which were sorted by P‑value, and the top 50 DEGs with 
the smallest P‑values were screened (Fig. S4). These DEGs 
were subsequently divided into two subgroups based on 
unsupervised clustering analysis (Fig. 7A). To compare the 
survival time of the patients in the two groups, the ‘survival’ 
and ‘survminer’ packages in R were utilized. The analysis 
demonstrated that the survival rate of patients in subgroup A 

was significantly higher than that in subgroup B (P<0.01; 
Fig. 7B).

The distribution and clinicopathological characteristics 
of the DEGs in the two subgroups were visualized using a 
heat map, which also revealed differences between the two 
subgroups. Subgroup B was associated with a higher tumor 
grade and a greater number of patients with isocitrate dehydro‑
genase (NADP+) (IDH1) wild‑type (Fig. 7D). Notably, genes 
related to FAO exhibited significant differences between the 
two subtypes (Fig. 7E).

Figure 2. CNV data of FAO‑related genes in the glioma cohort from the GSCA database (http://bioinfo.life.hust.edu.cn/GSCA/#/). (A) Pie plots summarizing 
the CNV of FAO‑related genes in the glioma cohort. (B) The correlation between CNV and mRNA expression of FAO‑related genes in the glioma cohort. 
(C) The homozygous and heterozygous CNV profiles of FAO‑related genes in the glioma cohort. (D) The correlation between methylation and mRNA expres‑
sion of FAO‑related genes in the glioma cohort. CNV, copy number variation; LGG, low grade glioma; GBM, glioblastoma; FAO, fatty acid oxidation; cor., 
correlation; Hete., heterozygous; Homo., homozygous; SCNA, somatic copy number; FDR, false discovery rate; PPARGC1A, PPARG coactivator 1 α; CPT1A, 
carnitine palmitoyltransferase 1A; MTLN, mitoregulin; AKT2, AKT serine/threonine kinase 2; ABCD1, ATP binding cassette subfamily D member 1; 
FABP1, fatty acid binding protein 1; ABCD2, ATP binding cassette subfamily D member 2; MLYCD, malonyl‑CoA decarboxylase; IRS1, insulin receptor 
substrate 1; PLIN5, perilipin 5; PPARA, peroxisome proliferator activated receptor α; PPARD, peroxisome proliferator activated receptor δ; TWIST1, twist 
family bHLH transcription factor 1; NR4A3, nuclear receptor subfamily 4 group A member 3; IRS2, insulin receptor substrate 2.
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Construction of a score model based on the PCA. The 
patients undergoing PCA analysis were divided into the high 
score group (HSG) and the low score group (LSG) based on 
the median value. The resultant KM curves indicated that 
the HSG had a significantly lower survival rate compared 
with the LSG group (P<0.01; Fig. 8A). Time‑dependent 
receiver operating characteristic curve analysis revealed 
that the scoring model demonstrated good predictive 
performance, with area under the curve values of 0.805, 

0.848 and 0.817 for 1‑, 3‑ and 5‑years, respectively (Fig. 7C). 
The Sankey plot displayed the distribution of patients in 
the three FAO‑related gene clusters, two gene subgroups 
and two score groups (Fig. 8B). Notable differences in the 
distribution of scores among the different groups and gene 
subgroups were found (Fig. 8C and D). The score values 
were significantly and positively correlated with immune 
cell infiltration, with a corresponding distribution shown in 
Fig. 8E.

Figure 3. FAO‑related gene correlation and prognostic analysis in the glioma cohort. (A) In the PCA, samples from TCGA and CGGA databases were clas‑
sified. (B) To predict the relationship between FAO‑related genes and glioma prognosis, the ‘survival’ and ‘survminer’ packages were used to perform the 
log‑rank test and Cox regression analysis. The circle size indicates the P‑value, and the lines linking the FAO‑related genes indicate their interactions. Circles 
in purple indicate prognostic risk factors and green circles represent prognostic protective factors. (C) Kaplan‑Meier survival curves were used to observe 
the relationship between FAO‑related genes and survival in the integrated samples. CGGA, Chinese Glioma Genome Atlas; FAO, fatty acid oxidation; PCA, 
principal component analysis; TCGA, The Cancer Genome Atlas; PPARGC1A, PPARG coactivator 1 α; CPT1A, carnitine palmitoyltransferase 1A; AKT2, 
AKT serine/threonine kinase 2; ABCD1, ATP binding cassette subfamily D member 1; FABP1, fatty acid binding protein 1; ABCD2, ATP binding cassette 
subfamily D member 2; MLYCD, malonyl‑CoA decarboxylase; IRS1, insulin receptor substrate 1; PLIN5, perilipin 5; PPARA, peroxisome proliferator 
activated receptor α; PPARD, peroxisome proliferator activated receptor δ; TWIST1, twist family bHLH transcription factor 1; NR4A3, nuclear receptor 
subfamily 4 group A member 3; IRS2, insulin receptor substrate 2.
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Figure 4. Unsupervised clustering based on the FAO‑related gene signature. (A) The samples were clustered into different subgroups by unsupervised clus‑
tering. The most suitable value of k is k=3. (B) Prognostic Kaplan‑Meier curves for the 3 clusters. (C) Differential expression of FAO‑related genes among 
the 3 clusters. (D) Heat map of the clinicopathological characteristics and gene phenotypes in the 3 clusters. ***P<0.001. CGGA, Chinese Glioma Genome 
Atlas; FAO, fatty acid oxidation; TCGA, The Cancer Genome Atlas; PPARGC1A, PPARG coactivator 1 α; CPT1A, carnitine palmitoyltransferase 1A; AKT2, 
AKT serine/threonine kinase 2; ABCD1, ATP binding cassette subfamily D member 1; FABP1, fatty acid binding protein 1; ABCD2, ATP binding cassette 
subfamily D member 2; MLYCD, malonyl‑CoA decarboxylase; IRS1, insulin receptor substrate 1; PLIN5, perilipin 5; PPARA, peroxisome proliferator 
activated receptor α; PPARD, peroxisome proliferator activated receptor δ; TWIST1, twist family bHLH transcription factor 1; NR4A3, nuclear receptor 
subfamily 4 group A member 3; IRS2, insulin receptor substrate 2.
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It was observed that the survival status was diminished 
in the HSG, and that the HSG showed poor characteristics, 
including higher grade, older age, IDH1 wild‑type, 1p19q 
non‑co‑deletion and other poor prognostic factors (Fig. 9A‑F). 
These differences were statistically significant (P<0.01). A 
total of five immune checkpoints, including programmed 
cell death 1 ligand 1, Lymphocyte activation gene 3 protein, 
programmed cell death protein 1, cytotoxic T‑lymphocyte 
protein 4 and T‑cell immunoreceptor with Ig and ITIM 
domains, were selected for analysis and it was found that 
immune checkpoints were generally upregulated in the HSG 

(Fig. 10A). We hypothesize that the HSG has enhanced sensi‑
tivity to immunotherapy and is more conducive to treatment 
using immunosuppressants.

Assessing score model performance using the validation sets. 
To evaluate the score model, it was verified using external 
datasets, including GSE135222 (patients with advanced 
non‑small cell lung carcinoma) and GSE61676 (patients with 
late‑stage non‑squamous non‑small cell lung cancer), and the 
IMvigor210CoreBiologies package. In the three validation 
datasets, the KM curves showed that the survival rate of the 

Figure 5. Differential gene selection. (A) Volcano plots of the DEGs based on differential expression analysis. (B) GO and (C) KEGG analysis of the obtained 
287 DEGs following differential analysis. (D) The relationship between the genes and pathways in the top 5 KEGG results. The size of the circle represents 
the strength of the relationship between genes and pathways, the larger the size, the stronger the correlation. DEGs, differentially expressed genes; GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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HSG was better than that of the LSG (P<0.01). In addition, in 
the GSE135222 dataset, the tumor progression rate of the HSG 
was lower (P<0.05). In the GSE61676 dataset, the HSG seemed 
to have a higher rate of immune therapy response. In the 
IMvigor210 dataset, the rate of remission for tumor appeared 
to be higher in the HSG (Fig. 10B‑D). The aforementioned 

results indicated that the score model could be applied to other 
tumors and be beneficial for the immunosuppressive treatment 
of glioma.

The differences in the effectiveness of various immuno‑
suppressants between the HSG and the LSG were analyzed by 
comparing the IC50 values. The Wilcoxon rank‑sum test was 

Figure 6. Relationship between the clusters and immune cell infiltration. (A) PCA was used to compare the differences among all clusters. (B) The expres‑
sion scores of different clusters included in the ESTIMATE algorithm for determination of stromal and immune gene signatures. (C) The differences in the 
infiltration of 23 immune cells between clusters using single‑sample Gene Set Enrichment Analysis. **P<0.01; ***P<0.001. PCA, principal component analysis; 
ns, not significant.
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Figure 7. Consensus clustering and risk scoring model construction for the top 50 DEGs. (A) Clustering of the top 50 DEGs. The optimal number of clusters 
was k=2. (B) Kaplan‑Meier survival curve of the gene subtypes based on the top 50 DEGs. (C) Receiver operating characteristic curve of the risk score model. 
(D) Heat map illustrating the differences in the DEG expression profiles and the clinicopathological characteristics between two gene subtypes in the glioma 
cohort. (E) Differential expression of fatty acid oxidation‑related genes between the two gene subtypes. **P<0.01; ***P<0.001. AUC, area under the curve; 
CGGA, Chinese Glioma Genome Atlas; DEGs, differentially expressed genes; ns, not significant; TCGA, The Cancer Genome Atlas; PPARGC1A, PPARG 
coactivator 1α; CPT1A, carnitine palmitoyltransferase 1A; AKT2, AKT serine/threonine kinase 2; ABCD1, ATP binding cassette subfamily D member 1; 
FABP1, fatty acid binding protein 1; ABCD2, ATP binding cassette subfamily D member 2; MLYCD, malonyl‑CoA decarboxylase; IRS1, insulin receptor 
substrate 1; PLIN5, perilipin 5; PPARA, peroxisome proliferator activated receptor α; PPARD, peroxisome proliferator activated receptor δ; TWIST1, twist 
family bHLH transcription factor 1; NR4A3, nuclear receptor subfamily 4 group A member 3; IRS2, insulin receptor substrate 2.
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employed to determine the statistical differences between the 
two groups (Fig. S5).

Screening and experimental validation of a key gene. The 
PPI network analysis revealed that TIMP1 is a key gene in 
glioma (Fig. 11A). Subsequent GEPIA analysis indicated 
a significant upregulation of TIMP1 in high‑grade glioma 

compared with normal brain tissue (P<0.05; Fig. 11F), but 
no significant difference in low‑grade glioma compared with 
normal brain tissue. High TIMP1 expression was associ‑
ated with poor prognosis and increased risk of suboptimal 
disease‑free survival and overall survival rates in patients with 
glioma (P<0.01; Fig. 11B). Furthermore, results from the WB 
experiments corroborated this finding, demonstrating high 

Figure 8. Assessment of the relevance of the risk scores and clustering. (A) Kaplan‑Meier curve analysis of the high and low‑score groups. (B) Sankey diagram 
demonstrating the association between clusters, gene clusters, score groups and the prognostic signature. (C) Significant differences in the scores of different 
clusters based on the 287 differentially expressed genes. (D) Significant differences in the scores of different gene clusters. (E) Correlation analysis of risk 
score and immune cell infiltration. Red represents positive correlation, blue represents negative correlation; the darker the color, the stronger the correlation. 
***P<0.001.
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TIMP1 protein expression in all high‑grade glioma cell lines 
(A172, LN229 and SF539) and low expression in low‑grade 
glioma (HS683) and normal (HMC3) cell lines, with statisti‑
cally significant differences (Fig. 11D and E). Additionally, 
immunohistochemical stained images from the HPA database 
revealed positive staining for TIMP1 in the high‑grade glioma 
tissue, while low‑grade glioma and normal human astro‑
cyte tissues were TIMP1‑ (Fig. 11C). The results of the flow 
cytometry experiments showed that, compared with the si‑NC 
group, knocking down TIMP1 expression did not significantly 
affect the apoptosis cycle of LN229 and SF593 cells (Figs. 11I 
and S6A). However, colony formation assays demonstrated 
that, compared with the si‑NC group, knockdown of the TIMP1 
gene by both TIMP1 si‑RNAs reduced the number of colonies 
in LN229 and SF539 cells (Fig. 11H and K). Consistent with 
the colony formation assay results, the results of the EdU 
experiment showed that the fluorescence intensity of both the 
si‑TIMP1‑1 and si‑TIMP1‑2 groups was lower than that of the 
si‑NC group (P<0.01; Figs. 11L and S6B), indicating a decline 

in cell proliferation capability. Consistent results were also 
obtained in the CCK‑8 assays (Fig. 11M). These experimental 
results confirmed that knocking down TIMP1 expression 
inhibited the proliferation of LN229 and SF539 cells. Overall, 
the comprehensive analysis suggested that TIMP1 may play a 
critical role in the development and progression of high‑grade 
glioma and could serve as a potential biomarker for prognostic 
and therapeutic purposes.

Discussion

Cancer cells have a unique metabolism, which requires 
complex and diverse metabolic pathways to meet their specific 
needs such as for growth and invasion (37,38). Furthermore, 
metabolic changes and regulation can significantly impact the 
outcome of tumors (39). Research demonstrates that glioma 
tumors primarily rely on FAO to produce ATP and cytosolic 
NADPH, which provide essential energy to tumor cells (34). 
The precursors of signaling molecules that regulate important 

Figure 9. Relationship between the risk score model and different clinicopathological characteristics. Relationship between the risk score model and (A) survival 
status, (B) sex, (C) grade, (D) 1p19q codeletion status, (E) IDH1 and (F) MGMTp methylation. ***P<0.001; ns, not significant. IDH1, isocitrate dehydrogenase 1; 
MGMTp, methylguanine‑DNA methyltransferase.
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Figure 10. Relationship between the risk score model and the immunoparameters. (A) Difference in the expression of immune checkpoints in the high and 
low‑risk scoring group. Validation of the immunotherapy score in the (B) GSE135222, (C) GSE61676 and (D) IMvigor210CoreBiologies external validation 
sets. *P<0.05, ***P<0.001; ns, not significant. CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease.
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biological processes of tumors are derived from FAs and their 
metabolic products. In addition, FAs play a pivotal role in 

ferroptosis, a non‑traditional apoptosis mechanism, which is 
induced by the reaction of ferrous ions and reactive oxygen 

Figure 11. Validation of the DEGs and downregulation of TIMP1. (A) Protein‑protein interaction network of the top 50 key DEGs. (B) Kaplan‑Meier survival 
curve analysis of TIMP1 in the glioma cohort. (C) TIMP1 immunohistochemistry image from Human Protein Atlas database. (D) TIMP1 expression levels in 
LGG and GBM. (E) WB and (F) semi‑quantification experiments of TIMP1 expression normal human astrocytes and glioma cell lines. Efficiency of TIMP1 
knockdown was confirmed by (G) WB and subsequently (H) semi‑quantified. The results and statistics of (I) Colony formation assay in different transfec‑
tion groups and subsequent (J) quantification. (K) Apoptosis of transfected LN229 and SF539 cells was assessed by flow cytometric assays. Proliferation of 
transfected LN229 and SF539 cells was assessed by (L) EdU and (M) Cell Counting Kit‑8 assays. *P<0.05, **P<0.01, ***P<0.001. DEGs, differentially expressed 
genes; EdU, 5‑ethynyl‑2‑doxyuridine; GBM, glioblastoma; HR, hazard ratio; LGG, low grade glioma; N, normal tissue; NC, negative control; si(RNA), small 
interfering (RNA); T, tumor tissue; TIMP1, tissue inhibitor of metalloproteinase 1; WB, western blotting.
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species (ROS) (40). Moreover, the chemotherapy resistance, 
angiogenesis, metastasis and invasion of glioma cells are 
closely related to FA metabolism (41). Therefore, the occur‑
rence and development of glioma heavily depend on FA 
metabolism. Previous studies have drawn attention to the 
immunosuppressive effects of FA metabolism on tumors. For 
instance, Miska et al (42) reported that etomoxir, an inhibitor 
of FA metabolism, inhibits the growth of MC38 tumor cells 
in vivo, which is dependent on preventing the immunosup‑
pressive capabilities of CD8+ and CD4+ T cells. Similarly, 
Zhao et al (43) observed that FAO ultimately increases 
the tolerance of dendritic cells to enhance the resistance to 
immunotherapy in melanoma and generates tumor‑regulatory 
T cells through indoleamine 2,3‑dioxygenase‑1 activity. In 
another study by Pearce et al (44), it was demonstrated that 
tumor necrosis factor receptor‑associated factor 6 promotes 
FAO, which enhances the development of long‑lived memory 
CD8 T cells. Notably, blocking FAO simultaneously boosts 
antitumor immunity and the efficacy of anti‑programmed cell 
death protein 1 inhibitors (45).

Although some genes related to FA metabolism and the 
immune microenvironment of glioma have been experimen‑
tally verified, the research is still in its early stages and there 
is currently no effective method to target this pathway in 
clinical practice (14,46). Previous studies have used molecular 
markers related to FA metabolism to construct glioma prog‑
nosis models (33,34), but the link between the prognosis model 
and the tumor immune microenvironment remains unclear. 
Therefore, in the present study, a FAO‑based model was 
comprehensively and systematically constructed to evaluate 
immune infiltration in patients with glioma and to discover the 
potential relationship and clinical value of FA metabolism and 
the immune microenvironment in glioma.

The findings of the present study revealed global changes 
in FAO‑related genes in glioma cells at the transcriptional 
and genetic levels, which identified three distinct molecular 
clusters based on 13 FAO‑related genes. Cluster B, associ‑
ated with higher immune infiltration, displayed significantly 
worse prognosis, and other significant differences in the 
TME characteristics were observed between the clusters. The 
enrichment features of cluster B included the p53 signaling 
pathway, apoptosis, the ROS signaling pathway, DNA repli‑
cation and mismatch repair. Pairwise comparison of three 
molecular clusters yielded 287 DEGs, and the clusters were 
further classified to two different gene subtypes based on the 
top 50 DEGs (rated according to the P‑value). Patients with 
subtype B had a higher tumor grade, poor prognostic factors 
such as age, and a worse survival compared with patients with 
subtype A. Analysis of the clinicopathological information 
revealed poor prognostic indicators such as IDH1 wild‑type, 
1p19q non‑co‑deletion and high tumor grade in the HSG. The 
expression of immune checkpoints was also generally higher 
in the HSG, indicating potential benefits with the administra‑
tion of immune checkpoint inhibitors.

The scores from the model developed in the present 
study, by comparing the HSG and the LSG, demonstrated 
significantly different clinicopathological features, prognostic 
correlations, immune checkpoints and drug sensitivity. The 
scores were validated using an external validation set, and 
the immunotherapy response of the validation set could be 

predicted from this model. We consider that the findings of 
the present study provide critical insights into the molecular 
mechanisms of the role of FA metabolism in glioma and offer 
new ideas for drug development and targeted therapy.

In addition, the TIMP1 gene was identified through key 
protein interactions in the current study. One study found that 
the expression of TIMP1 in HT‑29 colon adenocarcinoma cells 
increased the cell proliferation, migration and growth of tumor 
xenografts (47). Another study found that, among patients with 
endometrial cancer and breast cancer, patients with shorter recur‑
rence times and later tumor stages were significantly positively 
correlated with the expression level of TIMP1 (48,49). Numerous 
studies have also revealed the relationship between TIMP1 and 
tumor progression and the TME (47‑51). A recent study has also 
found that TIMP1 is highly expressed in GBM, the TIMP1 gene 
family is related to the immune infiltration of glioma and the 
immune response‑related transcription factor, Sp1, can regulate 
the expression of TIMP1 in GBM (45). The results of the present 
study further demonstrated the correlation between TIMP1 
expression and increased tumor proliferation. In addition, the 
key gene, TIMP1, was screened out to be included in the immune 
score of the developed model, and the score indicated a better 
immune response.. Furthermore, TIMP1 protein expression in 
different glioma cell lines was verified, and it was found that 
the expression level of TIMP1 increased with tumor grade. The 
present study, to the best of our knowledge, confirmed for the first 
time that the expression level of TIMP1 may be positively corre‑
lated with the degree of malignancy in glioma, which provided 
a further theoretical basis for the relationship between TIMP1 
and the growth, proliferation and immune infiltration of glioma. 
However, more immunohistochemical samples and in vitro 
experimental studies are required to verify this hypothesis.

In conclusion, the present study demonstrated that 
FAO‑related genes are closely linked to glioma oncogenesis 
and progression, and that the clusters and scoring models 
constructed based on the FAO‑related genes were effec‑
tive in evaluating prognosis and immunotherapy response. 
FAO‑related genes may be involved in one of the immune 
mechanisms of tumor development and therefore may be a 
new target for tumor treatment.
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