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Abstract: Background: Chronic Obstructive Pulmonary Disease (COPD), a major cause of mortality
and disability, is a complex disease with heterogeneous and ill-understood biological mechanisms.
Human induced pluripotent stem cells (hiPSCs) are a promising tool to model human disease,
including the impact of genetic susceptibility. Methods: We developed a simple and reliable method
for reprogramming peripheral blood mononuclear cells into hiPSCs and to differentiate them into air–
liquid interface bronchial epithelium within 45 days. Importantly, this method does not involve any
cell sorting step. We reprogrammed blood cells from one healthy control and three patients with very
severe COPD. Results: The mean cell purity at the definitive endoderm and ventral anterior foregut
endoderm (vAFE) stages was >80%, assessed by quantifying C-X-C Motif Chemokine Receptor
4/SRY-Box Transcription Factor 17 (CXCR4/SOX17) and NK2 Homeobox 1 (NKX2.1) expression,
respectively. vAFE cells from all four hiPSC lines differentiated into bronchial epithelium in air–liquid
interface conditions, with large zones covered by beating ciliated, basal, goblets, club cells and
neuroendocrine cells, as found in vivo. The hiPSC-derived airway epithelium (iALI) from patients
with very severe COPD and from the healthy control were undistinguishable. Conclusions: iALI
bronchial epithelium is ready for better understanding lung disease pathogenesis and accelerating
drug discovery.

Keywords: airway epithelium; chronic obstructive pulmonary disease; disease modeling; human
induced pluripotent stem cells

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized
by respiratory symptoms associated with chronic airflow limitation. COPD is the third
leading cause of death worldwide, and affects approximately 300 million people in the
world [1]. Although cigarette smoking has been considered the most frequent cause of
COPD, about half of cases are linked to non-tobacco-related risk factors, such as outdoor
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air pollution, biomass smoke, and occupational exposure to fumes and dust [2]. In COPD,
the small conducting airways (<2 mm in diameter) are the major site of airflow obstruction,
inflammation, and destruction [3–5]. Therefore, in vitro bronchial epithelium models are
crucial to better understand and treat COPD.

Induced pluripotent stem cells (iPSCs) represent an attractive solution to model chronic
airway diseases because they can yield a virtually unlimited amount of any differentiated
cell type [6]. Recently described protocols to differentiate human pluripotent stem cells
(PSCs) into bronchial epithelium [7–15] rely on the knowledge gathered on normal lung
development in mammals [16]. Briefly, lung embryogenesis starts with the definitive
endoderm (DE) formation. During the 4th week of human embryonic development, the
primitive gut appears and can be divided into foregut, midgut, and hindgut. Early pul-
monary development starts from the ventral area of the anterior foregut endoderm (vAFE).
From this zone, which is characterized by the expression of the transcription factor NK2
homeobox 1 (NKX2.1), the respiratory diverticulum emerges and forms the trachea, and
then bronchi, bronchioles, and alveoli. These steps can be recapitulated in vitro by differen-
tiating PSCs first into DE and then into vAFE [17]. Finally, vAFE cells are differentiated
into lung progenitors and bronchial cells. However, the protocols for PSC differentiation
into bronchial epithelium present several drawbacks, and many of them have been rarely
described in detail. In addition, many of these protocols work only with some pluripotent
stem cell lines, often cell lines derived from healthy controls, and require an enrichment step
based on the specific selection of NKX2.1+ cells at the vAFE stage using flow cytometry and
cell surface markers (e.g., carboxypeptidase M+ cells [13] or CD47high CD26low cells [18]),
or a final differentiation step in 3D culture conditions. Others require important technical
skills and are difficult to replicate [19].

Here, we developed an easy approach to differentiate human iPSCs (hiPSCs) into
proximal airway epithelium, without any cell purification steps. Careful in-home repro-
gramming and then culture adaptation to single-cell passaging, together with precise timing
and reagent benchmarking for each differentiation step, led to the successful generation of
fully differentiated and functional bronchial epithelium in air–liquid interface (ALI) culture
conditions from four hiPSC lines (iALI bronchial epithelium), among which, three were
derived from patients with severe COPD. This study highlights the crucial importance of
evaluating the cell expansion and differentiation conditions for achieving optimal pheno-
typic and functional endpoints, such as ciliary beat frequency (CBF), mucus flow velocity,
differentiated cells, and transepithelial electrical resistance (TEER). This simple protocol to
produce hiPSC-derived iALI bronchial epithelium will facilitate airway disease modeling
for developing novel gene/cell therapies, and for drug discovery.

2. Materials and Methods
2.1. Patients’ Clinical Characteristics

Patients were younger than 55 years and had severe, early onset COPD (i.e., ratio of
forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) <0.70 and
FEV1% predicted <50% on postbronchodilator spirometry). More clinical data are available
in Supplementary Figure S1 and Appendix A.

2.2. Human Embryonic Stem Cell (ESC) and hiPSC Generation and Maintenance

The hiPSC lines HY03 (UHOMi002-A) (healthy control), iCOPD2 (UHOMi003-A),
iCOPD8 (UHOMi004-A), and iCOPD9 (UHOMi005-A) were reprogrammed from periph-
eral blood mononucleated cells (PBMCs) using the StemSpan with Erythroid Expansion
Medium (SSEM, StemCell Technologies, Vancouver, BC, Canada) and the CytoTune®-iPS
2.0 Sendai Reprogramming Kit (Thermo Fisher Scientific, Waltham, MA, USA, cat.no
A16517), according to the manufacturer’s instructions [20,21]. Emerging hiPSC clones were
mechanically selected and clonally expanded using mechanical passaging at early (<10)
passages. At least three clones for each donor were maintained and their genetic stability
was confirmed (Supplementary Figure S2). Pluripotency was confirmed by alkaline phos-
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phatase activity staining, stage-specific embryonic antigen 3/4 (SSEA3/4), and TRA1-60
cell surface expression by flow cytometry, as previously published [22]. The human ESC
line HD291 was derived in our laboratory [23]. PSC lines were maintained in an undiffer-
entiated state in feeder-free conditions on growth factor-reduced Geltrex (Thermo Fisher
Scientific) in E8 medium (Thermo Fisher Scientific). Cells were cultured in 35 mm dishes
at 37 ◦C and were dissociated mechanically (under an optical microscope) or into single
cells at 90% of confluence (every 4–5 days). Single-cell passaging was performed by adding
Versene (Thermo Fisher) at 37 ◦C for 5 min and then seeding at 1:10–1:20 ratio with 10µM
Y-27632 (Tocris), a potent and selective inhibitor of Rho-associated coiled-coil containing
protein kinase (ROCK). The E8 maintenance medium was changed every day.

2.3. HIPSC Differentiation

Differentiation was carried out as described in Figures 1 and 2A, using reagents at the
concentrations listed in Supplementary Tables S1 and S2. Cells were plated at high-density
(one 35 mm dish for two Transwell inserts) on Geltrex-coated Transwell inserts. During
differentiation in hypoxic conditions (5% O2, 37 ◦C), medium was changed every day.
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Figure 1. Study protocol: from human induced pluripotent stem cell (hiPSC) generation to hiPSC-
derived airway epithelium. Recovery of cell source (day 0 to day 10). Peripheral blood mononuclear 
cells (PBMC) are isolated from whole blood samples from healthy controls (HY03) and patients with 
chronic obstructive pulmonary disease (COPD) (COPD 2, 8 and 9). (A) Optical microscopy image 
of PBMCS, scale bar: 50 µm). Then, the CD34+ subpopulation is amplified into erythroid progenitor 
cells (B) optical microscopy image, scale bar: 50 µm). Cell reprogramming (day 11 to day 40). 
Erythroid progenitors are transduced using Sendai virus-based constructs to express OCT3/4, SOX2, 
KLF4, and c-Myc. HiPSC colonies are visible at day 40 (C) optical microscopy image, scale bar: 50 
µm). HiPSC differentiation into airway epithelium (iALI; day 41 to >day 100) (D) electronic micros-
copy image of iALI from the control HY03 hiPSC line, scale bar: 10 µm). 

3.2. Cell Density and Induction Timing Are Critical for Successful Differentiation and Allows 
High Rate of Definitive Endoderm Induction 

To develop a robust differentiation protocol (Figure 2A), we benchmarked the timing, 
cell density, and passaging method—three crucial steps for achieving reliable rates of DE 
purity and quality. We passaged hiPSC lines as single cells because hiPSC clumps were 
partly resistant to DE induction, as evidenced by OCT4 expression persistence. We ob-
tained optimal cell adaptation by gentle colony dissociation into small clumps for five 
passages, and then into single cells for at least 5–10 passages, using Versene (EDTA) and 
Y-27632. Then, we started differentiation by adding activin A and CHIR99021 (a GSK3 
inhibitor that acts as a WNT pathway agonist) in the presence of Y-27632 for 1 day (day 1; 
anterior primitive streak, (APS); Figure 2A,B and Supplementary Table S1), followed by 
activin A, LDN-193189 (a selective bone morphogenetic protein (BMP) signaling inhibitor 
that blocks the transcriptional activity of the type I BMP receptors activin receptor-like 
kinase 1, 2, 3, and 6), and Y-27632 for 1–2 days, leading to DE induction (day 2–3, Figure 
2A,B). To optimize the protocol, we tested various intervals between hiPSC plating and 
APS induction, and different cell densities (from 70 to 130 K cells/cm2) (Figure 2C,D). Plat-
ing cells at too low and too high density led to important cell loss and to persistent OCT4 
expression (Figure 2G). This optimized protocol robustly yielded >80% of C-X-C Motif 
Chemokine Receptor 4 (CXCR4) + DE cells within 2–3 days (Figure 2E) from the four 
hiPSC lines and one human ESC line (n = 170 independent experiments) (Figure 2F and 

Figure 1. Study protocol: from human induced pluripotent stem cell (hiPSC) generation to hiPSC-
derived airway epithelium. Recovery of cell source (day 0 to day 10). Peripheral blood mononuclear
cells (PBMC) are isolated from whole blood samples from healthy controls (HY03) and patients with
chronic obstructive pulmonary disease (COPD) (COPD 2, 8 and 9). (A) Optical microscopy image of
PBMCS, scale bar: 50 µm). Then, the CD34+ subpopulation is amplified into erythroid progenitor cells
(B) optical microscopy image, scale bar: 50 µm). Cell reprogramming (day 11 to day 40). Erythroid
progenitors are transduced using Sendai virus-based constructs to express OCT3/4, SOX2, KLF4, and
c-Myc. HiPSC colonies are visible at day 40 (C) optical microscopy image, scale bar: 50 µm). HiPSC
differentiation into airway epithelium (iALI; day 41 to >day 100) (D) electronic microscopy image of
iALI from the control HY03 hiPSC line, scale bar: 10 µm).
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Figure 2. Differentiation of human induced pluripotent stem cells (hiPSC) into bronchial airway
epithelium. (A) Schematic representation of the differentiation protocol. (B) Morphological changes
during the various differentiation steps. Day 0: hiPSCs plated as single cells. Day 1: anterior primitive
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streak (APS). Day 2–3: definitive endoderm (DE). Day 4, 6, and 8: anterior foregut endoderm; red
arrows: bud-like structures. Day 9: lung progenitors after mechanical clump passage and plating
on Transwell inserts. Day 14 (polarization day): epithelial layer. Day 42+: multi-ciliated bronchial
epithelial layer. Scale bar: 200 µm. (C) Experiment to optimize the interval between hiPSC plating and
APS induction (two plating densities: 35,000 and 70,000 cells/cm2). (D) Results of the optimization
experiment based on the percentage of CXCR4-expressing cells, assessed by flow cytometry (DE
marker). Low cell density plating and short interval before APS induction led to hiPSC death. A
long interval before hiPSC differentiation induction led to non-optimal DE induction. On the basis of
these results, the density of 70 K·cm2 and APS induction at 14 h after hiPSC plating were selected
as optimal conditions. (E) Time course of DE induction (n = 3, HY03 hiPSC line); similar results
were obtained for the other cell lines. Maximum CXCR4 expression was reached at 24–48 h after DE
induction. (F) Quality of DE induction based on CXCR4 expression by flow cytometry analysis in
the five different PSC lines used (at least n = 8 independent experiments for each cell line). hiPS:
undifferentiated hiPSC (negative control). (G) Immunolabeling at the DE stage for SOX17 (endoderm)
and OCT4 (pluripotency marker). Too low (35 K·cm−2) and too high (140 K·cm−2) cell density at
plating led to massive cell loss and incomplete OCT4 inhibition, respectively. Optimal cell density
(here, 70 K·cm−2) induced strong OCT4 inhibition and high SOX17 expression. Images are for
the iCODP8 cell line, but similar results were obtained also for the control HY03 iPSC line. Scale
bar: 100 µm. (H) Expression of DE-specific genes (SOX17 and FOXA2) at the DE stage (day 2–3 of
differentiation). (I) Immunolabeling for SOX17 (DE marker) at day 2–3 of differentiation for each cell
line. Scale bar: 100 µm (HY03 cells and iCOPD8); 50 µm (iCOPD2 and 9 cells).

2.4. Statistical Analysis

Data are presented as mean and standard deviation (SD) or standard error of the
mean (SEM), and graphs were generated with GraphPad (GraphPad Software Prism, v 6.01,
San Diego, CA, USA). All shown data are from experiments repeated at least three time.
p < 0.05 indicated significant differences between groups.

Ethical approval: INVECCO study (INVECCO ClinicalTrials.gov Identifier: NCT03181204,
CPP Sud Med IV) under the number ID RCB: 2017-A00252-51, CPP reference: protocol
08-2017, Promoter University Hospital of Montpellier.

3. Results
3.1. Reprogramming from Blood Samples

We reprogrammed PBMCs from one healthy control and the three patients with severe
COPD to generate the HY03, iCOPD2, iCOPD8, and iCOPD9 hiPSC lines, respectively
(Figure 1) [20,21]. We isolated PBMCs with Ficoll (Figure 1A) and cultured them using the
STEM SPAN SFEMII® Kit enriched with cytokines (interleukin 3, stem cell factor, erythro-
poietin) to promote Erythroid Progenitor (EP) expansion (Figure 1B). We monitored CD45,
CD34, CD71, and CD36 expression to optimize EP expansion before the transduction of the
c-Myc, Kruppel-like factor 4 (KLF4), sex-determining region of Y chromosome-box 2 (SOX2)
and octamer-binding transcription factor 4 (OCT4)-containing Sendai viruses for 3 days. Af-
ter transfer into Geltrex, we monitored hiPSC clones for 30 days (Figure 1C). We confirmed
pluripotency by demonstrating phosphatase alkaline activity, cell surface SSEA3/4 and
TRA1-60 expression, and OCT4, NANOG, SOX2 mRNA expression [20,21]. We assessed
HiPSC genetic integrity by digital droplet PCR (iCS digital) (Supplementary Figure S2) [24].
One of the COPD-reprogrammed iPSC clones (iCOPD2) harbored a copy number gain in
chromosome 20q11.21 at a late passage (>70 passages), yet differentiation could be achieved
(Figure 1D).

3.2. Cell Density and Induction Timing Are Critical for Successful Differentiation and Allows High
Rate of Definitive Endoderm Induction

To develop a robust differentiation protocol (Figure 2A), we benchmarked the timing,
cell density, and passaging method—three crucial steps for achieving reliable rates of DE
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purity and quality. We passaged hiPSC lines as single cells because hiPSC clumps were
partly resistant to DE induction, as evidenced by OCT4 expression persistence. We obtained
optimal cell adaptation by gentle colony dissociation into small clumps for five passages,
and then into single cells for at least 5–10 passages, using Versene (EDTA) and Y-27632.
Then, we started differentiation by adding activin A and CHIR99021 (a GSK3 inhibitor
that acts as a WNT pathway agonist) in the presence of Y-27632 for 1 day (day 1; anterior
primitive streak, (APS); Figure 2A,B and Supplementary Table S1), followed by activin A,
LDN-193189 (a selective bone morphogenetic protein (BMP) signaling inhibitor that blocks
the transcriptional activity of the type I BMP receptors activin receptor-like kinase 1, 2,
3, and 6), and Y-27632 for 1–2 days, leading to DE induction (day 2–3, Figure 2A,B). To
optimize the protocol, we tested various intervals between hiPSC plating and APS induc-
tion, and different cell densities (from 70 to 130 K cells/cm2) (Figure 2C,D). Plating cells at
too low and too high density led to important cell loss and to persistent OCT4 expression
(Figure 2G). This optimized protocol robustly yielded >80% of C-X-C Motif Chemokine
Receptor 4 (CXCR4) + DE cells within 2–3 days (Figure 2E) from the four hiPSC lines and
one human ESC line (n = 170 independent experiments) (Figures 2F and S3). We did not
observe any difference among cell lines at the DE stage. Moreover, DE cells expressed
(mRNA level and protein) the characteristic endoderm transcription factors forkhead box
A2 (FOXA2), SOX17, and the surface marker CXCR4 (Figure 2G–I). No difference was
observed at the mRNA level between the healthy control and COPD cell lines.

3.3. Efficient Induction of High Purity NKX2.1+ Lung Progenitors without Cell Sorting

Comparison of various growth factor combinations for vAFE induction showed that
DE cells needed minimal cell signaling, and therefore, were grown in RPMI1640 basal
medium with B27 minus vitamin A (Figure 2A and Supplementary Tables S1–S3). For effi-
cient vAFE induction, a DE cell population with at least 80% of CXCR4+ cells was required.
Time course experiments showed that at 24–36 h after LDN-193189 addition, there was a
narrow window when cells exhibited optimal conditions (i.e., high CXCR4 expression and
high viability) for vAFE induction. The 3D bud-like structures emerging between days 4–8
appeared to be a good morphological indicator of vAFE differentiation visible under an
optical microscope (Figure 2B, red arrows). In these conditions, >80% of cells consistently
expressed NKX2.1 (assessed by flow cytometry and immunolabelling in five different PSC
lines; n = 46 independent experiments) (Figures 3A,B and S3). The optimum percentage of
NKX2.1+ cells (>80%) was reached at ~day 3 after vAFE induction (Figure 3C), as confirmed
by immunostaining for NKX2.1 from day 1 to day 4 (Supplementary Figure S4A). This
NKX2.1 expression level was required to induce differentiation towards iALI. Pluripotency
markers (e.g., OCT4 and NANOG) were strongly downregulated at the vAFE stage, com-
pared with the DE stage (Figure 3E–G). Positive Controls: Brain mRNA, Thyroid mRNA,
HepG2 (Human Liver Cancer Cell Line) mRNA.

NKX2.1 bronchial progenitor cells exhibited a high proliferation rate, assessed by quan-
tifying the expression of the proliferation marker protein Ki-67 (Supplementary Figure S4C).
We also detected SOX2, SOX9 expression by immunostaining, as previously reported
in vivo during human lung development (Figure 3D and S4B), but not terminal airway
epithelial markers. This confirmed the immature feature of these progenitor cells, and was
in agreement with another hiPSC differentiation protocol [18] and human lung develop-
ment [25]. As NKX2.1 is also expressed in other developing tissues (Figure 3F), we assessed
by RT-qPCR, the purity of NKX2.1+ lung progenitor cells by confirming the absence of
thyroid gland- (thyroglobulin, paired box 8), brain- (paired box 6), and liver-specific (alpha-
fetoprotein, confirmed also by immunostaining in Supplementary Figure S4D) cell markers.
We did not observe any difference between healthy and COPD cell lines at the bronchial
progenitor stage.
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Figure 3. Anterior foregut endoderm characterization. (A) Percentage of NKX2.1+ cells after vAFE 
induction in the indicated cell lines. Undifferentiated hiPSCs: negative control. (B) Expression of 

Figure 3. Anterior foregut endoderm characterization. (A) Percentage of NKX2.1+ cells after vAFE
induction in the indicated cell lines. Undifferentiated hiPSCs: negative control. (B) Expression of
NKX2.1, a ventral anterior foregut endoderm marker, assessed by immunofluorescence (HY03 cell
line). Scale bar: 20 µm. (C) NKX2.1 expression kinetics (n = 3, HY03 cell line). (D) Expression of SOX-
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2 and SOX9. Note the presence of SOX2/SOX9 double-positive cells (Hy03 cell line). (E) Analysis
of the pluripotency markers NANOG and OCT4 in hiPSCs (top), and at the definitive endoderm
(DE; middle) and ventral anterior foregut endoderm (AFE; bottom) stages (HY03 cell line); scale bar:
20 µm. (F) Model of hiPSC differentiation into the three embryonic layers, emphasizing that NKX2.1
is expressed by bronchial, neuroectodermal, and thyroid progenitors. These other progenitors can
be a potential source of cell contamination in NKX2.1+ cells during iPSC differentiation into lung
progenitors. Inh, inhibition. (G) Quantitative PCR analysis to assess contamination at the AFE stage
by thyroid gland (thyroglobulin (TG) and paired box 8 (PAX8)), liver (alpha fetoprotein, AFP), and
brain (paired box 6, PAX6) progenitors; gene expression was normalized to the tissue control (listed
below). Progressive downregulation of the pluripotency marker NANOG. NKX2.1 expression at the
different differentiation stages was normalized to expression in iPSCs.

3.4. Specification of NKX2.1 Lung Progenitor Cells in 2D ALI Culture Conditions Leads to
Functional, Multi-Ciliated Airway Epithelium

We obtained iALI bronchial epithelium from four different hiPSC lines (n > 3 indepen-
dent experiments per cell line). After mechanical dissociation into small clumps, we plated
vAFE cells at high density on Transwell inserts in PneumaCult-Ex Plus medium (day 9,
Figure 2A). After 2 days in PneumaCult-Ex Plus medium, we progressively switched to
PneumaCult-ALI maintenance medium. Four days after seeding on Transwell inserts, we
removed the medium from the apical side to switch to ALI culture (“polarization”). We
added DAPT, a γ-secretase inhibitor that blocks NOTCH signal transduction, to the culture
medium in the basolateral part of the Transwell from day 14 to day 28, post-plating on
Transwell inserts (Figure 2A and Supplementary Table S1).

3.4.1. Epithelium with Barrier Function

HiPSC-derived epithelial cells reached confluence after 4 days of submerged growth
conditions (Figure 2A). We observed morphological features consistent with epithelium
at late iALI stage (>day 42), zonula occludens 1 expression, and the presence of adherent
junctions (junctional complexes) by transmission electron microscopy at day 34 (Figure 4A).
We assessed the barrier integrity during ALI 2D culture by TEER measurement. TEER
increased significantly during the differentiation process (Figure 4H). At day 7 of air liquid
interface polarization, it reached ~300 Ω·cm2 and could be maintained for >200 days of
culture. TEER values were not significantly different between control and COPD hiPSC-
derived epithelia at all time points.

3.4.2. IALI Bronchial Epithelium Includes Major and Rare Solitary Human Airway
Epithelial Cells

At day 45 of differentiation, we could identify the main bronchial epithelium cell types:
basal cells (keratin 5, KRT5, and tumor protein P63, TP63) (Figure 4B,C), ciliated cells (tubu-
lin beta 4, TUBIV) (Figure 4D), goblet cells (mucin-5AC, MUC5AC) (Figure 4E), club cells
(Secretoglobin family 1A member 1, CCSP, also known as SCGB1A1) (Figure 4G), and neuroen-
docrine cells (chromogranin A, CHGA) (Figure 4F). We detected club cells and goblet cells in
iALI cultures already at day 27 of differentiation (Figure 4G,I). We detected CCSP+/MUC5AC-
and CCSP-/MUC5AC+ cells, but also a small number of CCSP+/MUC5AC+ cells at day
27 of differentiation (day 14 after ALI polarization) (Figure 4G), as confirmed by confocal
analysis. The presence of MUC5AC+ cells (Figure 4E–G) was associated with the protein
release in the supernatant, detected by dot blot analysis, alcian blue and periodic acid–Schiff
staining (Figure 4J,K). Quantification of the two main mucins, MUC5B and MUC5AC, in su-
pernatants after day 45 of differentiation (at least n = 3 independent experiments for each cell
line) showed that MUC5B was the predominant mucin secreted by healthy control (HY03 cells:
0.001 (0.7-4-0.004 fmol/µL) and COPD hiPSC-derived cultures (0.012 (0.8-4-0.06) fmol/µL)
(Figure 4I). The mean MUC5AC concentration also was similar between COPD and healthy
control hiPSC-derived cultures (0.003 (0–0.008) fmol/µL and 0.003 (0.5-4-0.01) fmol/µL).
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Figure 4. Human induced pluripotent stem cell (hiPSC)-derived bronchial airway epithelium at day
45 of differentiation (iALI). (A) Epithelial cells: optical microscopy image (left panel), immunolabeling
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of zonula occludens protein 1 (ZO-1) (middle panel); (right panel) transmission electron microscopy
image of mature hiPSC-derived airway epithelium grown at the air–liquid interface (iALI) after
45 days of differentiation. The image shows two contiguous ciliated cells with ciliated structures at
the apical side of the polarized iALI epithelium; epithelial features are highlighted by the presence of
tight junctions (TJ) and desmosomes (white arrowhead) (iCOPD9 cell line). (B,C) Basal cells: TP63
(HY03 cells) and KRT5 (iCOPD9 cells) expression. (D) Multi-ciliated cells: expression of the terminal
differentiation marker TUBIV (iCOPD2 cell line). (E) MUC5AC+ goblet cells (iCOPD9 cell line).
(F) Rare clusters of CGHA+ neuroendocrine cells (iCODP9 cell line). (G) Left panels: immunostaining
of CSSP+ club cells and MUC5AC+ goblet cells in cultures grown without DAPT. Note the presence
of CCSP/MUC5AC double-positive cells (iCODP9 cell line). Right panels: Two-color confocal image
showing CCSP (green) and MUC5AC (red) co-localization at day 14 of ALI culture. Orthogonal views
(XY, XZ, YZ) showing colocalization (yellow) of CCSP and MUC5AC (iCDOP9 cell line). Scale bar:
20 µm. (H) Transepithelial Electrical Resistance (TEER) quantification at different time points in the
four hiPSC lines at the iALI differentiation stage; day 0 is the day of ALI polarization. The electrical
resistance of the blank inserts with medium alone was subtracted from the TEER values of co-cultures.
Data represent the mean ± SD of at least three different experiments for each cell line, each with at
least three TEER measurements. (I) MUC5AC and MUC5B concentration in supernatants from iALI
cultures after 30 days of differentiation, assessed with the LC-MRM method. (J) Dot blot analysis to
detect MUC5AC presence in supernatants of one iALI bronchial epithelium culture (derived from the
HY03 cell line) from day 28 to day 46 of differentiation. Supernatant from an ALI culture of human
bronchial epithelial cells from a healthy control was used as positive control of mucins. (K) Alcian
blue and Periodic Acid–Schiff (PAS) staining of mucus in iCOPD9 culture supernatant. (L) CCSP
quantification at day 45 in supernatants from iALI bronchial epithelium cultures derived from the
HY03, iCOPD9, and iCOPD8 hiPSC lines. (M) Quantitative PCR analysis to assess the expression
of FOXJ1 and DNAH5 (ciliated cells), MUC5AC and CCSP (secretory cells, and goblet cells and club
cells, respectively), P63 and KRT5 (basal cells), and CHGA (neuroendocrine cells). Scale bar: 20 µm.

The concentration of secreted CCSP ranged from 103.9 ng/mL to 110.9 ng/mL, de-
pending on the experiment (Figure 4L), and was comparable among cell lines at day 41 of
differentiation. We could not detect CCSP in the iCOPD2 cell line.

We also detected neuroendocrine cells (CHGA mRNA and protein expression) that
could organize into clusters, resembling airway neuroepithelial bodies (Figure 4F–M). We
did not detect SFTPC expression at mRNA level at iALI stage (Supplementary Figure S4E).

3.4.3. Functional Multi-Ciliated Cell Airway Epithelium

We also observed cilia beating by optical microscopy and by TUBIV immunofluores-
cent labeling (Figure 5A). We identified abundant multi-ciliated cells in all four iPSC lines
after 30 days of differentiation. We observed dynein axonemal heavy chain 5 staining along
the ciliary axoneme (Figure 5B). Morphological analysis of multi-ciliated cells by optical
and transmission electron microscopy (Figure 5C,D) indicated that the cilium structure was
characterized by nine peripheral doublet pairs and a central pair of singlet microtubules
(Figure 5D), typical of motile cilia [26].

We then measured cilium length in iALI cultures, in fresh bronchial epithelial cells
obtained by endoscopic brushing, and in classical ALI-cultured airway epithelium by
optical and scanning electron microscopy. The mean cilium length was similar in ALI and
iALI cultures (Figure 5E), without any obvious difference among the different samples. We
could observe cilia beating using a high-speed camera after isolation of iALI epithelium
patches (Supplementary Movie S1), on Transwell membranes (Supplementary Movie S2),
and after live immunostaining using SiR-conjugated fluorogenic probes for tubulin
(Supplementary Movie S3).
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Figure 5. Multi-ciliated bronchial epithelium and cilia characterization at day 45 of differentiation.
(A) Confocal microscopy images of TUBIV (ciliated cell marker) and KRT5 (basal cell marker)
expression; iCOPD2 cell line. (B) Multi-ciliated cell characterization using anti-DNAH5 and -TUBIV
antibodies. DNAH5 is localized in the axoneme in the iALI bronchial epithelium derived from
the iCOPD9 cell line (upper panel). TUBIV is detected only in cilia (middle). Merging of the
DNAH5 and TUBIV signals (lower panel); iCODP9 cell line. Scale bar: 10 µm. (C) Scanning electron
microscopy images of hiPSC-derived iALI airway epithelium after 45 days of differentiation showing
the presence of multi-ciliated cells in iALI epithelia derived from the indicated hiPSC lines. Scale bar:
10 µm. (D) Top left: Scanning electron microscopy (SEM) image of ciliated cells used for cilium length
determination; iCOPD9 cell line. Scale bar: 10 µm. Right panels: cilium cross-sections by transmission
electron microscopy. (E) Determination of cilium length by SEM (left) and optical microscopy (OM;
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right) in the different cell lines. Cilium length measurement was performed in primary cells in ALI
(n = 91 by SEM and n = 45 by OM), bronchial brushing samples from patients with COPD (n = 141
by OM), iCOPD2 (n = 428 by SEM), iCOPD8 (n = 98 by SEM and n = 120 by OM), HY03 (n = 51
by OM), and iCOPD9 cells (n = 66 by OM). (F) Top: Ciliary beating frequency map from a movie
(500 frames per second); iCOPD2 cell line. Scale bar: 50 µm. Bottom left: mean ciliary beating
frequency distribution. Bottom right: vectors representing the orientation and celerity of the vortex
flow generated by ciliary beating; iCOPD8 cell line. Scale bar: 20 µm. Hz = hertz.

To assess the muco-ciliary clearance capacity of 2D cultures, we recorded CBF and
muco-ciliary flow. The CBF of iALI cultures (14.3 ± 1.8 Hz) was similar to that of pri-
mary airway epithelium in ALI culture (Figure 5F) [27]. Cultures presented structures
with high density of ciliated cells that were actively beating, giving rise occasionally to
localized vortexes (Figure 5F, right bottom panel, Supplementary Movie S2). The estimated
flow velocity of the vortex was 5.6 ± 6.5 µm/s. We could observe beating cilia in iALI
bronchial epithelia for ~400 days without cell passaging and without aneuploidy appear-
ance (Supplementary Figure S2B). Moreover, we could passage cultures at least three times
after iALI generation.

4. Discussion

Here, we described the generation of iALI bronchial epithelium that represents an
attractive alternative to animal models and ex vivo cultures of differentiated bronchial
epithelium from endobronchial biopsies. Our differentiation protocol offers a virtually
unlimited source of homogeneous reliable human bronchial epithelium. Importantly, this
protocol was carried out successfully by ten different members of our research group, and
at least three times for each cell lines.

In vitro models of human epithelia in ALI culture represent useful platforms to pro-
mote the differentiation and maturation of epithelial cells and allow the modeling of
infections and environmental exposures. The generation of mature bronchial epithelium
from hiPSCs is a powerful way to explore and recapitulate in vitro human airway devel-
opment through a series of steps that mimic the normal in vivo embryonic development.
Furthermore, iALI is an unlimited source of airway epithelium. HiPSC differentiation
provides also a mean to characterize the different signaling pathways involved in airway
lineage specification and differentiation [28]. Besides being an excellent tool for mod-
eling human airway development, iALI represents an optimal platform for therapeutic
innovation, extensive drug screening, and for cell-based therapy.

The limitations of our iALI system are mainly linked to the potential lack of purity
of iPSC-derived airway progenitors and the difficulties to achieve fully matured airway
epithelium. However, recent single cell transcriptomic analyses indicated that human
airway primary cells from bronchial biopsies and adult human alveolar epithelium share a
common signature with iPSC-derived lung epithelium [29,30]. Although iALI bronchial
epithelium generation is slower than that of ALI epithelium obtained from airway tissue
samples, it provides a potentially unlimited quantity of epithelium from a given donor,
thus, avoiding batch heterogeneity due to multiple donors.

We identified several critical factors that ensure the efficiency and reproducibility
of airway epithelium differentiation from human PSCs. First, PSCs must be adapted to
single-cell culture for homogenous cell seeding. When we tried to plate non-adapted cells
(i.e., large clumps or high cell density), cell loss was reduced, but differentiation was ham-
pered (Figure 2D,G). This could be explained by the sustained expression of pluripotency
transcription factors within clumps and/or by altered YAP/TAZ signaling activity. Second,
the homogeneity of DE and vAFE cell populations (CXCR4 and NKX2.1 expression in ≥80%
of cells at the relevant step) was a good predictor of the final success. Based on the work
by Matsuno et al. [17], we found that APS induction by activation of the activin A/nodal
and WNT pathways for 24 h, followed by two additional days of activin A activity and
TGFβ pathway inhibition for DE induction, without addition of other cytokines or small
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molecules during the vAFE stage, was an effective strategy. Both SOX2 and SOX9 were
expressed at the vAFE stage with many double positive cells, in accordance with previous
studies reporting the presence of these bipotent cells specifically in human PSC, further
strengthening the iALI model [25]. To efficiently isolate NKX2.1+ bronchial progenitors
during hiPSC differentiation, several cell surface molecules specifically expressed in these
cells have been tested. Carboxypeptidase M (CPM), a specific marker of NKX2.1+ airway
progenitors that generate type II alveolar epithelial progenitor cells, was proposed as a cell
surface marker for sorting NKX2-1+ cells derived from human iPSCs [13,31]. However,
CPM is strongly expressed in hepatoblasts and fetal liver progenitor cells and is present
during the hepatic specification of iPSC-derived endoderm cells. This may limit its use
for sorting lung progenitor during endoderm cell differentiation [18,32]. Hawkins et al.
reported that sorting CD47highCD26low cells allowed enriching the NKX2-1+ lung progeni-
tor population from 62% to 70%. Therefore, improving NKX2-1+ lung progenitor sorting
based on cell surface markers could help to refine our differentiation strategy. Nevertheless,
we found that this step was not necessary for robust bronchial epithelium induction, thus,
overcoming a major bottleneck of directed differentiation protocols.

Another key point was the use of the PneumaCult differentiation medium. This
proprietary medium, the composition of which is not disclosed, efficiently promotes the dif-
ferentiation of primary cells obtained from bronchial biopsies. Although this medium might
contain a NOTCH pathway inhibitor, we added DAPT to our differentiation protocol. In-
deed, NOTCH signaling inhibition promotes the differentiation into multi-ciliated cell at the
expenses of club cells [33]. This protocol generated epithelia containing CCSP+/MUC5AC+,
CCSP+/MUC5AC-, and CCSP-/MUC5AC+ cells, although basal and ciliated cells were
predominant. Interestingly, we detected also rare cells, such as chromogranin A-expressing
neuro-endocrine cells. Altogether, these features suggest that the generated epithelia repro-
duced many features of a fully differentiated bronchiolar epithelium [34]. The physiological
relevance of the model was reinforced by the detection of plugs of mucus (alcian blue and
periodic acid–Schiff staining), the formation of vortexes of muco-ciliary clearance, cilium
length, and CBF, as observed in vivo.

Besides its reproducibility and simplicity, our protocol provides a 2D bronchial ep-
ithelium, unlike other methods that lead to 3D ciliated organoids [12,14,15]. To the best
of our knowledge, these three COPD hiPSC lines are the first described in the literature,
although difficulties could have been expected given the previously reported relative CD34
deficiency [35]. Moreover, one COPD hiPSC-derived epithelium culture could be kept
consistently differentiated for ~400 days at the time of writing. As expected for a disease
with multifactorial genetic susceptibility to environmental triggers (e.g., cigarette smoke),
and considering that cell reprogramming erases most epigenetic marks, the DE cells and
iALI bronchial epithelia derived from the COPD hiPSC lines were mostly identical to
those derived from the healthy donor. One notable difference was basal MUC5B secretion
that was increased in all iALI bronchial epithelia derived from COPD hiPSC lines. It will
be interesting to challenge these iALI epithelia with smoke extract or pollution particles
and investigate whether mucins are induced, as observed in smokers and patients with
COPD [36,37].

5. Conclusions

In conclusion, we described an easy and reliable method to drive PSC differentiation
into 2D multicellular bronchial epithelium. This method is highly reproducible, efficient,
does not require cell sorting, and is achievable using blood cells from patients with poly-
genic lung diseases. Our protocol recapitulates the generation of bronchial airway during
lung development, particularly the distal bronchial pattern. The protocol will also allow the
studying of chronic airway diseases, especially those that concern mainly the small airways,
such as cystic fibrosis, COPD, severe asthma, and idiopathic pulmonary fibrosis [38].
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11152422/s1, Figure S1: Clinical characteristics of patients with
COPD; Figure S2: Genetic integrity of the hiPSC lines used for differentiation into iALI bronchial
epithelia; Figure S3: NKX2.1 and CXCR4 FACS gating strategy; Figure S4: Characterization of vAFE
progenitors: SOX9 expression and NKX2.1 expression changes during v-AFE induction; Table S1:
Medium composition by culture period; Table S2: Molecules and used concentration; Table S3: List of
reagents and consumables; Table S4: List and sequences of the primers used for RT-qPCR; Movie S1:
iALI bronchial epithelium obtained from the iCOP9 hiPSC cell line (X20), Movie S2: iALI bronchial
epithelium obtained from the iCOPD8 hiPSC cell line (X40); Movie S3: iALI bronchial epithelium
obtained from the iCOPD9 hiPSC cell line after live immunofluorescence for TUBIV [39,40].
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COPD Patients’ Characteristics and History

The healthy control (41 years at inclusion) had normal lung function, without respira-
tory symptoms from childhood, and had no family history of chronic airway diseases.

Patients with severe COPD were recruited in the framework of the INVECCO project.
Patients had normal blood level of α-1 anti-trypsin and none of them carried any TERT
mutations, to avoid any monogenic COPD form.

Early disease onset was suggested by the early appearance of symptoms, at the mean
age of 35 years.

Disease was revealed by dyspnea, pneumothorax, or acute exacerbation. The mean
time between first symptoms and COPD diagnosis was 12 years. Family history of COPD
(first-degree relative) was found for two of the three enrolled patients. All of them were
at least GOLD stage 3. Environmental exposures were identified for all three patients:
early and heavy active tobacco exposure, in utero exposure to tobacco, and to second-hand
smoke in early childhood. Their mean cigarette consumption was 50 pack-years (range,
30–75). Consumption of cannabis and intravenous heroin was recorded, in agreement with
the already reported association between substance consumption and severe emphysema.
Dyspnea was severe, requiring long-term home oxygen support for two patients. No
cardiovascular comorbidity, diabetes, cancer, or pulmonary hypertension was described,
but they had severe osteoporosis despite their young age. Two of the three patients
with COPD had recurrent spontaneous pneumothorax. Two patients had three or more
exacerbations per year that required hospitalization. All three patients received at baseline
long-acting beta2-agonist (LABA) and anti-cholinergic (LAMA) drugs, but not inhaled
corticosteroid (ICS). Chest CT imaging showed severe apical centrilobular emphysema,
basal bronchiectasis, and increased wall thickness (Figure 1A, left panel). Lung function
declined fast in these patients with COPD. The mean change in FEV1 (mL/year) was −25.3
(SD, 43.3) mL/year (Figure 1A, right panel).

At the time of inclusion, all three patients with COPD were on the lung transplantation
waiting list. At the time of manuscript submission, patient iCOPD2 was admitted in the
intensive care unit for a severe COPD exacerbation that required mechanical ventilation.
Patient iCOPD8 refused lung transplantation. Patient iCOPD9 was programmed for single
lung transplantation (pre-transplant pleurodesis due to iterative pneumothorax). The lung
transplant was delayed for more than 24 months due to overweight. Recently, a localized
lung adenocarcinoma was discovered. Bronchoscopic lung volume reduction has been
proposed to this patient due the severe emphysema phenotype.

References
1. GBD; CODC. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories,

1980-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [CrossRef]
2. Agustí, A.; Melén, E.; DeMeo, D.L.; Breyer-Kohansal, R.; Faner, R. Pathogenesis of chronic obstructive pulmonary disease:

Understanding the contributions of gene–environment interactions across the lifespan. Lancet Respir. Med. 2022, 10, 512–524.
[CrossRef]

3. Higham, A.; Quinn, A.M.; Cançado, J.E.D.; Singh, D. The pathology of small airways disease in COPD: Historical aspects and
future directions. Respir. Res. 2019, 20, 49. [CrossRef]

4. Hogg, J.C.; Chu, F.; Utokaparch, S.; Woods, R.; Elliott, W.M.; Buzatu, L.; Cherniack, R.M.; Rogers, R.M.; Sciurba, F.C.;
Coxson, H.O.; et al. The Nature of Small-Airway Obstruction in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med.
2004, 350, 2645–2653. [CrossRef]

5. Xu, F.; Vasilescu, D.M.; Kinose, D.; Tanabe, N.; Ng, K.W.; Coxson, H.O.; Cooper, J.D.; Hackett, T.-L.; Verleden, S.E.;
Vanaudenaerde, B.M.; et al. The molecular and cellular mechanisms associated with the destruction of terminal bronchioles in
COPD. Eur. Respir. J. 2022, 59, 2101411. [CrossRef]

6. Ahmed, E.; Sansac, C.; Assou, S.; Gras, D.; Petit, A.; Vachier, I.; Chanez, P.; De Vos, J.; Bourdin, A. Lung development, regeneration
and plasticity: From disease physiopathology to drug design using induced pluripotent stem cells. Pharmacol. Ther. 2018, 183,
58–77. [CrossRef]

7. Green, M.D.; Chen, A.; Nostro, M.-C.; D’Souza, S.L.; Schaniel, C.; Lemischka, I.R.; Gouon-Evans, V.; Keller, G.; Snoeck, H.-W.
Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol. 2011, 29,
267–272. [CrossRef]

http://doi.org/10.1016/S0140-6736(18)32203-7
http://doi.org/10.1016/S2213-2600(21)00555-5
http://doi.org/10.1186/s12931-019-1017-y
http://doi.org/10.1056/NEJMoa032158
http://doi.org/10.1183/13993003.01411-2021
http://doi.org/10.1016/j.pharmthera.2017.10.002
http://doi.org/10.1038/nbt.1788


Cells 2022, 11, 2422 16 of 17

8. Wong, A.P.; Bear, C.E.; Chin, S.; Pasceri, P.; Thompson, T.O.; Huan, L.-J.; Ratjen, F.; Ellis, J.; Rossant, J. Directed differentiation of
human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat. Biotechnol. 2012, 30, 876–882.
[CrossRef]

9. Mou, H.; Zhao, R.; Sherwood, R.; Ahfeldt, T.; Lapey, A.; Wain, J.; Sicilian, L.; Izvolsky, K.; Lau, F.H.; Musunuru, K.; et al.
Generation of Multipotent Lung and Airway Progenitors from Mouse ESCs and Patient-Specific Cystic Fibrosis iPSCs. Cell Stem
Cell 2012, 10, 385–397. [CrossRef]

10. Huang, S.X.L.; Islam, M.N.; O’Neill, J.; Hu, Z.; Yang, Y.-G.; Chen, Y.-W.; Mumau, M.; Green, M.D.; Vunjak-Novakovic, G.;
Bhattacharya, J.; et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol.
2014, 32, 84–91. [CrossRef]

11. Firth, A.L.; Dargitz, C.T.; Qualls, S.J.; Menon, T.; Wright, R.; Singer, O.; Gage, F.H.; Khanna, A.; Verma, I.M. Generation of
multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 2014, 111,
E1723–E1730. [CrossRef]

12. Dye, B.R.; Hill, D.R.; Ferguson, M.A.; Tsai, Y.H.; Nagy, M.S.; Dyal, R.; Wells, J.M.; Mayhew, C.N.; Nattiv, R.; Klein, O.D.; et al.
In vitro generation of human pluripotent stem cell derived lung organoids. eLife 2015, 4, e05098. [CrossRef]

13. Konishi, S.; Gotoh, S.; Tateishi, K.; Yamamoto, Y.; Korogi, Y.; Nagasaki, T.; Matsumoto, H.; Muro, S.; Hirai, T.; Ito, I.; et al. Directed
Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells. Stem
Cell Rep. 2016, 6, 18–25. [CrossRef]

14. Chen, Y.-W.; Huang, S.X.; De Carvalho, A.L.R.T.; Ho, S.-H.; Islam, M.N.; Volpi, S.; Notarangelo, L.D.; Ciancanelli, M.;
Casanova, J.-L.; Bhattacharya, J.; et al. A three-dimensional model of human lung development and disease from pluripo-
tent stem cells. Nat. Cell Biol. 2017, 19, 542–549. [CrossRef]

15. McCauley, K.B.; Hawkins, F.; Serra, M.; Thomas, D.C.; Jacob, A.; Kotton, D.N. Efficient Derivation of Functional Human Airway
Epithelium from Pluripotent Stem Cells via Temporal Regulation of Wnt Signaling. Cell Stem Cell 2017, 20, 844–857.e6. [CrossRef]

16. Morrisey, E.E.; Hogan, B.L.M. Preparing for the First Breath: Genetic and Cellular Mechanisms in Lung Development. Dev. Cell
2010, 18, 8–23. [CrossRef]

17. Matsuno, K.; Mae, S.-I.; Okada, C.; Nakamura, M.; Watanabe, A.; Toyoda, T.; Uchida, E.; Osafune, K. Redefining definitive
endoderm subtypes by robust induction of human induced pluripotent stem cells. Differentiation 2016, 92, 281–290. [CrossRef]

18. Hawkins, F.; Kramer, P.; Jacob, A.; Driver, I.; Thomas, D.C.; McCauley, K.; Skvir, N.; Crane, A.M.; Kurmann, A.A.;
Hollenberg, A.N.; et al. Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells.
J. Clin. Investig. 2017, 127, 2277–2294. [CrossRef]

19. Gomperts, B.N. Induction of multiciliated cells from induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 2014, 111,
6120–6121. [CrossRef]

20. Ahmed, E.; Fieldes, M.; Mianné, J.; Bourguignon, C.; Nasri, A.; Vachier, I.; Assou, S.; Bourdin, A.; De Vos, J. Generation of four
severe early-onset chronic obstructive pulmonary disease (COPD) patient-derived induced pluripotent stem cell lines from
peripheral blood mononuclear cells. Stem Cell Res. 2021, 56, 102550. [CrossRef]

21. Fieldes, M.; Ahmed, E.; Bourguignon, C.; Mianné, J.; Martin, M.; Arnould, C.; Vachier, I.; Assou, S.; De Vos, J.; Bourdin, A.
Generation of the induced pluripotent stem cell line UHOMi002-A from peripheral blood mononuclear cells of a healthy male
donor. Stem Cell Res. 2020, 49, 102037. [CrossRef]

22. Ahmed, E.; Sansac, C.; Fieldes, M.; Bergougnoux, A.; Bourguignon, C.; Mianné, J.; Arnould, C.; Vachier, I.; Assou, S.;
Bourdin, A.; et al. Generation of the induced pluripotent stem cell line UHOMi001-A from a patient with mutations in CCDC40
gene causing Primary Ciliary Dyskinesia (PCD). Stem Cell Res. 2018, 33, 15–19. [CrossRef] [PubMed]

23. Bai, Q.; Ramirez, J.-M.; Becker, F.; Pantesco, V.; Lavabre-Bertrand, T.; Hovatta, O.; Lemaître, J.-M.; Pellestor, F.; De Vos, J. Temporal
Analysis of Genome Alterations Induced by Single-Cell Passaging in Human Embryonic Stem Cells. Stem Cells Dev. 2015, 24,
653–662. [CrossRef]

24. Assou, S.; Girault, N.; Plinet, M.; Bouckenheimer, J.; Sansac, C.; Combe, M.; Mianné, J.; Bourguignon, C.; Fieldes, M.;
Ahmed, E.; et al. Recurrent Genetic Abnormalities in Human Pluripotent Stem Cells: Definition and Routine Detection in
Culture Supernatant by Targeted Droplet Digital PCR. Stem Cell Rep. 2020, 14, 1–8. [CrossRef]

25. Miller, A.J.; Hill, D.R.; Nagy, M.S.; Aoki, Y.; Dye, B.R.; Chin, A.M.; Huang, S.; Zhu, F.; White, E.S.; Lama, V.; et al. In Vitro
Induction and In Vivo Engraftment of Lung Bud Tip Progenitor Cells Derived from Human Pluripotent Stem Cells. Stem Cell Rep.
2018, 10, 101–119. [CrossRef]

26. Gibbons, I.R.; Rowe, A.J. Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia. Science 1965, 149, 424–426.
[CrossRef]

27. Papon, J.-F.; Bassinet, L.; Cariou-Patron, G.; Zerah-Lancner, F.; Vojtek, A.-M.; Blanchon, S.; Crestani, B.; Amselem, S.; Coste, A.;
Housset, B.; et al. Quantitative analysis of ciliary beating in primary ciliary dyskinesia: A pilot study. Orphanet J. Rare Dis. 2012,
7, 78. [CrossRef]

28. Hurley, K.; Ding, J.; Villacorta-Martin, C.; Herriges, M.J.; Jacob, A.; Vedaie, M.; Alysandratos, K.D.; Sun, Y.L.; Lin, C.;
Werder, R.B.; et al. Reconstructed Single-Cell Fate Trajectories Define Lineage Plasticity Windows during Differentiation of
Human PSC-Derived Distal Lung Progenitors. Cell Stem Cell 2020, 26, 593–608.e8. [CrossRef]

http://doi.org/10.1038/nbt.2328
http://doi.org/10.1016/j.stem.2012.01.018
http://doi.org/10.1038/nbt.2754
http://doi.org/10.1073/pnas.1403470111
http://doi.org/10.7554/eLife.05098
http://doi.org/10.1016/j.stemcr.2015.11.010
http://doi.org/10.1038/ncb3510
http://doi.org/10.1016/j.stem.2017.03.001
http://doi.org/10.1016/j.devcel.2009.12.010
http://doi.org/10.1016/j.diff.2016.04.002
http://doi.org/10.1172/JCI89950
http://doi.org/10.1073/pnas.1404414111
http://doi.org/10.1016/j.scr.2021.102550
http://doi.org/10.1016/j.scr.2020.102037
http://doi.org/10.1016/j.scr.2018.09.019
http://www.ncbi.nlm.nih.gov/pubmed/30296669
http://doi.org/10.1089/scd.2014.0292
http://doi.org/10.1016/j.stemcr.2019.12.004
http://doi.org/10.1016/j.stemcr.2017.11.012
http://doi.org/10.1126/science.149.3682.424
http://doi.org/10.1186/1750-1172-7-78
http://doi.org/10.1016/j.stem.2019.12.009


Cells 2022, 11, 2422 17 of 17

29. Abo, K.M.; Sainz de Aja, J.; Lindstrom-Vautrin, J.; Alysandratos, K.D.; Richards, A.; Garcia-de-Alba, C.; Huang, J.; Hix, O.T.;
Werder, R.B.; Bullitt, E.; et al. Air-liquid interface culture promotes maturation and allows environmental exposure of pluripotent
stem cell-derived alveolar epithelium. JCI Insight 2022, 7, e155589. [CrossRef]

30. Hawkins, F.J.; Suzuki, S.; Beermann, M.L.; Barillà, C.; Wang, R.; Villacorta-Martin, C.; Berical, A.; Jean, J.; Le Suer, J.; Matte, T.; et al.
Derivation of Airway Basal Stem Cells from Human Pluripotent Stem Cells. Cell Stem Cell 2021, 28, 79–95.e8. [CrossRef]

31. Gotoh, S.; Ito, I.; Nagasaki, T.; Yamamoto, Y.; Konishi, S.; Korogi, Y.; Matsumoto, H.; Muro, S.; Hirai, T.; Funato, M.; et al.
Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells. Stem Cell Rep.
2014, 3, 394–403. [CrossRef] [PubMed]

32. Kido, T.; Koui, Y.; Suzuki, K.; Kobayashi, A.; Miura, Y.; Chern, E.Y.; Tanaka, M.; Miyajima, A. CPM Is a Useful Cell Surface
Marker to Isolate Expandable Bi-Potential Liver Progenitor Cells Derived from Human iPS Cells. Stem Cell Rep. 2015, 5, 508–515.
[CrossRef] [PubMed]

33. Lafkas, D.; Shelton, A.; Chiu, C.; Boenig, G.D.L.; Chen, Y.; Stawicki, S.S.; Siltanen, C.; Reichelt, M.; Zhou, M.; Wu, X.; et al.
Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature 2015, 528, 127–131. [CrossRef]
[PubMed]

34. Okuda, K.; Chen, G.; Subramani, D.B.; Wolf, M.; Gilmore, R.C.; Kato, T.; Radicioni, G.; Kesimer, M.; Chua, M.; Dang, H.; et al.
Localization of Secretory Mucins MUC5AC and MUC5B in Normal/Healthy Human Airways. Am. J. Respir. Crit. Care Med. 2019,
199, 715–727. [CrossRef] [PubMed]

35. Palange, P.; Testa, U.; Huertas, A.; Calabro, L.; Antonucci, R.; Petrucci, E.; Pelosi, E.; Pasquini, L.; Satta, A.; Morici, G.; et al.
Circulating haemopoietic and endothelial progenitor cells are decreased in COPD. Eur. Respir. J. 2006, 27, 529–541. [CrossRef]

36. Kirkham, S.; Kolsum, U.; Rousseau, K.; Singh, D.; Vestbo, J.; Thornton, D.J. MUC5B Is the Major Mucin in the Gel Phase of
Sputum in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2008, 178, 1033–1039. [CrossRef]

37. Finicelli, M.; Squillaro, T.; Galderisi, U.; Peluso, G. Micro-RNAs: Crossroads between the Exposure to Environmental Particulate
Pollution and the Obstructive Pulmonary Disease. Int. J. Mol. Sci. 2020, 21, 7221. [CrossRef]

38. Verleden, S.E.; Tanabe, N.; McDonough, J.E.; Vasilescu, D.M.; Xu, F.; Wuyts, W.A.; Piloni, D.; De Sadeleer, L.; Willems, S.;
Mai, C.; et al. Small airways pathology in idiopathic pulmonary fibrosis: A retrospective cohort study. Lancet Respir. Med. 2020, 8,
573–584. [CrossRef]

39. Dummer, A.; Poelma, C.; DeRuiter, M.C.; Goumans, M.J.T.; Hierck, B.P. Measuring the primary cilium length: Improved method
for unbiased high-throughput analysis. Cilia 2016, 5, 7. [CrossRef]

40. Kesimer, M.; Ford, A.A.; Ceppe, A.; Radicioni, G.; Cao, R.; Davis, C.W.; Doerschuk, C.M.; Alexis, N.E.; Anderson, W.H.;
Henderson, A.G.; et al. Airway Mucin Concentration as a Marker of Chronic Bronchitis. N. Engl. J. Med. 2017, 377, 911–922.
[CrossRef]

http://doi.org/10.1172/jci.insight.155589
http://doi.org/10.1016/j.stem.2020.09.017
http://doi.org/10.1016/j.stemcr.2014.07.005
http://www.ncbi.nlm.nih.gov/pubmed/25241738
http://doi.org/10.1016/j.stemcr.2015.08.008
http://www.ncbi.nlm.nih.gov/pubmed/26365514
http://doi.org/10.1038/nature15715
http://www.ncbi.nlm.nih.gov/pubmed/26580007
http://doi.org/10.1164/rccm.201804-0734OC
http://www.ncbi.nlm.nih.gov/pubmed/30352166
http://doi.org/10.1183/09031936.06.00120604
http://doi.org/10.1164/rccm.200803-391OC
http://doi.org/10.3390/ijms21197221
http://doi.org/10.1016/S2213-2600(19)30356-X
http://doi.org/10.1186/s13630-016-0028-2
http://doi.org/10.1056/NEJMoa1701632

	Introduction 
	Materials and Methods 
	Patients’ Clinical Characteristics 
	Human Embryonic Stem Cell (ESC) and hiPSC Generation and Maintenance 
	HIPSC Differentiation 
	Statistical Analysis 

	Results 
	Reprogramming from Blood Samples 
	Cell Density and Induction Timing Are Critical for Successful Differentiation and Allows High Rate of Definitive Endoderm Induction 
	Efficient Induction of High Purity NKX2.1+ Lung Progenitors without Cell Sorting 
	Specification of NKX2.1 Lung Progenitor Cells in 2D ALI Culture Conditions Leads to Functional, Multi-Ciliated Airway Epithelium 
	Epithelium with Barrier Function 
	IALI Bronchial Epithelium Includes Major and Rare Solitary Human Airway Epithelial Cells 
	Functional Multi-Ciliated Cell Airway Epithelium 


	Discussion 
	Conclusions 
	Appendix A
	References

